发酵木糖产酒精高温酵母菌株构建的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要对发酵木糖的酵母工程菌的构建进行了研究,并对获得的理想融合菌株进行了发酵条件的优化研究,为纤维素类生物质的全面利用打下了菌种方面的基础。通过对大量菌株的筛选,得到了高温酿酒酵母G47。该菌株在45℃能良好生长,并能较好地发酵葡萄糖,但不能发酵木糖。当底物浓度为10%葡萄糖时,41℃和45℃下发酵,发酵液中酒精终浓度为分别为3.9%(w/w)和2.0%(w/w),转化率分别为75%和39%。
     本研究以高温下发酵葡萄糖的酿酒酵母G47和木糖发酵菌株休哈塔假丝酵母1766作为出发菌株,通过单倍体诱导生成及分离,得到G47-12(a)和1766-115(a)等9株单倍体菌株。单一营养缺陷型为稳定可靠的遗传选择标志,通过UV和DES诱变对所挑选出的G47-2(a)和1766-4(a)两株单倍体进行诱变。通过对突变株的筛选鉴定得到G47-2 Lys'(a)和1766-4 Ura'(a)两突变株,实验证明两突变株为正突变株。本研究以G47-2Lys'(a)和1766-4 Ura'(a)作为构建高温木糖发酵菌株的融合亲株。
     通过聚乙二醇(PEG)和电诱导融合等方法,实现了发酵爪糖产酒精的休哈塔假丝酵母和高温酿酒酵母之间的融合。融合子经DNA含量、细胞体积测定和稳定性能试验证明为稳定的融合子。融合子F-71能在45℃下发酵木糖产酒精,其在45℃发酵木糖所产生的酒精体积百分数为1.67%(v/v)。与亲株相比,F-71的酒精耐受能力也提高了14.3%。
     通过对融合子发酵培养基优化以及系列发酵条件的研究,使融合子发酵木糖产酒精的终产量提高到1.98%(v/v),转化率为81%。
     本论文还进行了体外重组构建发酵木糖产酒精的酵母工程的初探工作。
Construction of Xylose co-fermentation yeast engineering strains and the optimal fermentation conditions were studied in this research. These studies have important meaning to the strains in making full use of lignocellulose biomass. S.cerevisiae G47 was gained by a great mount of screen work. This strain was characterized by growing at high temperature (45 ℃) and can ferment glucose well at this temperature. With the same substrate sugar concentration of 10%, the final ethanol concentration of the broth is 3.9% (w/w) and 2.0%(w/w) when fermenting at 41℃ and 45℃ separately. Their transform rate are 75% and 39% correspondingly.
    S.cerevisiae G47 and Candida shehatea 1766 which can produce ethanol by xylose-fermenting were used as the parents strains. Nine halpolids were got through halploid inducing formation and separation. The auxotrophic mutants with only one selectable marker were stable and dependable. So both of G47-2 (a) and 1766-4 (a) were induced by DES and UV in this research. It was proved that auxotrophic mutants G47-2 Lys-1(a) and 1766-4 Ura-1(a) which used as parent strains were positive mutants.
    We got ideal fusants between S.cerevisiae and Candida shehatea through inter-generic protoplast fusion induced by PEG and electroporation. Fusants were testified to be stable by its DNA content, the volume of cell and the stable experiment. Fusant F-71 can produce ethanol by xylose-fermenting at 45℃ and the final ethanol concentration of broth was 1.67%(v/v). Compared with parents strains, the ethanol tolerance ability of fusants were improved by 14.3%.
    The optimal fermentation medium composition and fermentation conditions about the fusants were studied. And the final ethanol productivity through xylose-fermenting with our fusants was 1.98%(v/v). Its transform rate was 81 %.
    The construction of xylose-fermenting yeasts by gene recombinant was studied briefly also.
引文
[1] Stem B.R., Tardiff R.G Risk characterization of methyl tertiary butyl ether(MTBE) in tap water[J]. Risk Anal. 1997, 17: 727~743
    [2] Weimer P.J. Use of the thermophiles for the production of fuels and chemicals [J]. General Molecular and Applied Microbiology, New York, p. 217
    [3] 苏毅译.巴西的无水酒精生产[J].广西轻工业,1994(3):45
    [4] John J. A., Hydration, in Miller SA (ed.), Ethylene and industrial derivatives. Ernest Benn,London, 1969,690~801
    [5] Nelson C R, Courter M L. Ethanol by hydration of ethylene[J]. Chem eng progr. 1954, 50: 526~532
    [6] Jefferies T.W. Jin.Ethanol and thermotolerance in the bioconversion of xylose by yeasts[J]. Adv Appl microbiol, 2000, 47: 222~268
    [7] Lee J. Biological conversion of lignocellulosic biomass to ethanol[J]. Biotechnol, 1997, 57: 1~24
    [8] 钱伯章,夏磊.国外生物化工的新进展[J].现代化工,2002,22(9):53~57
    [9] Jefferies T.W., Shi N.Q. Genetic engineering for improved xylose fermentation by yeasts[J]. Adv Biochem Eng Biotechnol, 1999, 65: 117~161
    [10] Wang P.Y., Shopsis C. and Schneider H. Fermentation of a pentose by yeasts[J]. Biochem Biophys, 1980, 94: 248~254
    [11] Joibers G. K. PLA production and application [J]. Chem Week, 2002, 164(2): 35~37
    [12] Nigam J.N. Development of xylose-fermenting yeast pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehycrolysate [J]. Appl Microbiol, 2001, 90: 208~215
    [13] Lachke A. Biofuel from D-xylose—the second most abundant sugar [J]. Resonance, 2002, 5: 50~58
    [14] Nigam J.N. Development of xylose-fermenting yeast pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehycrolysate[J]. Appl Microbiol, 2001, 90: 208~215
    [15] Walfridsson, Xiaoming Bao and Mikael. Ethanol fermentation of xylose with saccharomyces cerevisiae harboring the thermos thermophilus xylA gene, which express an active xylose (glucose) isomerase [J]. Appl Environ Microbiol, 1996, 62:4648~4651
    [16] Hahn-Hagerdal, Jeppsson and Skoog H. Biochemistry and physiology of xylose fermentation by yeasts[J]. Enzyme Microb. Technol., 1994, 16(11): 933~943
    [17] Chan E.C., Ueng P. and Chen L.F. D-xylose fermentation ethanol by schizosaccharomyces pombe colened with xylose isomerase gene [J]. Biotechnol Lett., 1986, 4: 231~234
    [18] Metzger M.H., Hollenberg C.P. Amino acid substitutions in the yeast pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity [J]. Eur J Biochem., 1995, 228 (1): 50~54
    [19] Bruinenberg P.M., Bot P.H.M., Van Dijken J.P., et al. NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeast [J]. Microbiol Biotechnol, 1984, 19: 256~260
    [20] Hahn-Hagerdal B., Jeppsson H., Skoog K., et al. Biochemistry and physiology of xylose fermentation by yeasts [J]. Enzyme Microb Technol., 1994 (16): 933~943
    [21] Wang P.Y., Shopsis C. and Schneider H. Fermentation of a pentose by yeasts[J]. Biochem Biophys, 1980, 94: 248~
    
    254
    [22] Gefferies T.W. Ethanol and thermotolerance in the bioconversion of xylose by yeast [J]. Adv Appl Microbiol, 47: 222~268
    [23] Rene A., Marlin W. and Cornelis. The fermention of xylose—an analysis of the expression of bacillus and Actinoplanesxylose isomerase genes in yeast [J]. Appl Micorbiol Biotechnol, 1989, 30: 351~357
    [24] Wang G.S. Improvement on ethanol tolerance of xylose-fermenting yeast by protoplast fusion [J]. Taiwan Sugar, 1989, 124: 29~37
    [25] Jefferies T.W. and Kurtzman C.P. Strain selection, taxonomy and genetics of xylose -fermenting yeats [J]. Enzyme Microb. Technol, 1994, 16(11): 922~931
    [26] Heluane H., Spencer J. and Spencer. Characterization of hybrids obtained by protoplast fusion, between pachysolen tannophilus and saccharomyces cerevisiae [J]. Appl Microbiol Biotechnol, 1993, 40: 98~100
    [27] Johannsen E, Eagal L. and Brendenhann G Protoplast fusion used for the construction of presumptive ploypiods of the D-xylose fermenting yeast candida shehatea [J]. Curr Genet, 1985, 9: 313~319
    [28] 毛华,曲音波,高培基等.酵母属间原生质休融合改进菌株木糖发酵性能[J].生物工程学报,1996.12:157~162
    [29] Bruinenberg P.M. and Scheffers W.A. An enzymic analysis of NADHP production and construction in Candida utilis [J]. J.Gen. Microbiol, 1983, 129: 965~971
    [30] Johansson and Camilla. Xylylokinase pverxpression in two strains of saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate [J]. Appl Environ Microbiol, 2001, 67(9): 4249~4255
    [31] Nancy W.Y.H., Chen Z.D. and Adam. Genetically Engineered Saccharomyces Yeast Capable of Effective Cofermentation of Glucose and Xylose [J]. Appl Environ Microbiol, 1998, 64(5): 1852~1859
    [32] Van Zyl W.H., A Eliasson and T Hobley et al. Xylose utilisation by recombinant strains of saccharomyces cerevisiae on different carbon sources[J]. Appl Microbiol Biotechnol, 1999, 52: 829~833
    [33] Du Preez J.C., Kock J.L.F., Monteiro A.M.T., Prior BA (1985b) The vitamin requirements of candida shehatae for xylose fermentation. FEMS Microbiol Lett., 1985, 28: 241~246
    [34] Du Preez J.C, Bosch M. and Prior B.A. The fermentation of hexose and pentose sugars by candida shehatae and Pichia stipitis[J]. Appl Microbiol Biotechnol. 1986, 23: 228~233
    [35] Du Preez J.C. and Moteriro A. The effect of aeration on D-xylose fermentation by candida shehatae and Pachysolen tannophilus [J]. Appl Microbiol Biotechnol, 1984, 19: 261~266
    [36] Martin Kern, Bernd Nidetzky, Klausd Kulbe et al. Effect of nitrogen sources on the levels of aldose reductase and xylitol dehydrogenase activities in the xylose-fermenting yeast Candida tenuis [J]. Journal of fenrmentation and bioengineering, 1998, 85(2): 196~202
    [37] Du Preez J.C. Process parameters and environmental factors affecting D-xylose fermentation by yeasts[J]. Enzyme Microb Technol, 1994, 16(11): 944~956
    [38] Jeffries, T.W., Fady, J.H., and Lightfoot, E,N. Effect of glucose supplements on the fermentation of xylose by Pachysolen tannophilus [J]. Biotechnol. Bioeng., 1985, 27: 171~176
    
    
    [39] Dellweg H., Rizzi M. and Klein C. Controlled limited aeration and metabolic regulation during the production of ethanol from D-xylose by pichia stipitis [J]. B iotechnol, 1989, 12: 111~122
    [40] Kastner, J.R., Jones, W.J., and Roberts, R,S. Oxygen starvation induces cell death in candida shehatae fermentation of D-xylose, but not D-glucose. Appl Microbiol Biotechnol,, 1999, 51: 780~785
    [41] Petter Kotter, Michael Cicracy. Xylose fermentation by saccharomyces cerevisiae [J]. Appl Microbiol Biotechnol,1993, 38: 776~783
    [42] 周东坡,平文祥.微生物原生质体融合.哈尔滨:黑龙江科学技术出版社,1990
    [43] 张伯润,蔡金科等.微生物遗传实验技术.北京:科学出版社,1992
    [44] Ishii S., Aoyama K., Takiguchi R., et al. Protoplast formation and regeneration in bifidobacteria [J], Ferment-Bioeng, 1990, 70(5): 345~347
    [45] 诸葛健,王正祥.工业微生物实验技术手册.北京:轻工业出版社.1997
    [46] 孙君社,李雪,李军席.原生质体融合构建耐高温酵母菌株.食品与发酵工业,2002,28(5):1~5
    [47] 卢圣栋主编,李尹雄,胡晓年等编.现代分了生物学实验技术(第一版).北京:高等教育出版社,1993
    [48] 文铁桥.酵母属间原生质体融合.中国酿造,1990,7:25~30
    [49] 贾盘兴,蔡金科等.微生物遗传实验技术.北京:科学技术出版社,1992
    [50] J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿帝斯.分子克降实验指南(第二版).北京:科学出版社,1992
    [51] 张博润,刘永红,刘书峰等.酿酒酵母原生质体的融合[J].微生物学通报,1986,13(2):65~67
    [52] 天津轻工学院,大连轻工学院 编.工业发酵分析.北京:轻工出版社,1980
    [53] 谭蓓英,王花.酿酒酵母和产朊似丝酵母原生质体形成、再生及属间融合[J].真菌学报,1983,2(2):110~117
    [54] 谢勇,刘晓宇.气相色普法测定饮料中乙醇含量[J].分析测试技术与仪器,2002,8(1):56~58
    [55] 中山大学生物系生化微生物教研室.生物技术导论.北京:人民教育出版社,1978
    [56] 北京大学生物系生物化学教研室编.生物化学实验指导.北京:高等教育出版社,1979
    [57] Bruinenberg P.M., VanDjiken J,R NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeast[J]. Appl. Microbiol. Biotechnol., 1984, 19: 256~260