双流道式污水泵叶轮三维设计及水力模型开发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
围绕双流道污水泵叶轮的三维设计方法、基于Pro/Engineer二次开发的双流道叶轮三维参数化设计程序,和双流道污水泵内部主要过流部件叶轮与蜗壳耦合的全通道数值模拟,本文展开了较为广泛而深入的研究,取得了以下研究成果:
     1.对常用的双流道污水泵叶轮图纸的表达方法进行了研究,发现存在平面图上与轴面图中的流道断面投影结果不一致的问题。断面形状为沿对称轴对折的椭圆,此对称轴始终垂直于轴截面,则其方向与平面图上的流道中线无关。因此,传统中认为其垂直于平面图上的流道中线而确定的截面尺寸并不符合实际的投影关系。这就是传统设计中经常出现的双流道叶轮平面图、断面面积与叶轮木模三者不一致的主要原因。建议在双流道污水泵叶轮设计时,平面绘型应作为初步设计,然后在三维造型中确定其余参数,由三维造型来生成平面绘型,以保证设计与木模一致。
     2.双流道污水泵叶轮形状比较特殊,不同于一般离心泵,造型方法尚有待探讨。在Pro/ENGINEER中进行双流道叶轮三维造型的方法如下:用投影方法生成空间流道中线,并作为内流道的原始轨迹,各断面形状作为混合用截面,使用扫描混合命令形成内流道;按内流道中线规律,延长内流道中线到叶轮外径,用投影得到的空间曲线作为外流道原始轨迹,按外流道截线位置放置适当截面,由扫描混合命令形成外流道。叶轮在二维绘型图转化为三维造型时,可能会出现无法形成有效内流道的问题,本文分析了其中的原因,并给出了调整措施。
     3.研究了在Pro/E中直接进行叶轮的三维设计方法。
     4.双流道叶轮设计中,平面流道中线普遍使用变异阿基米德螺线。推导了平面流道中线采用变异阿基米德螺线时,流道中线出口角与包角、变异系数之间的关系式,为设计中控制流道中线出口角提供了依据,解决了传统设计法中采用变异阿基米德螺线作为平面流道中线时,无法事先确定流道中线出口角的难题。
     5.推导了变异阿基米德螺线法线方向到叶轮外圆距离的变化规律,在此基础上给出了确定内流道出口点的解析方法。
     6.使用所提出的叶轮三维设计方法,编写了基于Pro/E二次开发的双流道污水泵叶轮三维参数化设计程序。用户可直接输入参数得到叶轮流道的三维造型,为叶轮的CFD数值模拟和NC(Numerical Control简称数控)制造提供了基础。在造型前可预览轴面图和平面图,初步筛选设计方案;在外流道造型前,可检查有效内流道是否形成,并提供了修改模块以改善内流道造型。该程序还可交互地修改截面积变化规律曲线以及外流道壁厚规律,能够灵活地控制叶轮流道造型。并采用该程序设计了双流道污水泵叶轮QW950-15-55。
     7.基于有限体积法,采用SIMPLEC算法及标准κ-ε两方程湍流模型,对双流道污水泵QW950-15-55的主要过流部件内部流场,作了全通道定常流动数值模拟。模拟了包括设计工况在内的11个工况,捕捉到双流道叶轮及蜗壳内部流动的一些典型特征,重现了一些重要的流动现象,提出了进一步改进的办法。
     8.由山东双轮集团股份有限公司制造的样机,经过试验测定,额定效率达到85.33%,而目前国产泵的各种叶轮形式的污水泵,排出口径为300mm的,效率在74%~83%之间。
     9.数值模拟得到的预测特性与样机试验结果比较表明,两者吻合较好,说明CFD计算结果是可靠的,可作为进一步完善设计提高性能的依据。
Research was carried out focusing on Three-Dimensional design methods of Double Channel Sewage Pump' s impeller and developing programs based on redevelopment of Pro/E for parametric design of impeller and CFD computation of impeller and volute,the whole flow passage of Double Channel Sewage Pump.Some achievements as follows were obtained.
     Some problems of usual drawing manner of the Vane of Double Channel Impeller were found.It is the inconformity between the dimensions of plane-view and pinacoid-view of fluid cross-section.The shape of cross-section is an ellipse folded in half through one symmetry axis.And the axis keeps perpendicular with pinacoid-view.Thus the direction of the cross-section is unrelated with center channel curve in plane-view.Traditionally,it is assumed that the cross-section is perpendicular with center-channel curve.This is not the fact.It is considered the major cause resulted in the disagreement among plane view,dimension of cross-section and actual wood former of double channel impeller.The more reasonable design process suggested is drawing design first,then three-dimension design second,and three-dimension achieved finally can be use to create the drawing so as to secure the agreement of the three.Design experience proves the rationality of the design process.
     The impeller of Double Channel Sewage pump is deferent from common centrifugal pump,its shape is special.So the method of building 3-D model still needs to be explored further.Research of modeling 3-D shape of the impeller in Pro/E was carried out.3-D passage center-line is generated by projection,and then it is made the original trajectory to produce inner passage by command sweep and blend,with passage cross-sections as sections. Inner passage center-line is extended to the outer diameter of the impeller with its rule formula,the curve resulted is regarded as an original trajectory,and sections is placed in proper position through outer passage profile line.Then the outer passage can be made by command sweep and blend. A failure to form Double-Inner-Channel most possibly is encountered during the procedure to transform 2-D drawing to 3-D model of Double-Channel impeller,and analysis was available for the potential causes,the measures was presented to improve such condition.By practice,the method presented proves correct and efficient.
     Problem of disagreement between 2-D drawing and actual wood former of Double-Channel impeller of sewage pump most possibly encountered if the design is from traditional 2-D manner.Research was carried out for the method of 3-D design directly in Pro/ENGINEER,so 2-D drawing can be produced by projecting through 3-D impeller designed.The procedure can secure the agreement between 2-D drawing and actual wood former. Additionally,a formula was deuced,which shows the relation between the outlet angle of center line of channel and wrap angle,variant coefficient, if Archimedes spiral is assumed as the curve of center line of plate plane. It is the basis for controlling outlet angle of channel.
     Another formula was present for the calculation of normal distance from points on the center line to outer diameter and formula of cross-section area is also available.They provide convenience for CAD of Double-Channel impeller.Based on it,a analytic method was developed for finding out the outlet point.
     Based on the three-dimension design method,program for parametric design of the impeller of Double-Channel Sewage Pump was developed.It was redeveloped in Pro/E with VC++.The program can be use to create passages of the impeller of Double-Channel Sewage Pump directly by inputting some required parameters.Resulted passages of impeller can be a proper base for further CFD computation and NC manufacture.It provides chance to preview the axial profile and plane profile,so user can decide proper plan at first after inputting parameters.Before the outer passage is created, user can check inner passages is successful or not,then decide whether to do something to make them better.The program also provide modules to modify the control curve of inner passage flow area and regulation of outer passage thickness,in order to control the shape of the impeller.And Double Channel Impeller QW950-15-55 was designed by the programme.
     The internal flow in impeller and volute casing of QW950-15-55 double-channel passage pump was investigated.Based on the Reynolds averaging N-S Equations and standardκ-εtwo equation turbulent model, the simulations of turbulent flow between impellers are performed by using the flow computing software Fluent under 11 differentoperating conditions. Important flow information was obtained.
     Model machine was manufactured by Shandong Shuanglun Pumps Co.,Ltd,and Characteristics experiment was carried out and the efficiency of design condition reach 85.33%.However,the efficency of current domestic sewage pumps of all types impeller,with outer discharge diameter 300mm,is between 74%~83%.
     The experiment results comparing with CFD predicted characteristics shows a good identity.So CFD results can provide references for further design.
引文
[1]关醒凡,现代泵技术手册[M],北京:宇航出版社.1995.
    [2]施卫东,污水泵水力设计综述[J].流体机械,1997(08).26-29,37
    [3]刘厚林,施卫东,双流道泵水力设计研究现状及发展方向[J].农机化研究,2005(03).
    [4]Henrik Mogensen.Does the world need more submersible pumps,or better pumps and installations?[J].World Pumps,2006.2006(478):24-27.
    [5]Survey of submersible sewage pump manufacturers[J].World Pumps,1997.1997(370):50-52.
    [6]The secrets of successful submersible sewage pumps[J].World Pumps,1999.1999(394):38-42.
    [7]孔彦,我国城市污水处理现状与展望[J].内蒙古科技与经济,2007(10).
    [8]刘厚林,流道式无堵塞泵CAD软件开发及三维不可压湍流计算[D],江苏理工大学:镇江.2001.
    [9]赵斌娟,袁寿其,刘厚林,双流道泵的三维实体造型与数值模拟[J].水泵技术,2007(04).
    [10]齐学义,刘在伦,齐冲,等,二维大涡模拟在双流道式污水泵叶轮流场分析中的应用[J].水动力学研究与进展A辑,2003(3):61-63.
    [11]Sergey Berezin,Wet and dry installation of submersible pumps[J].World Pumps,2007.2007(493):44-48.
    [12]施卫东,桑一萌,王准,等,高效无堵塞泵的研究开发与发展展望[J].排灌机械.2006(06).
    [13]李仁年,王丽晶,杂质泵的研究概况与发展趋势[J].水泵技术,2001(06):11-15.
    [14]Sergey Berezin,Submersible pumps for wastewater applications[J].World Pumps,2006.2006(480).26-30.
    [15]Frost,Sullian,Submersible pumping in the European sludge treatment industry[J].World Pumps,1998.1998(382):26-29.
    [16]Ksb Ag,Sewage pump designed for high efficiency[J].World Pumps,1996.1996(355):42-43.
    [17]Latest submersible pump for wastewater and sewage applications[J].World Pumps,2004.2004(458):6-6.
    [18]Paul Cooper,Perspective:The New Face of R&D--A Case Study of the Pump Industry[J].Trans.ASME,J.Fluid Eng,1996(118):654-664.
    [19]A.Kratzer,污水和磨蚀性液体用离心泵设计和选用的若干问题[J].水泵技术,1985(01).
    [20]三菱重工,新型高效污水泵的发展[J].水泵技术,1988(03).
    [21]关醒凡,张涛,魏东,等,无堵塞泵设计及结构研究[J].排灌机械,2003(04).
    [22]关醒凡,陆伟刚,董志豪,双流道叶轮模具制作检查方法[J].水泵技术,2002(02).
    [23]刘厚林,关醒凡,李幼康,等,无堵塞双流道式叶轮的CAD设计[J].农业机械学报,2000(02).
    [24]刘厚林,关醒凡,施卫东,等,双流道泵叶轮轴面图的数学模型[J].水泵技术,2001(04).
    [25]刘厚林,关醒凡,施卫东,等,双流道泵优化水力设计[J].农业机械学报,2002(06).
    [26]刘厚林,袁寿其,施卫东,双流道泵水力设计的研究[J].农业工程学报,2005(01).
    [27]刘厚林,袁寿其,施卫东,等,离心泵水力元件三维实体造型的研究[J].水泵技术,2003(03).
    [28]施卫东,刘厚林,张荣标,等,双流道叶轮水力模型无过载设计研究[J].中国机械工程,2003(06).
    [29]刘厚林,泵水力设计软件PCAD 2004的开发[J].水泵技术,2005(01).
    [30]张静,齐学义,侯祎华,双流道污水泵叶轮的绘型方法[J].排灌机械,2008(1):37-39.
    [31]齐学义,阎晓伟,张庆,基于Pro/Engineer的双流道式叶轮三维实体造型[J].兰州理工大学学报,2008(1):40-44.
    [32]齐学义,阎晓伟,李纯良,等,双流道污水泵叶轮绘型探析[J].水泵技术,2006(4):15-18.
    [33]齐学义,张静,侯祎华等,双流道叶轮在Pro/E中的三维造型方法[J].排灌机械,2008(2):15-18.
    [34]刘厚林,关醒凡,马皓晨,双流道泵蜗壳的设计方法[J].水泵技术,2001(02).
    [35]李红,双流道叶轮设计探讨[J].流体机械.1999(01).
    [36]Stepanoff.Aj,Centrifugal and Axial Flow Pumps,in 2nd ed Now York:John Wiley&Sons.Inc.1957.
    [37]Giangiacomo P,Michelassi V,.An Efficient Parallel ADI Algorithm for Turbomachinery Flows[J].International Journal of Computational Fluid Dynamics 2003(01);15-26.
    [38]Seo S-J,Kim K-Y,Kang S-H,Calculations of three-dimensional viscous flow in a multiblade centrifugal fan by modeling blade forces[J].Proceedings of the Institution of Mechanical Engineer-Part A-Power& Energy,2003(03):287-297.
    [39]Bwalya A.C,Johnson M.W,Experimental Measurements in a Centrifugal Pump Impeller[J].Trans.ASME,J.Fluid Eng 1996(118):685-691.
    [40]陶文铨,数值传热学(第2版)[M],西安:西安交通大学出版社.2001.
    [41]何有世,袁寿其,陈池,CFD进展及其在离心泵叶轮内流计算中的应用[J].水泵技术,2002(03).
    [42]Chernobrovkin A,Lakshminarayana B,Development and Validation of Navier-Stokes Procedure forTurbomachinery Unsteady Flow[J].AIAA Journal,1999(05):557-563.
    [43]Wu C.H,A General Theory of Through-dimension Flow in Subsonic and Supersonic Turbo machines of Axial,Radial and Mixed Flow Types:NASA TN-2604.1952.
    [44]Ferziger J.H.,And Leslie D.C,Large Eddy Simulation.A collection of Technical Papers[D],in AIAAComputational Fluid Dynamics Conference,AIAA,:New York.1979.p.234-224.
    [45]Kato C,Kaiho M,Manabe A,An Overset Finite-Element Large-Eddy Simulation Method With Applications to Trnbomachinery and Aeroacoustics[J].Journal of Applied Mechanics,2003(01):32-43.
    [46]吴玉林,梅祖彦,水泵叶轮中S:流面的简化湍流计算[J].流体工程,1989(08):26-30.
    [47]胡寿根,蒋旭平,韩百顺,离心式水泵内部流场的面元法数值计算[J].流体工程,1988(10):20-23.
    [48]蒋锦良,离心式水泵叶轮三元流场计算[J].流体工程,1989(06):29-31.
    [49]忻孝康,朱士灿,蒋锦良,.叶轮机械三元流动与准正交面法[M],上海:复旦大学出版社.1988.
    [50]毕志予,吴达人,离心叶轮内二维湍流边界层的数值计算[J].农业机械学报,1990(01):83-89.
    [51]刘殿魁,离心泵内具有射流尾迹模型的三元流动计算[J].工程热物理学报,1986(01):8-13.
    [52]卫星,张克威,贾宗漠,离心泵射流尾迹模型的三元流动计算[J].水泵技术,1990(01):12-18.
    [53]阎超,吴玉林,梅祖彦,流体机械叶轮中三维粘性流动的势流边界层叠代解[J].机械工程学报,1991(05):42-47.
    [54]Lakshminarayana B Kirtley K.,Computation of Three Dimensional Turbulent Flow Using a Coupled Parabolic Marching Method[J].Trans.ASME,J.Turbomachinery,1988.110:549-553.
    [55]Patankar S.V,Numerical Heat Transfer and Fluid Flow[M],Now York:Hemisphere.1980.
    [56]Chorin A.J,A Numerical Method for Solving Incompressible Flow Problem[J].J.Comp.Phy,1967.02:12-16.
    [57]刘极峰,计算机辅助设计与制造[M],北京:高等教育出版社.2004.
    [58]倪建华,李春,苏进,基于参数化的水泵叶轮叶片三维造型系统的研究[J].上海理工大学学报,2003(03).
    [59]杨方飞,阎楚良,林洪义,水泵叶片三维造型原理与工程应用[J].农业机械学报,2003(01).
    [60]刘厚林,关醒凡,施卫东,我国泵CAD技术的特点及发展[J].流体机械,2002(03).
    [61]李红,许晓东,潘中永,基于虚拟制造技术的水泵CAD系统[J].排灌机械,2002(06).
    [62]倪合玉,双流道污水泵叶轮的设计方法与设计实践[J].通用机械,2004(06).
    [63]鲁求荣,张江平,双流道叶轮叶片绘型[J].排灌机械,2001(19):17-18.
    [64]詹友刚,PRO/ENGINEER英文野火版教程[M].北京:清华大学出版社.2004.
    [65]刘厚林,关醒凡,李幼康,双流道叶轮的设计方法[J].流体机械,1999:15-17.
    [66]李红,双流道叶轮设计探讨[J].流体机械,1999(11):25-27.
    [67]吴卓,赵国霞,丁志磊,基于Pro/E二次开发参数化技术的研究与应用[J].工程机械,2006(06).
    [68]卫大为,李健康,Pro/E二次开发的机械零件参数化设计[J].机械制造与自动化,2004(06).
    [69]Junhwan Kim,Michael J.Pratt,Raj G.Iyer,等,Standardized data exchange of CAD models with design intent[J].Computer-Aided Design.In Press,Corrected Proof.
    [70]Guillaume Lavou,Florent Dupont,Atilla Baskurt,A new CAD mesh segmeutation method,based on curvature tensor analysis[J].Computer-Aided Design,2005.37(10):975-987.
    [71]Dominique Michelucci,Sebti Foufou,Geometric constraint solving:The witness configuration method[J].Computer-Aided Design,2006.38(4):284-299.
    [72]Daoshan Ouyang,Hsi-Yung Feng,On the normal vector estimation for point cloud data from smooth surfaces[J].Computer-Aided Design,2005.37(10):1071-1079.
    [73]V.B.Sunil,S.S.Pande,Automatic recognition of features from freeform surface CAD models[J].Computer-Aided Design,2008.40(4):502-517.
    [74]李世国,PRO/TOOLKIT程序设计[M],北京:机械工业出版社.2003.
    [75]林龙震,Pro/TOOLKIT Wildfire插件设计[M],北京:电子工业出版社.2005.
    [76]张继春,Pro/Engineer二次开发实用教程[M],北京:北京大学出版社.2003.
    [77]吴立军,陈波,Pro/ENGINEER二次开发技术基础[M],北京:电子工业出版社.2006.
    [78]Efthimios N.Sokos,Jiri Zahradnik,ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data[J].Computers & Geosciences,2008.34(8):967-977.
    [79]潘林峰,谭立超,MATLAB与VC混合编程的实现[J].武汉化工学院学报,2003(04).
    [80]苏金明,刘宏,刘波,MATLAB高级编程[M],北京:电子工业出版社.2005.
    [81]Jie Cui,Lei Xu,Steven L.Bressler,等,BSMART:A Matlab/C toolbox for analysis of multichannel neural time series[J].Neural Networks.In Press,Accepted Manuscript.
    [82]张志涌,精通MATLAB6.5版[M],北京:北京航空航天大学出版社.2003.
    [83]董维国,深入浅出MATLAB 7.x混合编程[M],北京:机械工业出版社.2006.
    [84]Davidj,Kruglinski,VisualC++技术内幕IM],北京:清华大学出版社.1999.
    [85]彭国义,曹树良,林汝长,水力机械转轮正问题数值研究与进展[J].甘肃工业大学学报,1997(03):28-32.
    [86]Sehliling R,Riedei N,Riztinger S.ACritical Review of Numerical Models Predicting the Flow thorugh Hydarulic Machinery Blades.In:Poreeedings of 17th IAHR Symposium on Hydraulic Machinery.Beijing,China,1994,15-31.
    [87]Cedar R D,Stow P,The Addition of Quasi Three-Dimensional Terms into a Finite Element Method of Transonic Blade-to-Blade Flows[J].International Joumal of Numerical Methods in Fluids,1985:101-114.
    [88]Graf E.Analysis of Centrifugal Impeller BEEP and Recirculating Flows:Comparison of Q3D and Navier-Stokes Solutions In:ASME(FluidsEngineeringConefernec).1993,81-95.
    [89]赵晓路,离心压气机转子内部流场S1/S2全三元流动解[J].工程热物理学报,1994(3):57-63.
    [90]Abdallah S,Smith C F,Three-Dimensional Solutions of Inviscid Incompressible Flow in Turbo-Machines[J].Journal of Turbo-Machine,1990(112):391-398.
    [91]He L,Sato K,Numerical Solution of Incompressible Unsteady Flows inTurbomachinery[J].Journal of Fluids Engineering-,2001(123):680-685.
    [92]Oh K-J,Kang S-H,A numerical investigation of the dual performance characteristics of a small propeller fan using viscous flow calculations[J].Computers& Fluids,,,1999(28):815-823.
    [93]Martelli F,Michelassi V,Using Vicious Calculations in Pump Design[J].Trans.ASME,J.Fluid Eng,1990(112):272-280.
    [94]Kaupert K.A,Holbeinp,Staubli T,A First Analysis of Flow Field Hysteresis in a Pump Impeller[J].Trans.ASME,J.Fluid Eng,1996(118):685-689.
    [95]Epureanu B I,Hall K C,Dowell E H,Reduced-Order Models of Unsteady Viscous Flows in Turbomachinery Using Viscous-Inviscid Coupling[J].Journal of Fluids and Structures,2001(15):255-273.
    [96]Zhao Binjuan,Yuan Shouqi,Et Al Liu Houlin,Three Dimensional Coupled Impeller-Volute Simulation of Flow in a Centrifugal pump and Performance Prediction[J].Chinese Journal of Mechanical Engineering,2006(011).
    [97]Borello D,Corsini A,Rispoli F,A finite element overlapping scheme for turbomachinery flows on parallel platforms[J].Computers&Fluids,2003(32):1017-1047.
    [98]Adler D,Krimerman Y,On the Relevance of Inviscid Subsonic Flow Calculations to Real Centrifugal Impeller Flow[J].Trans.ASME,J.Fluid Eng,1980(102):78-84.
    [99]苏铭德,计算流体力学基础[M],北京:清华大学出版社.1997.
    [100]王福军,计算流体动力学分析-CFD软件原理与应用[M],北京:清华大学出版社.2005.
    [101]张兆顺,湍流[M],北京:国防工业出版社.2002.
    [102]B.E.Launder,And D.B.Spalding,Lectures in Mathematical Models of Turbulence[M],London:Academic Press.1972.
    [103]E.John Filmemore,Joseph B.Franzini,Fluid Mechauics with Engineering Applications[M],Beijing:清华大学出版社.2005.
    [104]J.D.Anderson,Computational Fluid Dynamics:The Basics with Applications[M].
    [105]Marzio Piller,Feurico Nobile,J.Thomas,DNS study of turbulent transport at low Prandtl numbers in a channel flow[J].Journal of Fluid Mechanics,2002(458):419-441.
    [106]J.G.Wissink,DNS of separationg low Reynolds number flow in a trubine cascade with incoming wakes[J].International Journal of Heat and Fluid Flow,2003(04):626-635.
    [107]Song C.Simulation of Flow thorugh Francis Turbine by LES Method.In:Poreeedings of 18th IAHR Symposium on Hydraulic Machinery and Cavitation.Cabrera E,eds,1996 267-276.
    [108]J.W.Anders,V.Magi,J.Abraham,Large-eddy simulation in the near-field of a transient multi-component gas jet with density gradients[J].Computers & Fluids,2007.36(10):1609-1620.
    [109]Toshio Kobayashi,Large Eddy simulation for engineering applications[J].Fluid Dynamics Research,2006.38(2-3):84-107.
    [110]M.Tutar,G.Oguz,Large eddy simulatian of wind flow around parallel building with varying configurations[J].Fluid Dynamicx Research,2002(5-6):289-315.
    [111]G.Th Analytis,Implementation of the renormalization group(RNG) k-[vat epsilon]turbulence model in GOTHIC/6.1b:solution methods and assessment[J].Annals of Nuclear Energy,2003.30(3):349-387.
    [112]Semion Sukoriansky,Boris Galperin,Ilya Staroselsky,Cross-term and[var epsilon]-expansion in RNG theory of turbulence[J].Fluid Dynamics Research,2003.33(4):319-331.
    [113]Jinyu Jiao,Ying Zheng,Jun Wang,等,Experimental and numerical investigations of a dynamic cyclone with a rotary impeller[J].Chemical Engineering and Processing:Process Intensification,2008.47(9-10):1861-1866.
    [114]Richard W.Johnson,Modeling strategies for unsteady turbulent flows in the lower plenum of the VHTR[J].Nuclear Engineering and Design,2008.238(3):482-491.
    [115]A.J.Revell,S.Benhamadouche,T.Craft,等,A stress-strain lag Eddy viscosity model for unsteady mean flow[J].International Journal of Heat and Fluid Flow,2006.27(5):821-830.
    [116]Fluent Inc,GAMBIT Modeling Guide:Fluent Inc.2003.
    [117]Fluent Inc.,FLUENT User's Guide:Fluent Inc.2003.
    [118]阎庆绂,马素霞,李治勤,泵系统的流体力学特性[J].农业机械学报,1996(2):60-65.
    [119]郭自杰,任俭,离心泵蜗壳结构参数对泵性能的影响[J].水泵技术,1993(1):19-21.
    [120]郭鹏程,郑小波,罗兴锜,离心泵蜗壳内旋涡流动的数值研究[J].工程热物理学报,2006(S1):149-152.
    [121]李文广.离心泵蜗壳内部非定常流动测量[J].水泵技术,2005(5):19-23.30.