甘肃天水地区清水—张家川早古生代变质火山岩岩石地球化学特征及其构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以地球化学研究为主,结合区域地质学、构造地质学、岩石大地构造学、同位素年代学及岩相学等方面的分析对甘肃天水地区祁连—西秦岭造山带接合部位清水—张家川早古生代变质基性火山岩和中酸性火山岩进行系统研究,确定其形成时代,识别其成因和大地构造环境,探讨火山岩在区域上的归属,进而阐明研究区的古板块构造演化历史,解决前人研究尚存争论的问题,提出新的看法,同时为探讨祁连—西秦岭构造交接部位的交接关系及形成与演化乃至中国大陆造山带的基本特征及大陆动力学探索提供重要基础科学资料。
     通过对清水—张家川早古生代变质火山岩的研究,取得以下主要新进展和初步认识:
     (1) 清水—张家川早古生代变质火山岩主要由南部的早奥陶世红土堡变质基性火山岩和北部的奥陶纪陈家河群变质中酸性火山岩组成,二者为构造接触关系。
     (2) 红土堡变质基性火山岩以灰绿色变质玄武岩为主夹少量灰白色—浅灰色硅质岩,有少量同时代同成分的辉绿岩墙顺层侵入其中。变基性火山岩属于低钾拉斑玄武岩系列;稀土元素分布形式呈LREE弱富集型,具较高的∑REE,无明显Eu异常或弱的正异常,有明显Ce负异常;弱富集大离子亲石元素(K、Rb、Sr、Ba),富集Th,贫Cr、Ni,具Nb、Ta和zr负异常,La/Nb比值大于1,无明显Ti负异常;微量元素和Sr——Nd—Pb同位素特征表明基性岩浆来源于受俯冲流体交代的富集地幔楔,并遭到陆壳物质的混染。地质和地球化学特征及其构造环境判别显示基性火山岩可能形成于汇聚板块边缘的弧后板内裂陷—小洋盆构造环境。
     (3) 陈家河群变质中酸性火山岩以变质流纹岩和英安岩为主。变中酸性火山岩属于低钾—钾质钙碱性系列;稀土元素分布型式呈LREE富集型,具较高的∑REE,HREE较平坦,有明显Eu负异常;富集大离子亲石元素(K、Rb、Ba),强烈富集Th,亏损P、Ti、Cr等高场强元素,具Nb、Ta负异常;Sr—Nd—Pb同位素特征表明岩浆来源于受俯冲流体交代的富集地幔和地壳物质部分熔融的混合源区。地质和地球化学特征及其构造环境判别显示中酸性火山岩可能形成于陆缘火山弧构造环境。
     (4) 结合区域构造演化,祁连造山带东端地区在早古生代板块构造演化阶段于奥陶纪早期伸展拉张,形成具有弧后裂陷—小洋盆性质的红土堡基性火山岩带,奥陶纪中晚期该洋盆向北俯冲形成以陈家河群为代表的陆缘弧型中酸性火山岩。地质和地球化学特征的分析基本探明了清水—张家川变质基性和中酸性火山岩的大地构造背景及其所在的杨家寺—红土堡—凤阁岭变质基性火山岩和胡毛—新城变质中酸性火山—沉积岩带在早古生代的构造演化过程。
     (5) 通过与秦岭造山带早古生代草滩沟群变质火山岩和鹦鸽嘴蛇绿混杂岩及北祁连造山带奥陶纪白银厂矿田变质火山岩的对比研究表明,清水—张家川变质火山岩系在北秦岭未出现延伸,不属于二郎坪变质火山岩带的一部分,不是秦岭商丹带的西延;也不属于北祁连加里东构造带南带变质火山岩系的一部分。这些对比结果从火山岩研究角度为探讨祁连—西秦岭造山带构造结合部位在早古生代的交接构造关系提供了必要的证据。
     (6) 研究区所在的祁连构造带与北秦岭构造带在早古生代时的接合关系是北秦岭向西延伸变化为由微地块分割的多个有限洋盆和小洋盆系统,在早古生代从洋盆打开并发育有不同类型蛇绿岩或裂谷火山岩等到发生沿多个俯冲带向北的俯冲,形成多个火山岩浆岛弧构造带直至志留纪俯冲碰撞造山。由红土堡基性火山岩系和陈家河群火山—沉积岩系等组成的早古生代杨家寺—红土堡—凤阁岭弧后裂陷小洋盆和胡毛—新城中酸性火山岛弧带是其中之一。这些初步认识为进一步探讨祁连—西秦岭造山带构造交接部位的形成与演化乃至中国大陆造山带的基本特征及大陆动力学探索提供了重要的基础科学资料。
This dissertation mainly studies Qingshui-Zhangjiachuan early Palaeozoic metabasic and meta-intermediate-acidic volcanic rocks in Tianshui, Gansu in geochemistry combining with regional geology, structure, tectonics, isotopic geochronology and petrography etc., to discover their ages, cause of formation and tectonic settings, and to discuss their regional adscription. Further it illustrates the evolving history of paleo-plate in the study area, solves the questions which remain in argument in former studies, and puts forward new ideas. Further to this, it also provides important basic scientific data for discussing the joining relationship, forming and evolvement of the tectonic joint of Qilian and Western Qinling orogenic belts and the basic characteristics of continental orogenic belts, and exploring the continental dynamics in China.The following new progresses and knowledge have been procured by the studies of Qingshui-Zhangjiachuan early Palaeozoic meta-volcanic rocks:(1) Qingshui-Zhangjiachuan meta-volcanic rocks are mainly composed of south early Ordovician Epoch Hongtubao metabasic volcanic rocks and north Ordovician Period Chenjiahe Group meta-intermediate-acidic volcanic rocks. They are structural contact relationship.(2) The Hongtubao metabasic volcanic rocks are mainly composed of grayish green metabasalt, intercalated by a few offwhite-light-grey sillcalite, and intruded along the bedding by some contemporaneous diabase dikes of the same composition. The metabasic volcanic rocks are of tholeiitic series. Their chondrite-normalized REE patterns are of weakly LREE-enriched type, with relatively high ∑REE. There is no pronounced Eu anomaly or there are only weak positive anomalies; there is a pronounced negative Ce anomaly. Their MORB-normalized trace element spidergram shows that the rocks are slightly enriched in large-ion lithophile elements (K, Rb, Sr, Ba), enriched in Th and depleted in Cr and Ni. Nb and Ta show negative anomaly, La/Nb>1, and Ti anomaly is not pronounced. Trace element and Sr-Nd-Pb isotope characteristics show that the basic magma roots in enriched mantle wedge metasomatized by fluid in subduction belt, hybridized by continental crust material. The geological and geochemical characteristics show that the metabasic rocks formed in a back-arc rift-small ocean basin tectonic environment at convergent plate margins.(3) The Chenjiahe Group meta-intermediate-acidic volcanic rocks are mainly composed of metarhyolite and metadacite. The meta-intermediate-acidic volcanic rocks are of low-K — K calcalkali series. Their chondrite-normalized REE pattern are of LREE-enriched type, with relatively high ∑ REE, and the HREE pattern are relatively flat. There is a pronounced negative Eu anomaly. Their MORB-normalized trace element spidergram shows that the rocks are enriched in large-ion lithophile elements (K, Rb, Ba), observably enriched in Th and depleted in high field strength elements (P, Ti, Cr). Nb and Ta show negative anomaly. Sr-Nd-Pb isotope characteristics show that the intermediate-acidic magma roots in an intermixed source of enriched mantle metasomatized by fluid in subduction belt and continental crust. The geological and geochemical characteristics show that the meta-intermediate-acidic rocks formed in a volcanic arc tectonic environment at continental margin.(4) Consulting information of regional structure, the eastern end of Qilian orogenic belts extended in early Ordovician Period and formed Hongtubao basic volcanic rocks belt of back-arc rift-small ocean basin tectonic environment at early Palaeozoic plate tectonics evolvement stage. This ocean crust subducted northward at middle-late Ordovician Period and formed island arc type intermediate-acidic volcanic rocks represented by Chenjiahe Group at continental margin. The analyses of geological and geochemical characteristics prove basically the tectonic settings of Qingshui-Zhangjiachuan metabasic and meta-intermediate-acidic volcanic rocks and the tectonic evolving process of Yangjiasi-Hongtubao-Fenggeling metabasic rocks belt and Humao-Xinchen meta-intermediate-acidic volcanic-sedimentary belt in early Palaeozoic.(5) The comparative studies between Qingshui-Zhangjiachuan meta-volcanic rocks and Eastern Qinling early Palaeozoic Caotangou Group meta-volcanic rocks and Yinggezui Ophiolitic Melange,
    and Ordovician Baiyinchang orefield meta-volcanic rocks in Northern Qilian orogenic belts show that Qingshui-Zhangjiachuan meta-volcanic rock series do not extend to Northern Qinling, do not belong to Erlangping meta-volcanic rocks belt, and are not the west extension of Shangdan tectonic belt. They also do not belong to the south meta-volcanic rock series of Northern Qilian Caledonides tectonic belts. These comparative results provide necessary proof for discussing the joining relationship of the tectonic joint of Qilian and Western Qinling orogenic belts at early Palaeozoic.(6) The joining relation of Qilian and Northern Qinling tectonic belts in early Palaeozoic is that Northern Qinling extended westward to become many limited oceanic basin and small oceanic basin systems divided by microlandmasses. These oceanic basin systems went through opening and developing various ophiolite or rift volcanic rocks to subducting northward along many subduction zones, which led to many volcanic magma island arc tectonic belts formation, untill subduction, collision and orogenesis in early Palaeozoic. Early Palaeozoic Yangjiasi-Hongtubao-Fenggeling back-arc rift-small ocean basin and Humao-Xincheng intermediate-acidic volcanic island arc belts composed of Hongtubao basic volcanic rock series and Chenjiahe Group volcanic-sedimentary rock series are one of the volcanic magma island arc tectonic belts. These elementary knowledge provide important basic scientific data for discussing the joining relationship, formation and evolvement of the tectonic joint of Qilian and Western Qinling orogenic belts and the basic characteristics of continental orogenic belts, and exploring the continental dynamics in China.
引文
边千韬,赵大升,叶正仁,等.初论昆祁秦缝合系[J].地球学报,2002,23(6):501~508.
    长安大学地质调查研究院.天水市幅(I48C 002003)1:250000区域地质调查(修测)成果报告[R].2004,1~625.
    邓晋福,赵海玲,吴宗絮,等.中国北方大陆下的地幔热柱与岩石圈运动[J].现代地质,1992,6(3):267~274.
    邓晋福,董方浏,喻学惠,等.西南三江造山带火山岩—构造组合及其意义[J].高校地质学报,2001,7(2):121~138.
    丁仨平,裴先治,李勇,等.西秦岭天水地区“李子园群”的解体及其构造环境浅析[J].地质通报,2004,23(12):1209~1214.
    樊双虎,张维吉,金符实,等.甘肃陇山地区葫芦河群变质玄武岩及大地构造环境恢复[J].西安地质学院学报,1993,15(4):80~84.
    冯益民.祁连造山带研究概况——历史、现状及展望[J].地球科学进展,1997,12(4):307~314.
    甘肃省地质矿产局.甘肃省岩石地层[M].武汉:中国地质大学出版社.1998.
    甘肃省地质矿产局勘查开发局地质科学研究所.1:5万张家川幅(148E007017)、恭门镇幅(148E007018)、清水县幅(148E008017)、山门镇幅(148E008018)地质图及说明书[R].1996.
    高山,张本仁,金振民,等.秦岭—大别造山带下地壳拆沉作用[J].中国科学(D辑),1999,29(6):532~541.
    郭守年,董治平,蒋梅,等.天水地震区综合物理剖面的建立与壳幔结构[J].西北地震学报,1997,19(3):44~51.
    郭原生,王金荣,谢宪丽,等.白银厂矿田早中寒武世火山岩地球化学及成因分析[J].岩石学报,2000,16(3):337~344.
    郭原生,王金荣,解宪丽,等.白银厂矿田石英钠长斑岩Sm—Nd,Rb—Sr同位素特征及意义[J].甘肃科学学报,2001,13(1):37~40.
    李百祥.西秦岭地球物理场的地质解释[J].甘肃地质学报,1997,6(2):82~91.
    李超,陈衍景.东秦岭—大别地区中生代岩石圈拆沉的岩石学证据评述[J].北京大学学报(自然科学版),2002,38(3):431~441.
    李曙光,刘德良,陈移之,葛宁洁.大别山麓含柯石英榴辉岩的Sm—Nd同位素年龄[J].科学通报,1992,37(4):346~349.
    李曙光.蛇绿岩生成构造环境的Ba-Th-Nb-La判别图[J].岩石学报,1993,9(2):146~156.
    李曙光.大陆俯冲化学地球动力学[J].地学前缘,1998,5(4):211~234.
    李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社,1992,1~195.
    李志昌,路远发,黄圭成著.放射性同位素地质学方法与进展[M].武汉:中国地质大学出版社,2004,1~276.
    卢欣祥.秦岭花岗岩揭示的秦岭构造演化过程——秦岭花岗岩研究进展[J].地球科学进展,1998,13(2):213~214.
    欧阳自远,王世杰,张福勤.堆积的地球及其原始不均一性[J].地球科学进展,1994,3:1~6.
    欧阳自远,张福勤,林文祝等.行星地球的起源和演化模式—地球原始不均一性的起源及对后期演化的制约[J].地质地球化学,1995,5:11~15.
    裴先治,丁仨平,胡波,等.西秦岭天水地区关子镇蛇绿岩的厘定及其地质意义[J].地质通报,2004,23(12):1202~1208.
    裴先治,李勇,陆松年,等.西秦岭天水地区关子镇中基性岩浆杂岩体锆石U-Pb年龄及其地质意义[J].地质通报,2005,24(1):23~29.
    彭礼贵,任有祥,李佩智.甘肃省白银厂铜多金属矿床成矿模式[M].北京:地质出版社,1995.
    邵济安,洪大卫,张履桥.内蒙古火成岩Sr—Nb同位素特征及成因[J].地质通报,2002, 21(12):817~822.
    宋志高,贾群子,张治洮,等.北秦岭—北祁连(天水—宝鸡间)早古生代火山岩系及其构造连接关系的研究[J].中国地质科学院西安地质矿产研究所所刊,1991,34:1~82.
    孙民生,董恒笔.再论草滩沟群的层序划分及时代归属[J].陕西地质,1995,13(2):22~30.
    孙民生.草滩沟群火山岩特征及其形成环境分析[J].陕西地质,1998,16(1):42~50.
    孙书勤,汪云亮,张成江.玄武岩类岩石大地构造环境的Th、Nb、Zr判别[J].地质论评,2003,49(1):40~47.
    汪云亮,张成江,修淑芝.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J].岩石学报,2001,17(3):413~421.
    王德耀.草滩沟群、丹凤岩群火山岩对比及其构造环境分析[J].西北地质,2002,35(3):59~66.
    王金荣,郭原生,翟新伟,等.甘肃白银厂矿田早—中寒武世火山岩形成的构造环境[J].高校地质学报,2003,9(1):89~98.
    王强,许继峰,赵振华等.安徽铜陵地区燕山期侵入岩的成因及其对深部动力学过程的制约[J].中国科学(D辑),2003,33(4):323~334.
    王中刚,于学元,赵振华,等.稀土元素地球化学[M].北京:科学出版社,1989,133~190.
    邬介人,任秉琛,朱美珠,等.西北海相火山岩地区块状硫化物矿床[M].武汉:中国地质出版社,1994,11~18.
    夏林圻,夏祖春,徐学义.北祁连山构造—火山岩浆演化动力学[J].西北地质科学,1995,16(1):1~28.
    夏林圻,夏祖春,任有祥.祁连山及邻区火山作用与成矿[M].北京:地质出版社,1998.
    夏林圻,张国伟,夏祖春,等.天山古生代洋盆开启、闭合时限的岩石学约束——来自震旦纪、石炭纪火山岩的证据[J].地质通报,2002,21(2):55~62.
    邢光福.Dupal同位素异常的概念、成因及其地质意义.火山地质与矿产,1997,18(4):281~291.
    许志琴,张建新,徐惠芬,等.中国主要大陆山链韧性剪切带及动力学[M].北京:地质出版社,1997,1~294.
    闫秋实,尹观.甘肃白银厂矿田锆石红外光谱特征和地质年龄估测[J].矿物岩石地球化学通报.2004,23(1):52~56.
    尹福光,潘桂棠,李兴振.昆仑多岛弧盆系及泛华夏大陆的增生[J].大地构造与成矿学,2003,27(1):22~28.
    袁学诚.秦岭造山带地壳构造与楔入成山[J].地质学报,1997,71(3):227~235.
    张鸿翔,徐志方,马英军,等.大陆溢流玄武岩的地球化学特征及起源[J].地球科学,2001,26(3):261~268.
    张本仁.秦岭造山带地球化学[M].北京:科学出版社,2002,1~187.
    张二朋,牛道韫,霍有光,等.秦巴及邻区地质—构造特征概论[M].北京:地质出版社,1993,1~290.
    张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学[M].北京:科学出版社,2001,1~855.
    张维吉,孟宪恂,胡健民,等.祁连—北秦岭造山带接合部位构造特征与造山过程[M].西安:西北大学出版社,1994,1~283.
    朱炳泉.从壳幔同位素体系看不同地体的化学不均一性[J].科学通报,1990,21:1653~1655。
    朱炳泉.矿石Pb同位素三维空间拓扑图解用于地球化学省与矿种区划[J].地球化学,1993,3:209~216.
    赵霞.北秦岭西段鹦鸽嘴蛇绿混杂岩地球化学特征及其构造意义[D].西北大学地质学系,2004,1~63.
    赵振华.微量元素地球化学原理[M].北京:科学出版社,1997.112~177.
    Allegre C J, Lewin E and Dupre B. A coherent crust-mantle model for the uranium-thorium-lead isotopic system[J]. Chem. Geol., 1988, 70, 211~234.
    Cabanis B and Lecolle M. Le diagramme La/10-Y-15-Nb/8: un outil pour la discrimination de series volcaniques et la mise eb evidence des processus de melange et/ou de contamination crustale[J]. C. R. Acad. Sci/Ser., 1989, Ⅱ, 309: 2023~2029.
    Caress D W. Seismic imaging of hotspot-related crustal underplating beneath Marquesas Island[J].Nature, 1995, 373: 600~603.
    Chen Nengsong, You Zhendong, Sun Min. Decompression metamorphism of Dabie complex and rapid tectonic uplift from deep level of the orogenic belt[J]. Science in China , Series D, 1998, 41 (2): 144~150.
    Condie K C. Geochemistry and tectonic setting of early proterozoic supracrustal rocks in the southwestern United States[J]. Geology, 1986, 94: 845~861.
    Condie K C. Geochemical changes in basalts and andesites across the Archaean-Proterozoic boundary: identification and significance[J]. Lithos, 1989, 23: 1~18.
    DePaolo D J. Age dependence of the coposition of continental crust: evidence from Nd isotopic variations in granitic rocks[J]. Earth Planet. Sci. Lett. 1988, 90: 263~271.
    Duncan R A and Richards M A. Hotspots, mantle plumes, flood basalts, and true polar wander[J]. Rev Geophys, 1991, 29: 31~50.
    Floyd P A and Winchester J A. Magma-type and tectonic setting discrimination using immobile elements[J]. Earth Planet. Sci. Lett., 1975, 27: 211~218.
    Furlong K P and Fountain M D. Continental underplating: thermal consideration and seismic-petrologic consequences[J]. Geophys: Res., 1986, 91 (B8): 8285~8294.
    Gao Shan, Zhang Benren, Zhaozhidan. Radio activity and thermal state of the lithosphere in the Qinling orogenic belt and adjacent margins of North China and Yangtze Cratons: Constraints on interpretations of Geophysical profilings[J]. Continental Dynamics, 1996, 1 (1): 56~63.
    Goldstein S L, O'Nions R K and Hamilton P J. A Sm-Nd study of atmospheric dusts and particulates from major fiver systems[J]. Earth Planet. Sci. Lett., 1984, 70: 221~236.
    Hart S R. A large-scale isotope anomaly in the Southern Hemisphere mantle[J]. Nature, 1984, 309: 753-757.
    Hart S R. Heterogeneous mantle domains: signatures, genesis and mixing chronologies[J]. Earth Planet Sci. Lett., 1988, 90: 273~296.
    Hawkesworth C J, Kempton P D, Rogers N W, et al. Continental mantle lithosphere and shallow level enrichment processes in the earth's mantle[J]. Earth Planet Sci Lett, 1990, 96:256~268.
    Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canad. J. Earth Sci., 1971, 8: 523~548.
    Kay E W and S M Kay. Delamination and delamination magmatism[J]. Tectonophysics, 1993, 219, 177~189.
    Liu C Q, Masuda A, Xie G H. Major and trace element compositions of Cenozoic basalts in eastern China: petro genesis and mantle source[J]. Chem Geol, 1994, 114: 19~42.
    Mckenzie D. Cratonic, circumeratonic and oceanic mantle domains beneath the western United States[J]. J G-eophy Res, 1989, 94: 7899~7915.
    Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chem. Geol. 1986, 56: 275~282.
    Middlemost E A K. A simple classification of volcanic rocks[J]. Bull. Volcanol., 1972, 36: 382~397.
    Nealson K D. Are crustal thickness variation in old mountain belts like the Appalachians a consequence of lithospheric delamination[J]. Geology, 1992, 20: 492~502.
    Norman M D and Leeman W P. Open-system magmatic evolution of andesites and basalts from the Salmon Creek volcanics, southweat Idaho, U.S.A[J]. Chem. Geol., 1990, 81: 167~189.
    Pearce J A and Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analysis[J]. Earth Planet Sci. Lett., 1973, 19: 290~300.
    Pearce J A and Norry M J. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks[J]. Contrib. Mineral. Petrol., 1979, 69: 33~47.
    Pearce J et al. Trace element distribution diagrams for the tectonic' interpretation of granitic rocks[J].Petrol., 1984, 25 (4): 956~983.
    Pearce T H, Gorman B E and Birkett T C. The TiO2-K20-P205 diagram: a method of discrimination between oceanic and non-oceanic basalts[J]. Earth Planet. Sci. Lett., 1975, 24: 419~426.
    Peucat J J, Vidal P, Bemard-Griffiths J and Condie K C. Sr, Nd and Pb isotopic systematics in the Archaean low-to high-grade transition zone of southern India: syn accretion vs. post-accretion granlites[J].Geol., 1988, 97: 537~550.
    Rickwood P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements[J]. Lithos., 1989, 22: 247~263.
    Rollinson H R. Using Geochemical Data: Evaluation, Presentation, Interpretation[M]. Longman Group UK Ltd, 1993.1~275.
    Shervais J W. Ti-V plots and the petrogenesis of modem and ophiolitic lavas[J]. Earth Planet. Sci. Lett., 1982, 59: 101~118.
    Stein M, Hofmann W. Mantle plumes and episodic crustal growth[J]. Nature, 1994, 372: 63~68.
    Tatsumoto M, Basu A R, Huang W K, et al. Sr, Nd and Pb isotopes of ultramafic xenoliths in volcanic rocks of eastern China: enriched components EMI and EMIl in subcontinental lithosphere[J]. Earth Planet Sci Lett, 1992, 113: 107~128.
    Wang Oingchen, Cong Bolin. Tectonic implication of UHP rocks from the Dabie m0untains[J]. Science in China, Series D, 1996, 39 (3): 311~318.
    Winchester J A and Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chem. Geol., 1977, 20: 325~343.
    White W M, Hofrnann A W. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution[J].Nature, 1982, 296 (5869): 821~825.
    Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province[J]. Earth Planet. Sci. Lett., 1980, 50: 11~30.
    Yuan Xuecheng. Velocity structure of the Qinling lithosphere and mushroom cloud model[J]. Science in China , Series D, 1996, 39 (3): 235~244.
    Zartman R E and Doe B R. Plumbotectonics-the model[J]. Tectonophys, 1981, 75: 135~162.
    Zhang Guowei, Meng Qingren, Lai Shaocong. Tectonics and structure of Qinling Orogenic belt[J]. Science in China, Series D, 1995, 38 (11): 1379~1394.
    Zhang Guowei, Guo Anlin, Liu Futian, et al. 3D structure and its dynamics analysis of the Qinling orogenic belt[J]. Science in China, Series D, 1996, 39 (sup.): 1~6.
    Zhu Bing-Quan. Geochemical evidence for the southern China block being a part of Gondwana[J]. Journal of Southeast Asia Earth Science, 1994, 9 (4): 319~324.