重庆轻轨特大跨超浅埋扁平车站隧道关键施工技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重庆轻轨大坪车站隧道位于重庆主城区内,地面上人口密集,建筑物林立,大坪车站隧道净跨19.8米,开挖宽度26.3米,开挖断面430.3m~2,覆盖层厚仅4米,围岩类别为Ⅲ类围岩。地表处情况复杂,多为抗震性能差的楼房和交通干道公路路面,对爆破振动和地表沉降要求严格。因此,该项技术研究成功将使我国隧道施工技术上升到一个新台阶,达到国际领先水平。
     本文扼要介绍了大跨扁平隧道的施工方法,重点阐述了特大跨超浅埋扁平隧道的施工工艺过程,对爆破振动和地表沉降的控制方法,以及施工监控量测的过程和方法,并通过对量测结果的分析,说明监控量测对施工的指导作用,并对围岩稳定性进行了一些简要分析。研究成果不仅成功应用在目前我国城市地铁隧道开挖跨度及断面最大、拱部结构最为扁平的重庆轻轨大坪车站隧道上,而且对以后特大跨超浅埋扁平隧道的施工具有非常重要的指导意义。
     主要结论如下:
     1.软弱大跨超浅埋扁平隧道必须按“管超前,严注浆,多分部、短开挖、强支护、快封闭,勤量测”的施工原则进行施工,采用“眼镜超前,化大为小,先侧后中,先上后下,先拱后墙”的施工方法控制地表沉降和对周边建筑物的影响;采用“多分部,化大为小,短进尺,密布眼,弱装药,设减振槽”,控制爆破振动,经过实践证明,这些方法都是行之有效的。
     2.特大跨超浅埋隧道拱部结构过于扁平,开挖后发生二次应力分布,拱脚处的应力过大,要求有较大的地基承载力,拱脚开挖时必须采用光面爆破,保证围岩的完整性和不受扰动,开挖后及时封闭,防止该处积水软化围岩。拱顶在核心土开挖后,在一定范围内出现拉应力区,在超浅埋情况下极容易掉块和发生围岩松驰,因此核心土必须边开挖边架设工字钢拱架,使之与左右导洞拱顶工字钢形成整体。
     3.施工中必须进行监控量测,浅埋特大跨隧道施工除需进行常规项目量测外,必须进行初期支护应力量测,这样可准确、直观了解围岩应力变化情况,对指导隧道施工、预防险情有着非常重要的现实意义。
Daping tunnel in Chongqing light-rail construction is located in downtown Chongqing, where there has a dense population as well as numerous buildings. Daping station tunnel enjoys a span in the clear of 19.8 meters, whereas its excavation span and area are 26.3 meters and 430.3 square meters respectively in the context of mere 4-meter overburden and with a surrounding rock category of III. In view of complex and unfavorable surface conditions over the station tunnel, such as house buildings and city roads both of which can't resist severe shocks or vibrations, it necessitates as small vibrations as possible induced in tunnel construction process and a strict requirement for the surface subsidence amount. So success of the technology will be a milestone indicating this technology of large section tunnel construction in our country has improved into a new phrase and reached a leading international level.
    Special emphasis is laid upon the construction operation process of flat tunnels with outsized span at even shallow depth, meanwhile, how to build large span flat tunnel is briefed in this article. Measures taken to reduce vibrations caused by explosion in driving tunnel and surface subsidence and methods of monitoring and surveying in the course of construction are detailed in this article. Furthermore, analysis of data from monitoring and surveying shows that it can serve as a guide to construction operation. In addition, the effect of surrounding rock's stability on such civil engineering project is succinctly analyzed. In a word, research results will undoubtedly benefit and guide later like projects.
    Main conclusions are as follows.
    1. Construction of flat tunnel of large span at extra-shallow depth must be conducted on the principle that advance grouting should be strictly performed before excavation and length of pull at one time should be short, together with reinforced support, immediate closing and constant monitoring and surveying. That preceding pilot tunnels, large-volume excavation divided into small ones, excavation of flank before that of center, upper before lower, arch before wall etc is a good method which could effectively reduce surface subsidence and its adverse effect on adjacent buildings, in addition, some other measures are also taken to lessen blast-induced vibration in the ground and surrounding structures. In a word, all means and steps mentioned above have already proved effective and practicable in practice.
    2. Due to exceedingly flat arched vault of the flat tunnel with outsized span and renewed stress allocation in surrounding rock after excavation, which would inevitably induce some excessively large load on the base of arch, therefore, larger load-bearing capability in the
    IS"
    
    
    
    foundation is a must. On the other hand, smooth face explosion must be applied to excavation of the arch base to further ensure the integrity and continuity of country rock around tunnel. Immediate closing after excavation would also effectively prevent pooling water from softening surrounding rock. Tensile stress field would appear in the proximity of arched vault after excavation, slacking of surrounding rock and subsequent dropping of blocks of rock from such area would possibly occur at any time in the context of extra-shallow depth. So I-steel arched support must be erected to provide against possible block dropping and be integrated into a ring with that of pilot tunnels on both sides.
    3. Immediate and constant monitoring and surveying must be conducted during construction. Special attention should be paid to the flat tunnel with outsized span at shallow depth. Apart from some common surveys, it is quite necessary to survey initial support stress, which is conducive to directly and accurately understanding changes of stress in surrounding rock and can provide helpful guidelines for governing tunnel construction in an importantly practical way.
引文
[1].王梦恕,21世纪山岭隧道修建的趋势,铁道工程学报增刊,1998,15(10):4~11
    [2].轩辕啸雯,陈唯一,我国21世纪隧道及地下工程展望,铁道工程学报增刊,1998,15(10):1~3
    [3].王思敬,杨志法等,地下工程岩体稳定分析,北京:科学出版社,1984
    [4].李世辉,隧道支护设计新论一典型类比分析法应用和理论,科学技术出版社,1999
    [5].郑颖人,董飞云等,地下工程锚喷支护设计指南,中国铁道出版社,1988
    [6].靳晓光,山区公路建设中的岩土工程监测与信息化控制,成都理工学院博士学位论文,2000
    [7].殷国富,工程专家系统技术及其应用,成都:成都科技大学出版社,1993
    [8].于学馥等,岩石力学新概念与开挖结构优化设计,北京:科学出版社,1995
    [9].李世辉,隧道围岩稳定分析与科学方法论问题,岩石力学与工程学报,1998,7(3):284-289
    [10].李世辉,典型类比分析法的提出、理论和实践,中国科学院地质研究所工程地质力学开放研究实验室1990年报,北京:地震出版社,1991:27-34
    [11].李世辉,隧道围岩稳定典型类比分析法,土木工程学报,1992,25(6):73-75
    [12].李世辉,锚喷支护分析预测的典型类比分析法,煤炭学报,1994,19(1):33-39
    [13].李世辉,吴向阳,典型类比分析法—隧道支护设计的一种新原理,公路,1997(9):20-26
    [14].陈景艳,魏薇等,决策支持系统,成都:西南交通大学出版社,1995.3
    [15].唐章宏,薛赛男等,Visual Fortran程序设计,北京:人民邮电出版社,2000
    [16].郑玉欣,隧道施工塌方机理分析及处治技术,铁道工程学报,1999,16(2):69-73
    [17].王守仁,隧道塌方面面谈,成都:四川省公路学会隧道工程专业委员会论文集,2000
    [18].于学馥,郑颖人等,地下工程围岩稳定分析,北京:煤炭工业出版社,1983
    
    E.Hock, E. T. Brown著,连志升等译,岩石地下工程,北京:冶金工业出版社,1986
    [19].孙广忠,岩体工程力学,北京:中国科学出版社,1985
    [20].潘昌实,隧道力学数值方法,北京:中国铁道出版社,1995
    [21].周维垣,高等岩石力学,北京:水利电力出版利,1989
    [22]. Hudson L A, Priest S D, Discontinuities and rock mass geometry, Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.,1976, 16(3): 339—362
    [23]. Wallis PF, King M. S. Discontinuity spacing in a crystalline-rock, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1980, 17(1): 63-66
    [24]. Goodman R E, Shi Genhua, Block Theory and Its Application to Rock Engineering, New York, 1985
    [25].刘洪洲,大跨度扁坦隧道施工的力学响应及施工方法的研究,重庆大学博士学位论文,1999
    [26].朱维申,何满潮,复杂条件下围岩稳定性与岩体动态施工力学,北京:科学出版社,1995
    [27].张玉祥,岩土工程时间序列预报问题初探,岩石力学与工程学报,1998,17(5):552-558
    [28].朱永全,景诗庭等,时间序列分析在隧道施工监测中的应用,岩石力学与工程学报,1996,15(4):353—359
    [29].朱泽兵等,重庆轻轨佛图关至大坪区间隧道及车站隧道综合施工技术,中国土木工程学会隧道及地下工程分会第12届年会论文,已录用。
    [30].朱泽兵等,重庆轻轨大坪隧道段爆破振动控制技术,工程爆破,2002.4,已录用。
    [31].朱泽兵等,重庆轻轨特大跨超浅埋车站隧道施工技术,,施工技术,已录用。