实验室气敏测试系统的组建与半导体气敏材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要以气体传感器测试系统及半导体气敏材料为研究对象,在传统方法的基础上根据实际需要对系统进行了适当的改进以使其具有更加广泛的使用范围,同时将计算机技术与测试系统结合,实现了气敏测试的数字化与图像化。根据气体测试对象的特点制备了两种半导体气敏材料并对其进行了表征和气敏性研究。
     1.设计和制作了一套气敏测试系统,此系统以传统的旁热式气敏元件为基础,同时可以用于对高分子半导体气敏材料的常温测试。系统操作方法简单易学,有利于气敏性测试在实验室的普及。
     2.介绍了实验室气敏测试系统的具体使用方法,包括气敏元件制作,系统调试和测试等。通过对数据的拟合和转换,将得到的负载电阻电压合理的转换成气敏元件电阻,从而为表达材料灵敏度提供了更多的可靠数据。
     3.以海胆状MnO_2为模板用固相法合成了聚苯胺/MnO_2复合材料,用红外光谱、X-射线粉末衍射(XRD)对其进行了表征。复合材料为直径5-6微米的球形,表面粗糙,覆盖着大量的纳米纤维。气敏性测试表明,此复合材料与固相法制备的纯聚苯胺相比灵敏度上升4-5倍。
     4.通过硝酸纤维素的辅助作用,在水热体系中制备了三维花朵状Ni(OH)_2以此为前驱体得到了三维花朵状NiO。对比实验显示,硝酸纤维素对三维花状结构的形成起着至关重要的作用。气敏性测试显示,三维花朵状NiO制备的气敏元件最佳工作状态是加热电流为1000mA时,材料对甲醛有较好的响应速度。
In this article, we focus on the assembly of testing system of gas-sensor and researches of semiconductor gas-sensing materials. According to the actual requirement, some change has been made on the basis of the traditional system to enlarge the testing range. Meanwhile, computer technology and testing system have been integrated, which is propitious to the numeralization and the picturelization of the gas-sensing test. Furthermore, we have synthesized two kinds of semiconductor gas-sensing materials according to the testing system. The gas-sensing property of the materials has been characterized by the self-maded testing system.
     1. A testing system of gas-sensor has been designed and manufactured which is made on the basis of traditional indirect-heat gas sensor. The testing system can be also used by the macromolecule gas-sensing materials at normal temperature.
     2. The operating method of the lab-used gas-sensing testing system has been introduced, including facture of gas sensor, debugging and testing. In addition, the export voltage has been transform to resistance through the simulation and transformation of relative data, which offers more reliable data to express the sensitivity.
     3. PANI/MnO_2 complex material has been successfully prepared by using urchin-like MnO_2 as a single template through solid state method. The structure and morphology of the complex material were characterized by IR spectrum, XRD pattern, and SEM images. The diameter of the product with sphere-like structure was from 5 to 6μm. The surface of the spheres was coarse covered with large amount of nanofibers. The sensitivity to NH_3 has been increased by 4-5 times compared with other PANI material
     4. Pyroxylin were used as assistant agent to synthesize flower-likeβ-Ni(OH)_2 through hydrothermal process. Then NiO crystal could be obtained through thermal decomposition of the flower-likeβ-Ni(OH)_2. Meanwhile, The flower-like morphology could be preserved during the thermal decomposition process. Series of experiments indicated that pyroxylin played a key role in the formation of the flower-likeβ-Ni(OH)_2 structure. Gas sensing test indicated that flower-like NiO is in the best working state with the heating current 1000 mA, and had a better performance when exposed to formal dehyde.
引文
[1]徐毓龙,G.Heiland.金属氧化物气敏传感器(Ⅰ) [J].传感技术学报,1995,4,59-64.
    [2]徐毓龙,G.Heiland.金属氧化物气敏传感器(Ⅱ) [J] .传感技术学报,1995,1,63-67.
    [3]徐毓龙,G.Heiland.金属氧化物气敏传感器(Ⅲ) [J] .传感技术学报,1995,2,56-61.
    [4]徐毓龙,G.Heiland.金属氧化物气敏传感器(Ⅴ) [J] .传感技术学报,1996,4,93-99.
    [5]徐毓龙,G.Heiland.金属氧化物气敏传感器(Ⅵ) [J] .传感技术学报,1997,1,79-82.
    [6]王利伟.平面旁热式甲烷气敏元件的研制[D]:[ 硕士学位论文].沈阳:沈阳工业大学, 2002.
    [7]徐宏燕.氧化物多孔纳米固体气敏传感器的研究[D]:[博士学位论文].济南:山东大学,2006.
    [8]陈长庆,胡明,吴霞宛.气敏传感器的发展[J].材料导报,2003,17(1):33-35.
    [9]田俊峰. 金属氧化物气敏材料制备与气敏性能研究[D]:[硕士学位论文].郑州:郑州大学. 2005.
    [10]徐毓龙.国外气敏传感器的发展动向[J].传感器世界,1996,1,21-28.
    [11]黄敏桐. 气敏传感器在工业和民用领域的应用[J].福建建材,2006,4,1-3.
    [12]赵伟, 张忠锁,刘巧敏,张强.气敏材料的研究现状和发展趋势[J]. 平顶山学院学报, 2005,20 (5):56-58.
    [13]李平,余萍,肖定全. 气敏传感器的近期进展[J]. 功能材料,1999,30(2): 126-132.
    [14]孙志鹏. 半导体金属氧化物纳米材料的固相合成及其气敏性能的研究[D]:[硕士学位论文].新疆:新疆大学.2005.
    [15]张中.大气污染监测与气敏传感器[J].中国建材科技,1997,6(4):10-15
    [16]潘小青, 刘庆成.气体传感器及其发展[J].东华理工学院学报,2004, 27 (1): 89-93.
    [17]刘素花,张伟,杨然兵. 气体传感器及其在空调机中的应用[1][J].清洁与空调机技术2007,1, 55-58.
    [18]胡茜,葛思擘,王伊卿,李伟. 电化学气敏传感器的原理及其应用[J]. 仪表技术与传感器,2007, 5,77-78.
    [19]宁文生,杜丕一,翁文剑等.气敏材料的研究进展[J].材料导报,2002,16(8):45-47.
    [20]熊力,王金成,朱军南.半导体气敏元件的结构及制作工艺[J].气象水文海洋仪器,2000,1:22-24.
    [21]傅军.国内气敏材料和器件的研究现状及趋势[J].海南师范学院学报(自然科学版)2004,14(1)37-41.
    [22]徐甲强.氧化物纳米材料的合成、结构与气敏特性研究[D]:[博士学位论文].上海:上海大学2005.
    [23]陈冰峰.气敏元件测试系统的研究与设计[D]:[硕士学位论文].长春:吉林大学2004.
    [24]潘东.金属氧化物半导体气敏传感器的加热电路[J]. 传感器世界,2002,7,24-25.
    [25]吴娜.甲醛气敏元件研制及灵敏度特性研究[D]:[硕士学位论文].大连:大连理工大学.2005.
    [26]周晓华,徐龙,曹全喜. CuO-SnO2半导体陶瓷气敏机理研究[J],功能材料2002,26(1): 32-35.
    [27]太惠玲,蒋亚东,谢光忠,杜晓松,陈璇聚.苯胺/二氧化钛复合薄膜的制备及其气敏性能[J].物理化学学报,2007,23(6): 883-888.
    [28]林金阳. 基于霍尔效应的气敏传感器的研制[D]. [硕士学位论文].福建:福州大学.2006.
    [29]刘云霞,罗延龄,魏俊发. 新型聚合物基气敏传感器用导电材料研究进展[J].化工进展, 2005, 24(6):612-618.
    [30]赵书华,宋丽岩.纳米材料气敏传感器[J]. 吉林师范大学学报(自然科学版) 2004,5(2)38-40.
    [31] Nicola Pinna, Giovanni Neri, Markus Antonietti, Markus Niederberger.Nonaqueous Synthesis of Nanocrystalline Semiconducting Metal Oxides for Gas Sensing[J]. Angewandte Chemie,2004,116(33): 4445-4449.
    [32] Xiao-Lin Li, Tian-Jun Lou, Xiao-Ming Sun, and Ya-Dong Li. Highly Sensitive WO3 Hollow-Sphere Gas Sensors[J]. Inorg. Chem. 2004, 43: 5442-5449.
    [33] Xingfa Ma, Guang Li, Mang Wang, Yunan Cheng, Ru Bai, Hongzheng Chen.Preparation of a naowire Structured Polyaniline Composite and Gas Sensitivity Studies[J]. Chemistry - A European Journal,2006,12 , 3254-3260.
    [34]刘海峰,彭同江,孙红娟,等.气敏材料敏感机理研究进展[J].中国粉体技术,4:42-45.
    [35]余华良.基于塞贝克效应的气敏传感器的研制[D]:[硕士学位论文]. 福州:福州大学论文. 2005
    [36]丁海东.氧化物半导体甲烷敏感元件研究进展[J]. 传感器世界2005,6:6-9.
    [37]李巍.基于检测甲烷气敏传感器的制备和研究[D]:[硕士学位论文].福州:福州大学. 2006.
    [38]田敬民,李守智. 金属氧化物半导体气敏机理探析[J]. 西安理工大学学报,2002, 18(2):144- 147.
    [39] James A. Dirksen, Kristin Duval and Terry A. Ring. NiO thin-film formaldehyde gas sensor[J].Sensors and Actuators B: Chemical, 2001, 80(2): 106-115.
    [40] Whyoshup Noh, Yongjin Shin, Jintae Kim, etal.Effects of NiO addition in WO3-based gas sensors prepared by thick film process[J]. Solid State Ionics, 2002, 152-153, :827-832.
    [41] J Kong , N R Franklin , C W Zhou, et al. Nanotube molecular wires as chemical sensors[J ] . Science , 2000,287 (5453) : 622-625.
    [42] P G Collins , K Bradley , M Ishigami , et al. Ext remeOxygen Sensitivity of Elect ronic Properties of Carbon Nanotubes[J ] . Science , 2000. 287 (5459) :1801-1804.
    [43] R J Chen , N R Franklin , J Kong , et al. Molecular Photodesorption f rom Single-Walled Carbon Nanotubes[J]. Applied Physics Letters , 2001, 79,(14) :2258-2260.
    [44] C Cantalini , L Valentini , I Armentano , et al. Sensitivity to NO2 and Sensitivity Analysis to NH3 , Et hanol and Humidity of Carbon Nano-tubes Thin Film Prepared by PECVD[J] . Sensors and Actuators B-Chemical , 2003, 95 (123) :195-202.
    [45] Y M Wong , W P Kang , J L Davidson , et al. A Novel Microelect ronic Gas Sensor Utilizing.Carbon Nanotubes for Hydrogen Gas Detection [J]. Sensors and Actuators B : Chemical , 2003, 93 (123) : 327-332.
    [46] S G Wang , Qing Zhang , D J Yang , et al. Multi-Walled Carbon Nanotube-Based Gas Sensors for NH3 Detection [J] . Diamond and Related Materials ,2004, 13 (428) :1327-1332.
    [47] Michele Penza ,Gennaro Cassano ,Pat rizia Aversa ,et al.Carbon Nanotubes-Coated Multi-TransducingSensors for VOCs Detection [J] . Sensors and Actuators B : Chemical , 2005, 111-112 :171-180.
    [48]方向生,郭淼,陈文菊,等. 碳纳米管及其修饰物对挥发性有机物气敏性的研究[J]. 传感技术学报,2006,19(5):2130-2134.
    [49]孙 慧,丁喜波,郭建英,等. 具有语言功能的气敏传感器测试系统[J].传感器世界,2003,12,23-26.
    [50]徐毓龙,徐玉成.气敏传感器及其发展动向[J]. 电子科技导报,1997,6:14-15
    [51]李建平.微结构气敏传感器与电子鼻研究[D]: [博士学位论文].中国科学院电子研究所. 2000.
    [52]刘笃仁,徐毓龙.微机电系统(MEMS)技术的应用:微结构气敏传感器[J].测控技术,2000,19(3):9-11.
    [53]李晓丽,潘国峰,孙以材. 一种新型智能气敏传感器及其无线数据传输系统的实现[J]. 传感器世界, 2007,7,44-47.
    [54]尤克,倪景秀.气敏传感器及其应用[J].仪表技术与传感器,2007,7:78-80.
    [55]张庆荣,张鹏波,李成贵. 高精度气敏传感器测试系统的研制[J]. 微计算机信息, 2006, 22(9):152-154.
    [56]王法秀. 基于USB的气敏元件测试系统的设计与开发[D].哈尔滨理工大学硕士研究生学位论文. 2007,14.
    [57]杜红云. 气敏传感器及金导体浆料[J]. 云南大学学报(自然科学版),2002,24(1A)98-99
    [58]邱美艳,杜鹏,孙以材,潘国锋. 掺TiO2的ZnO薄膜气敏特性研究[J]. 电子器件,2007,30(1): 37-45.
    [59]劳力云. 半导体气敏元件的特性分析及其测量电路设计[J]. 中国计量学院学报, 1996, 12: 97-101.
    [60]王彩君,吴兴惠,张硕,王毓德. 气敏传感器线性化电路的设计[J]. 传感技术学报,1996,12(4): 23-26.
    [61]唐一科, 刁宇翔.纳米气敏材料的研究现状与发展[J].云南环境科学, 2004, 23(2): 1-3.
    [62]邓大超,陈晓青.PCI-7422多功能数据采集卡VB6.0应用工程中的应用[J].工业控制计算机,2004,17(5):65-66.
    [63]杜玉玲.基于LabVIEW和PCI-7422的数据采集系统设计[J]. 淮海工学院学报(自然科学版),2004, 13(1):15-17.
    [64]程根水,胡继文,姚海松,等.填充型聚合物基气敏导电复合材料[J]. 应用化学, 2004,21(4):325-331.
    [65]赵文元,王亦军.功能高分子材料化学[M]. 北京化学工业出版社,1996,73-75.
    [66]马建标,李晨曦. 功能高分子材料[M]. 北京化学工业出版社精细化工出版中心,2000,2,07.
    [67]李凤生,杨毅.纳米/微米复合技术及应用[M]. 北京:国防工业出版社,2002.136-137.
    [68]邓建国,彭宇行,丁小斌,等. 磁性聚苯胺纳米微球的合成与表征.化学物理学报[J],2002, 15(2):149.
    [69]包蕾,姜继森. Fe304/聚苯胺纳米复合材料高能球磨法制备及其性能研究.功能材料[J] 2005,36(11),1757-1761.
    [70]杨青林,宋延林,万梅香. 导电聚苯胺与Fe304磁性纳米颗粒复合物的合成与表征[J].高等学校化学学报,2002,3(6):1105-1109.
    [71]Liu Yan-qin, Mao Qian-jin, Zhou Mei-ling. Synthesis and Thermal Stability of Composite of Conducting Polyaniline with Fe304 Nanoparticles J]. 材料工程,2004,9,45-47.
    [72]章平,刘祖黎,孙国才. Fe304与聚苯胺复合基质碳纤维手性材料电磁参数的实验研究[J]. 华中师范大学学报,1999,6,33(2).
    [73]曾宪伟,赵东林,刘轩. 纳米Fe304/聚苯胺复合粒子的制备及其在交变磁场下的发热性能[J]. 复合材料学报,2005,12,22(6).
    [74]生瑜,陈建定,朱德钦. 聚苯胺/纳米二氧化锰复合材料Ⅰ.原位氧化合成制备[J].功能高分子学报,2004,17(1),5-10.
    [75](a)龚剑. 杂多酸掺杂齐聚苯胺、聚苯胺材料的合成、结构及性质研究[D].东北师范大学博士学位论文.1999(1):72.(b)刘素琴,王珏,黄可龙,等. 水热处理对二氧化锰电容性能的影响[J].无机化学学报,2006,22(10):1783-1787.
    [76]Jaroslav Stejskal, Irina Sapurina , Jan Prokeˇs ,et al. In-situ polymerized polyaniline films[J]. Synthetic Metals, 1999,105,195–202.
    [77]V V Chabukswar,S Pethkar,A A Athawale. Acrylic acid doped polyaniline as an ammonia senser[J]. Sensors and Actuators B ,2001,77, 657-663.
    [78]A L Kukla, Yu M Shirshov, S A Piletsky. Ammonia sensors based on sensitive polyaniline films[J]. Sensors and Actuators B ,1996,37, 135-140.
    [79]M Matsuguchi, J Io, G Sugiyama, Y Sakai. Effect of NH3 gas on the electrical conductivity of polyaniline blend films[J]. Synthetic Metals, 2002,128, 15–19.
    [80]张立德,牟季美,纳米材料和纳米结构[M].科学出版社,2001.
    [81]王世敏,许祖勋,傅晶.纳米材料制备技术[M].化学工业出版社,2001.
    [82]张小细.镍、氧化镍及氢氧化镍纳米材料的制备和表征[D].[硕士学位论文].合肥:合肥工业大学.
    [83]阳霞,张高科,胡波,等.纳米 NiO 粉体的制备及其应用[J]. 中国非金属矿工业导刊,2004,4,21-24.
    [84] Wang Y, Ke J. Preparation of nickel oxide powder by decomposition ofbasic nickel carbonate in microwave field with nickel oxide seed asamicrowave-absorbingadditive[J]. Materials Research Bulletin, 1996, 31(1): 55-61.
    [85] Wu Y G, Wu G M, Ni X Y. Ion transport in electrochromic nickel oxide thin films[J]. Solar Energy Materials and Solar Cells, 2000, 63(2): 217-226.
    [86] 王兢,吴娜,吴凤清,等. 纳米氧化镍气敏材料制备及表征[J]. 仪器仪表学报,2004,25(4):249-250.
    [87] I Ho tovy, et al. The influences of p reparation parameters on NiO th in film properties for gas-sensing application[J]. Senso rs and A ctuato rs B, 2001, 78: 126~132.
    [88] J. A. D irk sen, K. Duval, T. A. R ing, et al. . NiO thin-film formaldehyde gas sensor[J]. Sensors and A ctuators B,2001, 80: 105~115.
    [89]徐甲强,朱文会,等.烧结型SnO2可燃气体敏感元件研究[J].郑州轻工业学院学报(自然科学版),1994,9(1):1-5.
    [90] 徐甲强,田志壮,陈玉萍,等.贵金属催化剂对氧化镍气敏特性的影响[J].郑州轻工业学院学报,1997,12(2):71-74.
    [91] 何为民,安金霞,王疆英,等.锰镍复合氧化物半导体纳米陶瓷的微观结构和电性能研究[J].新疆师范大学学报(自然科学版),1996,15(2):33-38.
    [92] 程虎民, 胡欣, 马季铭, 等.制备条件对纳米 NiO 微粉的影响[J]. 中国粉体材料, 2001, 7 (5) :20-22.
    [93] Xu Chun Song, Yang Zhao, Yi Fan Zheng. Synthesis of MnO2 Nanostructures with Sea Urchin Shapes by a Sodium Dodecyl Sulfate-Assisted Hydrothermal Process. Crystal Growth & Design, 2007,7(1),159-162.
    [94] M H Cao, X Y He, J Chen, et al. Self-Assembled Nickel Hydroxide Three-Dimensional Nanostructures: A Nanomaterial for Alkaline Rechargeable Batteries[J]. Cryst Growth Des. 2007, 7,170-174.
    [95] Z H Liang, Y J Zhu, X L Hu. β-Nickel Hydroxide Nanosheets and Their Thermal Decomposition to Nickel Oxide Nanosheets[J]. J. Phys. Chem. B. 2004,108,3488-3491.
    [96] D N Yang, R M Wang, M S He, et al. Ribbon- and Boardlike Nanostructures of Nickel Hydroxide: Synthesis, Characterization, and Electrochemical Properties[J]. J . Phys. Chem. B. 2005,109,7654-7658.
    [97] Z Gui, J Liu, Z Z Wang, et al. From Muticomponent Precursor to Nanoparticle Nanoribbons of ZnO[J]. J. Phys. Chem. B. 2005, 109, 1113-1117.
    [98] Xiaoming Sun, Junfeng Liu, Yadong Li. Use of Carbonaceous Polysaccharide Microspheres as Templates for Fabricating Metal Oxide Hollow Spheres[J]. Chem Eur J. 2006, 12, 2039 – 2047.
    [99] L X Yang, Y J Zhu, L Li. A Facile Hydrothermal Route to Flower-Like Cobalt Hydroxide and Oxide[J].Eur.J.Inorg.Chem. 2006, 4787-4792.
    [100] T Sakaki, M Shibata, T Miki, et al. Energy & Fuels 1996, 10, 684.
    [101] T Ahmad, K V Ramanujachary, S E Lofland, et al. Magnetic and electrochemical properties of nickel oxide nanoparticles obtained by the reverse-micellar route[J]. Solid State Sciences, 2006,8,425-430.
    [102] X M Liu, X G Zhang, S F Fu. Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors [J].Materials Research Bulletin, 2006,41, 620-627.