大肠杆菌生产药物蛋白的系统优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大肠杆菌表达系统是基因工程中应用最广泛的也是最有效的表达重组蛋白的系统。大肠杆菌是目前遗传和生化背景最清晰的有机体,它良好的研究背景、易生长易操作的优点使其成为表达外源蛋白的首选系统。用传统方法难以制取的蛋白质、细胞因子等新型药物可以在大肠杆菌中大量表达生产。目前很多商品化的药用蛋白如胰岛素、干扰素、生长因子等都是用大肠杆菌系统生产的,占所有药用蛋白的三分之一。
     促红细胞生成素(EPO)是由肾脏和肝脏分泌的能促进红细胞生成的激素。利用基因工程研制成功的重组人红细胞生成素(rhEPO)价格相对较低,用于治疗肾性贫血取得了令人瞩目的疗效。干扰素-β(Interferon-β)是由成纤维细胞受病毒感染或IFN诱生所产生的一类具有生物活性的糖蛋白,能通过与靶细胞表面受体结合干扰人体内病毒复制和繁殖,是一种临床治疗病毒性疾病和肿瘤的有效生物反应调节剂。
     本实验对大肠杆菌表达系统中宿主菌、质粒和表达条件进行优化,选择EPO和IFN-β作为目的蛋白。在宿主菌的选择上,用大肠杆菌λDE3溶原菌BL21(DE3)和能编码表达少量T7溶菌酶的BL21(DE3)/pLys两种菌株。载体在pET系列表达载体上中筛选。同时为消除稀有密码子对表达的影响,目的蛋白EPO和IFN-β的基因用化学合成的方法得到。在表达条件的筛选上,用正交试验设计确定各种表达条件的影响。构建成功的表达载体在宿主菌中诱导后,经SDS-PAGE电泳检测,EPO和IFN-β表达量均在20%以上。正交试验结果分析后,选定0.8M IPTG、OD550为0.9、诱导时间4h作最佳诱导表达条件。试验结果表明,我们已经获得了大量表达EPO和IFN-β的菌株,优化得到最佳表达条件,为在大肠杆菌中表达各种外源药物蛋白打下基础。
Genetic engineering pharmaceutical refers to the use of recombinant technology to overexpress physiological substances in bacteria,yeast and animal cells. These physiological substances include proteins,monoclonal antibodies,cytokines and other new types of drugs which are difficult to prepare using traditional methods. Genetic engineering pharmaceutical made a great impact on the pharmaceutical industry.It is playing an increasing important role in the prevention,diagnosis,control and eradication of diseases.The progress of genetic engineering pharmaceutical will make for the protection of human health and the protraction of the life course.
     Erythropoietin(EPO)is a model of successful development of the genetic engineering pharmaceutical.Formerly erythropoietin was obtained from the urea of anemia patients and the blood of sheep.The yield was very low and the production was extremely unstable.Its physico-chemical and biological properties were difficult of determine.These disadvantages block its large-scale application.The price of recombinant human erythropoietin(rhEPO)is much lower and curative effect is better in the therapy of renal anemia.Interferon-β(IFN-β)is a glycoprotein generated from fibroblast after affected by the virus or IFN.It is used for the treatment of viral diseases and tumor.
     In order to obtain a large number of cheap protein drugs,our experiment is designed to express these protein drugs in Escherichia coli expression system.We obtained the EPO and IFN-βgenes by chemical synthesis method for the elimination of the rare codons of EPO and IFN-βnative gene.The two genes were connected to expression vector pET series.Then the vectors were transformed into the host E.coli BL21(DE3).Orthogonal experimental design was used to identify the influence of expression conditions.
     The yield of target protein is up to 30%after the induction of engineering strain. The result of orthogonal experimental design shows that the best induction condition is 0.8 M IPTG,OD_(550)=0.9,4h induction hours.
     The experimental results show that,we have succeed in constructing stable expression strains of erythropoietin and IFN-β,the strains can be used to produce vast and cheap proteins for the next phase of modifying the native proteins.
引文
[1] A. Gruters, H. Krude, Update on the management of congenital hypothyroidism, Horm Res 68 Suppl 5 (2007) 107-111.
    
    [2] R.P. EI Dib, CM. Pastores, Laronidase for treating mucopolysaccharidosis type I, Genet Mol Res 6 (2007) 667-674.
    
    [3] T.A. Burrow, R.J. Hopkin, N.D. Leslie, B.T. Tinkle, GA. Grabowski, Enzyme reconstitution/replacement therapy for lysosomal storage diseases, Curr Opin Pediatr 19 (2007) 628-635.
    
    [4] Y. Landry, J.P. Gies, Drugs and their molecular targets: an updated overview, Fundam Clin Pharmacol 22 (2008) 1-18.
    
    [5] C.J. Liu, J.H. Kao, Pegylated interferons for the treatment of chronic hepatitis B, Recent Patents Anti-Infect Drug Disc 1 (2006) 85-94.
    
    [6] J. Grotta, J. Marler, Intravenous rt-PA: a tenth anniversary reflection, Surg Neurol 68 Suppl 1 (2007) S12-16.
    
    [7] A. Simon, U. Bode, K. Lieber, K. Beutel, G Fleischhack, Review and update of the use of urokinase in the prevention and management of CVAD-related complications in pediatric oncology patients, Am J Infect Control 36 (2008) 54-58.
    
    [8] C.E. Gordon, K. Uhlig, J. Lau, C.H. Schmid, A.S. Levey, J.B. Wong, Interferon treatment in hemodialysis patients with chronic hepatitis C virus infection: a systematic review of the literature and meta-analysis of treatment efficacy and harms, Am J Kidney Dis 51 (2008) 263-277.
    
    [9] R. Moore, Human tissue-engineered products, Med Device Technol 14 (2003) 34-35.
    
    [10] F.M. Wurm, Production of recombinant protein therapeutics in cultivated mammalian cells, Nat Biotechnol 22 (2004) 1393-1398.
    
    [11] O. Bilukha, N. Messonnier, M. Fischer, Use of meningococcal vaccines in the United States, Pediatr Infect Dis J 26 (2007) 371-376.
    [12] A.M. Svennerholm, A. Lundgren, Progress in vaccine development against Helicobacter pylori, FEMS Immunol Med Microbiol 50 (2007) 146-156.
    
    [13] G.Swingler, D. Fransman, G. Hussey, Conjugate vaccines for preventing Haemophilus influenzae type B infections, Cochrane Database Syst Rev (2007) CD001729.
    
    [14] K. Agarwal, S. Agarwal, Helicobacter pylori vaccine: from past to future, Mayo Clin Proc 83 (2008) 169-175.
    
    [15] C.P. Hollenberg, G. Gellissen, Production of recombinant proteins by methylotrophic yeasts, Curr Opin Biotechnol 8 (1997) 554-560.
    
    [16] G Gellissen, Heterologous protein production in methylotrophic yeasts, Appl Microbiol Biotechnol 54 (2000) 741-750.
    
    [17] A. Maraz, From yeast genetics to biotechnology, Acta Microbiol Immunol Hung 49 (2002) 483-491.
    
    [18] G. Gellissen, G. Kunze, C. Gaillardin, J.M. Cregg, E. Berardi, M. Veenhuis, I. van der Klei, New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica - a comparison, FEMS Yeast Res 5 (2005) 1079-1096.
    
    [19] R. Daly, M.T. Hearn, Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production, J Mol Recognit 18 (2005) 119-138.
    
    [20] J. Cai, P. Gros, Overexpression, purification, and functional characterization of ATP-binding cassette transporters in the yeast, Pichia pastoris, Biochim Biophys Acta 1610 (2003) 63-76.
    
    [21] S. Macauley-Patrick, M.L. Fazenda, B. McNeil, L.M. Harvey, Heterologous protein production using the Pichia pastoris expression system, Yeast 22 (2005) 249-270.
    
    [22] S.R. Hamilton, T.U. Gerngross, Glycosylation engineering in yeast: the advent of fully humanized yeast, Curr Opin Biotechnol 18 (2007) 387-392.
    
    [23] X. Shi, D.L. Jarvis, Protein N-glycosylation in the baculovirus-insect cell system, Curr Drug Targets 8 (2007) 1116-1125.
    
    [24] L.N. Soldatova, C. Tsai, E. Dobrovolskaia, Z. Markovic-Housley, J.E. Slater, Characterization of the N-glycans of recombinant bee venom hyaluronidase (Apim 2) expressed in insect cells, Allergy Asthma Proc 28 (2007) 210-215.
    
    [25] K.R. Kim, Y.K. Kim, H.J. Cha, Recombinant baculovirus-based multiple protein expression platform for Drosophila S2 cell culture, J Biotechnol 133 (2008) 116-122.
    
    [26] K. Bienkowska-Szewczyk, B. Szewczyk, Expression of genes coding for animal virus glycoproteins in heterologous systems, Acta Biochim Pol 46 (1999) 325-339.
    
    [27] A. De Giuseppe, F. Feliziani, D. Rutili, G.M. De Mia, Expression of the bovine leukemia virus envelope glycoprotein (gp51) by recombinant baculovirus and its use in an enzyme-linked immunosorbent assay, Clin Diagn Lab Immunol 11 (2004) 147-151.
    
    [28] B. Philipps, M. Forstner, L.M. Mayr, Baculovirus expression system for magnetic sorting of infected cells and enhanced titer determination, Biotechniques 36 (2004) 80-83.
    
    [29] A. Safdar, M.M. Cox, Baculovirus-expressed influenza vaccine. A novel technology for safe and expeditious vaccine production for human use, Expert Opin Investig Drugs 16 (2007) 927-934.
    
    [30] R. Jagus, GS. Beckler, Overview of eukaryotic in vitro translation and expression systems, Curr Protoc Cell Biol Chapter 11 (2003) Unit 11 11.
    
    [31] Y. Kariya, K. Ishida, Y. Tsubota, Y. Nakashima, T. Hirosaki, T. Ogawa, K. Miyazaki, Efficient expression system of human recombinant laminin-5, J Biochem 132 (2002) 607-612.
    
    [32] R.G Buckholz, M.A. Gleeson, Yeast systems for the commercial production of heterologous proteins, Biotechnology (N Y) 9 (1991) 1067-1072.
    
    [33] G Gellissen, K. Melber, Methylotrophic yeast hansenula polymorpha as production organism for recombinant Pharmaceuticals, Arzneimittelforschung 46 (1996) 943-948.
    [34] P.E. Sudbery, The expression of recombinant proteins in yeasts, Curr Opin Biotechnol 7 (1996) 517-524.
    
    [35] G. Gellissen, C.P. Hollenberg, Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis - a review, Gene 190 (1997) 87-97.
    
    [36] M. Funk, R. Niedenthal, D. Mumberg, K. Brinkmann, V. Ronicke, T. Henkel, Vector systems for heterologous expression of proteins in Saccharomyces cerevisiae, Methods Enzymol 350 (2002) 248-257.
    
    [37] J.M. Cregg, Introduction: distinctions between Pichia pastoris and other expression systems, Methods Mol Biol 389 (2007) 1-10.
    
    [38] P. Li, A. Anumanthan, X.G Gao, K. Ilangovan, V.V. Suzara, N. Duzgunes, V. Renugopalakrishnan, Expression of recombinant proteins in Pichia pastoris, Appl Biochem Biotechnol 142 (2007) 105-124.
    
    [39] S. Tarahomjoo, Y. Katakura, S. Shioya, Expression of C-terminal repeat region of peptidoglycan hydrolase of Lactococcus lactis IL1403 in methylotrophic yeast Pichia pastoris, J Biosci Bioeng 105 (2008) 134-139.
    
    [40] D.L. Jarvis, Z.S. Kawar, J.R. Hollister, Engineering N-glycosylation pathways in the baculovirus-insect cell system, Curr Opin Biotechnol 9 (1998) 528-533.
    
    [41] B.H. Tan, G Brown, R.J. Sugrue, Secretion of the respiratory syncytial virus fusion protein from insect cells using the baculovirus expression system, Methods Mol Biol 379 (2007) 149-161.
    
    [42] M. Bouvier, L. Menard, M. Dennis, S. Marullo, Expression and recovery of functional G-protein-coupled receptors using baculovirus expression systems, Curr Opin Biotechnol 9 (1998) 522-527.
    
    [43] F. Altmann, E. Staudacher, I.B. Wilson, L. Marz, Insect cells as hosts for the expression of recombinant glycoproteins, Glycoconj J 16 (1999) 109-123.
    
    [44] M. Schmidt, D.R. Hoffman, Expression systems for production of recombinant allergens, Int Arch Allergy Immunol 128 (2002) 264-270.
    
    [45] L. Ikonomou, Y.J. Schneider, S.N. Agathos, Insect cell culture for industrial production of recombinant proteins, Appl Microbiol Biotechnol 62 (2003) 1-20.
    
    [46] D.L. Jarvis, Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production, Virology 310 (2003) 1-7.
    
    [47] L. Leder, F. Freuler, M. Forstner, L.M. Mayr, New methods for efficient protein production in drug discovery, Curr Opin Drug Discov Devel 10 (2007) 193-202.
    
    [48] R.G Werner, K. Kopp, M. Schlueter, Glycosylation of therapeutic proteins in different production systems, Acta Paediatr Suppl 96 (2007) 17-22.
    
    [49] M.B. Singh, P.L. Bhalla, Recombinant expression systems for allergen vaccines, Inflamm Allergy Drug Targets 5 (2006) 53-59.
    
    [50] R. Sodoyer, Expression systems for the production of recombinant Pharmaceuticals, BioDrugs 18 (2004) 51-62.
    
    [51] M. Arbabi-Ghahroudi, J. Tanha, R. MacKenzie, Prokaryotic expression of antibodies, Cancer Metastasis Rev 24 (2005) 501-519.
    
    [52] J. Olmos-Soto, R. Contreras-Flores, Genetic system constructed to overproduce and secrete proinsulin in Bacillus subtilis, Appl Microbiol Biotechnol 62 (2003) 369-373.
    
    [53] S. Dilsen, W. Paul, A. Sandgathe, D. Tippe, R. Freudl, J. Thommes, M.R. Kula, R. Takors, C. Wandrey, D. Weuster-Botz, Fed-batch production of recombinant human calcitonin precursor fusion protein using Staphylococcus carnosus as an expression-secretion system, Appl Microbiol Biotechnol 54 (2000) 361-369.
    
    [54] S. Sahdev, S.K. Khattar, K.S. Saini, Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies, Mol Cell Biochem 307 (2008) 249-264.
    
    [55] J.H. Choi, S.Y. Lee, Secretory and extracellular production of recombinant proteins using Escherichia coli, Appl Microbiol Biotechnol 64 (2004) 625-635.
    
    [56] M.J. Koury, Erythropoietin: the story of hypoxia and a finely regulated hematopoietic hormone, Exp Hematol 33 (2005) 1263-1270.
    
    [57] D. Mocini, T. Leone, M. Tubaro, M. Santini, M. Penco, Structure, production and function of erythropoietin: implications for therapeutical use in cardiovascular disease, Curr Med Chem 14 (2007) 2278-2287.
    
    [58] M. Cazzola, F. Mercuriali, C. Brugnara, Use of recombinant human erythropoietin outside the setting of uremia, Blood 89 (1997) 4248-4267.
    
    [59] T.J. Littlewood, Erythropoietin for the treatment of anemia associated with hematological malignancy, Hematol Oncol 19 (2001) 19-30.
    
    [60] J.P. Kaltwasser, U. Kessler, R. Gottschalk, G Stucki, B. Moller, Effect of recombinant human erythropoietin and intravenous iron on anemia and disease activity in rheumatoid arthritis, J Rheumatol 28 (2001) 2430-2436.
    
    [61] R. Munoz, G. Castellano, I. Fernandez, M.V. Alvarez, M.L. Manzano, M.S. Marcos, B. Cuenca, J.A. Solis-Herruzo, A pilot study of beta-interferon for treatment of patients with chronic hepatitis B who failed to respond to alpha-interferon, J Hepatol 37 (2002) 655-659.
    
    [62] P. Kontsek, Human type I interferons: structure and function, Acta Virol 38 (1994) 345-360.
    
    [63] C.A. Biron, Role of early cytokines, including alpha and beta interferons (IFN-alpha/beta), in innate and adaptive immune responses to viral infections, Semin Immunol 10 (1998) 383-390.
    
    [64] S. Goodbourn, L. Didcock, R.E. Randall, Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures, J Gen Virol 81 (2000) 2341-2364.
    
    [65] R.M. Arduini, K.L. Strauch, L.A. Runkel, M.M. Carlson, X. Hronowski, S.F. Foley, C.N. Young, W. Cheng, P.S. Hochman, D.P. Baker, Characterization of a soluble ternary complex formed between human interferon-beta-1a and its receptor chains, Protein Sci 8 (1999) 1867-1877.
    
    [66] Y.C. Zang, S.M. Skinner, R.R. Robinson, S. Li, V.M. Rivera, G.J. Hutton, J.Z. Zhang, Regulation of differentiation and functional properties of monocytes and monocyte-derived dendritic cells by interferon beta in multiple sclerosis, Mult Scler 10 (2004) 499-506.
    
    [67] M. Wacker, D. Linton, P.G Hitchen, M. Nita-Lazar, S.M. Haslam, S.J. North, M. Panico, H.R. Morris, A. Dell, B.W. Wren, M. Aebi, N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli, Science 298 (2002) 1790-1793.
    
    [68] Z. Zhang, J. Gildersleeve, Y.Y. Yang, R. Xu, J.A. Loo, S. Uryu, C.H. Wong, P.G. Schultz, A new strategy for the synthesis of glycoproteins, Science 303 (2004) 371-373.
    
    [69] M. Werle, A. Bernkop-Schnurch, Strategies to improve plasma half life time of peptide and protein drugs, Amino Acids 30 (2006) 351-367.