气动人工肌肉位置伺服系统研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气动人工肌肉作为一种新型气动执行元件已引起了国内外学者的广泛关注。本文以
    气动人工肌肉为研究对象,通过理论分析和实验研究建立了气动人工肌肉较完整的静动
    态数学模型,在对气动人工肌肉控制系统特性分析的基础上应用变结构控制方法和模糊
    理论设计了气动人工肌肉的模糊变结构控制策略,并应用于自行设计的基于气动人工肌
    肉的新型三自由度并联机器人平台上。
    本文首先分析了导致气动人工肌肉理想静态数学模型与实际结果相差较大的原因。
    在此基础上,抓住影响气动人工肌肉特性的主要因素,橡胶弹性力以及橡胶筒与纤维层
    间摩擦力的影响,建立了相对简单而又较为完整的气动人工肌肉静态数学模型,并提出
    了将气动人工肌肉视为带有弹性负载的变截面积气缸的观点。针对两种不同型号的气动
    人工肌肉,通过实验和计算机数值仿真分析了气动人工肌肉静态力学特性,验证了静态
    数学模型的正确性。
    其次,提出将气动人工肌肉系统作为一种气压传动系统来研究,并根据所提出的将
    气动人工肌肉视为变截面积气缸的观点,在气缸动态特性方程的基础上方便地推导出了
    描述气动人工肌肉系统动态特性的非线性数学模型,并指出气动人工肌肉系统的工作过
    程可以划分为等容充气、充气收缩、排气伸长和等容排气四个阶段。同样以两种型号的
    气动人工肌肉为例,通过实验和仿真分析了气动人工肌肉开环控制系统的动态工作特
    性,验证了动态数学模型的正确性。
    然后,针对气动人工肌肉控制系统强非线性、难于建立精确数学模型的特点,在对
    其特性分析的基础上,提出气动人工肌肉位置伺服系统的两层滑模模糊变结构控制策
    略。理论和实验结果表明,常规变结构控制由于控制输入的剧烈颤振,容易引起系统响
    应的超调和抖动,不能获得较好的动态特性,而模糊变结构控制改善了系统动态性能,
    响应平滑,超调量小。两种型号的气动人工肌肉位置伺服系统的稳态位置控制精度分别
    可达到±0.2mm 和±0.3mm,即使在负载质量和气源压力改变的情况下,虽然稳态误差
    有所增加,但其稳态控制精度仍可达到±0.3mm 和±0.5mm,系统对于扰动和外部参数的
    变化具有强的鲁棒性。对于气动人工肌肉位置控制系统来说,模糊变结构控制是可行的、
    合理的。
    最后,根据某水中运动模拟装置需要三个转动自由度的要求,考虑到气动人工肌肉
    结构简单、无泄漏现象、适合在空气与驱动环境分离的工况下工作,应用气动人工肌肉
    作为驱动装置,设计了一种新型基于气动人工肌肉的三自由度并联机器人平台。在对该
    新型三自由度并联机器人平台运动学和动力学特性进行详细理论分析的基础上,采用模
     - I -
    
    
    糊变结构控制策略设计了新型三自由度并联机器人平台的模糊变结构控制器,并建立了
    实验系统,开展了新型三自由度并联机器人平台的轨迹跟踪控制实验研究。实验结果表
    明,采用气动人工肌肉作为驱动装置设计的三自由度并联机器人平台是可行的,模糊变
    结构控制策略对于该系统是适合的。基于气动人工肌肉的新型三自由度并联机器人平台
    的设计对气动人工肌肉更加广泛的应用具有指导意义。
The main objective of this dissertation is to report research on pneumatic muscle actuator
    (PMA), which has been given attention by scholars as a new type of pneumatic actuator
    recently. In this dissertation, an improved static and dynamic mathematic model of PMA was
    developed by means of theoretic analysis and verified through experiment, and according to
    the characteristics of PMA system, a fuzzy variable structure control (FVSC) method was
    designed and also applied to control the position of a novel 3-DOF parallel manipulator
    equipped with PMAs working as driver.
     Firstly, a discussion was made to analyze the reasons, which may be responsible for the
    great discrepancy between the idealized static mathematic model and the experimental results.
    Based on the discussion, a new improved static mathematic mode of PMA was developed
    considering the rubber elasticity and the friction between rubber tube and braided mesh shell,
    and a new concept was presented, which regards PMA as variable piston area pneumatic
    cylinder with elastic load. Two types of actuators were tested to verify the model, and the
    static characteristics of PMAs were studied by computer simulation and experiment.
     Secondly, the PMA system was studied as a pneumatic transmission system and a
    nonlinear dynamic model of PMA system was presented easily according to the new concept
    and the dynamic model of pneumatic cylinder. To facilitate research works, the working
    process of PMA system is divided into four successive processes, ‘isometric inflation’,
    ‘contractive inflation’, ‘extended disinflation’ and ‘isometric disinflation’. At the end of this
    part, computer simulation and experiment were applied to discuss the dynamic characteristics
    of two types of PMA system.
     Thirdly, due to the complex nonlinear dynamics of PMA and difficult in obtaining
    accurate mathematic model, classic control method is not suitable for the system. A FVSC
    method was presented to control the position of PMA servo system. The FVSC controller is
    intergrated with two layers of sliding surface. The result of simulation and experiment
    compared with conventional variable structure control (CVSC) method shows that FVSC can
    improve the static and dynamic behavior of the system effectively and CVSC is not workable
    because of the undesirable “chattering” of control input and nonideal performance. The two
     -III -
    
    
    types of PMA control system have stronger robustness, quicker tracking and higher accuracy.
    The steady-errors are below ±0.2mm and ±0.3mm respectively, and even though mass or
    supply pressure is varied the steady-errors are within ±0.3mm and ±0.5mm respectively.
     Finally, a novel 3-DOF parallel manipulator equipped with PMAs was constructed by
    request of a kind of underwater-simulated device, which has only 3 rotational degrees of
    freedom. PMAs are acted as driver because of its advantages of being compact, airproof and
    having the ability to work in adverse environmental conditions. On the basis of analyzing
    kinematics and dynamics of the parallel manipulator, a FVSC controller for the manipulator
    was designed. Then experiment of the parallel manipulator trajectory tracking was carried out,
    and the result demonstrates that the novel 3-DOF parallel manipulator using PMAs is
    appropriate and FVSC method is suitable for the parallel manipulator. The work is useful for
    the application in practice of PMA.
引文
[1] 王雄耀. 介绍一种气动新产品-仿生气动肌肉腱. 液压气动与密封,2002(1):
     31-35
    [2] 叶骞,王祖温,包钢. 气动人工肌肉. 液压气动与密封,2000(2):12-15
    [3] Stephen D. Prior and Peter R. Warner. A New Development in Low Cost Pneumatic
     Actuators. Proceedings of Fifth International Conference on Advanced Robotics. Pisa,
     Italy. 1991, 2: 1590-1593
    [4] D. G. Caldwell, N. Tsagarakis, D. Badihi et al. Pneumatic Muscle Actuator Technology
     a light weight power system for a Humanoid Robot. Proceedings of the 1998 IEEE
     International Conference on Robotics & Automation. Leuven, Belgium. 1998, 4:
     3053-3058
    [5] G. K. Klute, J. M Czerniecki, B. Hannaford. McKibben Artificial Muscles: Pneumatic
     Actuators with Biomechanical Intelligence. Proceedings of IEEE/ASME 1999
     International Conference on Advanced Intelligent Mechatronics. Atlanta, USA. 1999:
     1-6
    [6] D. G. Caldwell, G. A. Medrano-Cerda and M. J. Goodwin. Braided Pneumatic Actuator
     Control of a Multi-Jointed Manipulator. Proceedings of IEEE International Conference
     on Systems, Man, and Cybernetics. Le Touquet, France. 1993, 1: 423-428
    [7] Y. K. Lee and I. Shimoyama. A skeletal framework artificial hand actuated by
     pneumatic artificial muscles. Proceedings of the 1999 IEEE International Conference on
     Robotics and Automation. Detroit, Michigan. 1999, 2: 926-931
    [8] N. Tsagarakis, D. G. Caldwell and G. A. Medrano-Cerda. A 7-dof pneumatic Muscle
     Actuator (pMA) powered Exoskeleton. Proceedings of the 1999 IEEE International
     Workshop on Robot and Human Interaction. Pisa, Italy. 1999: 327-333
    [9] D. G. Caldwell, G. A. Medrano-Cerda and C. J. Bowler. Investigation of Bipedal Robot
     Locomotion using Pneumatic Muscle Actuators. Proceedings of the 1997 IEEE
     International Conference on Robotics and Automation. Albuquerque, New Mexico.
     1997, 1:799-804
    [10] Richard Q. van der Linde. Design, Analysis, and Control of a Low Power Joint for
     Walking Robots by Phasic Activation of McKibben Muscles. IEEE Transactions on
     - 124 -
    
    
    Robotics and Automation, 1999, 15 (4): 599-604
    [11] B. Tondu, V. Boitier, P. Lopez. Naturally compliant robot-arms actuated by McKibben
     artificial muscles. Proceedings of IEEE International Conference on Systems, Man, and
     Cybernetics. San Antonio, USA. 1994, 3: 2635-2640
    [12] D. G. Caldwell, N. Tsagarakis. G. A. Medrano-Cerda et al. A Pneumatic muscle actuator
     driven manipulator for nuclear waste retrieval. Control Engineering Practice, 2001, 9:
     23-26
    [13] D. C. Johnson, D. W. Repperger, G. Thompson. Development of a mobility assist for the
     paralyzed amputee, and spastic patient. Proceedings of the 1996 Fifteenth Southern
     Conference on Biomedical Engineering. Dayton, USA. 1996: 67-70
    [14] D. W. Repperger, C. A. Phillips, D. C. Johnson et al. A Study of Pneumatic Muscle
     Technology for Possible Assistance in Mobility. Proceedings of 19th International
     Conference on Engineering in Medicine and Biology Society. Chicago, USA. 1997, 5:
     1884-1887
    [15] D. W. Repperger, C. A. Phillips. Developing Intelligent Control from A Biological
     Perspective to Examine Paradigms for Activation Utilizing Pneumatic Muscle Actuators.
     Proceedings of the 15th IEEE International Symposium on Intelligent Control. Rio,
     Patras, Greece. 2000: 205-210
    [16] D. G. Caldwell, N. Tsagarakis, P. Artrit et al. Biomimetic and Smart Technology
     Principles of Humanoid Design. IEEE/ASME International Conference on Advanced
     Intelligent Mechatronics Proceedings. Como, Italy. 2001, 2: 965-970
    [17] 杨钢,李宝仁,刘军. 气动人工肌肉:一种新型气动执行元件. 中国机械工程,
     2003,14:1347-1349
    [18] C. P. Chou and B. Hannaford. Static and Dynamic Characteristics of McKibben
     Pneumatic Artificial Muscles. Proceedings of 1994 IEEE International Conference on
     Robotic and Automation. San Diego, USA. 1994, 1: 281-286
    [19] C. P. Chou and B. Hannaford. Measurement and Modeling of McKibben Pneumatic
     Artificial Muscle. IEEE Transactions on Robotics and Automation, 1996, 12(1): 90-102
    [20] N. Tsagarakis and D. G. Caldwell. Improved Modelling and Assessment of Pneumatic
     Muscle Actuators. Proceedings of the 2000 IEEE international Conference on Robotics
     & Automation. San Francisco. 2000, 4: 3641-3646
    [21] Robb W. Colbrum, Gabriel M. Nelson, Roger D. Quinn. Modeling of Braided
     - 125 -
    
    
    Pneumatic Actuators for Robotic Control. Proceeding of the 2001 IEEE/RSJ
     International Conference on Intelligent Robots and Systems. Maui, Hawaii, USA. 2001,
     4: 1964-1970
    [22] B. Tondu and P. Lopex. Modeling and control of McKibben artificial muscle robot
     actuators. IEEE Control Systems Magazine, 2000, 2(2): 15-38
    [23] 刘荣,宗光华. 人工肌肉驱动特性研究. 高技术通讯,1998,6:34-38
    [24] D. W. Repperger, K. R. Johnson and C. A Phillips. Nonlinear Feedback Controller
     Design of A Pneumatic Muscle Actuator System. Proceedings of the American Control
     Conference. San Diego, California. 1999, 3: 1525-1529
    [25] G. K. Klute and B. Hannaford. Fatigue Characteristics of McKibben Artificial Muscle
     Actuators. Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent
     Robotic Systems. Victoria BC, Canada. 1998, 3: 1776-1781
    [26] G. K. Klute and B. Hannaford. Accounting for Elastic Energy Storage in McKibben
     Artificial Muscle Actuators. ASME Journal of Dynamic Systems, Measurement, and
     Control, 2000, 122(2): 386-388
    [27] 田社平,林良明. 人工肌肉静态特性及其测量. 实用测试技术,1998,6:12-14
    [28] 隋立明,包钢,王祖温. 气动人工肌肉驱动关节特性研究. 液压与气动,2002,3:
     3-5
    [29] 刘军. 气动人工肌肉静动态特性研究:[硕士学位论文]. 武汉:华中科技大学,
     2003
    [30] S. M. Djouadi, D. W. Repperger, J. E. Berlin. Gain-scheduling H∞ control of a
     pneumatic muscle using wireless MEMS sensors. Proceedings of 2001 Midwest
     Symposium on Circuits and Systems. Dayton. 2001, 2: 734-737
    [31] P. Carbonell, Z. P. Jiang, D. W. Repperger. Nonlinear Control of a Pneumatic Muscle
     Actuator: Backstepping vs. Sliding-mode. Proceedings of the 2001 IEEE International
     Conference on Control Applications. Mexico City. 2001: 167-172
    [32] P. Carbonell, Z. P. Jiang, D. W. Repperger. A Fuzzy Backstepping Controller for a
     Pneuamtic Muscle Actuator System. Proceedings of the 2001 IEEE International
     Symposium on Intelligent Control. Mexico City. 2001: 353-358
    [33] D. W. Repperger, K. R. Johnson and C. A. Philips. A VSC Position Tracking System
     Involving a large Scale Pneumatic Muscle Actuator. Proceedings of the 37th IEEE
     Conference on Decision & Control. Tampa, Florida, USA. 1998, 4: 4302-4307
     - 126 -
    
    
    [34] D. G. Caldwell, G. A. Medrano-Cerda, M. Goodwin. Characteristics and adaptive
     control of pneumatic muscle actuators for a robotic elbow. Proceedings of the 1994
     IEEE International Conference on Robotics and Automation. San Diego, USA. 1994:
     3558-3563
    [35] D. G. Caldwell, G. A. Medrano-Cerda, and M. Goodwin. Control of Pneumatic Muscle
     Actuator. IEEE Control Systems Magazine, 1995, 15(1): 40-48
    [36] G. A. Medrano-Cerda, C. J. Bowler and D. G. Caldwell. Adaptive Position Control of
     Antagonistic Pneumatic Muscle Actuators. IEEE/RSJ International Conference on
     Intelligent Robots and Systems. Pittsburgh, USA. 1995, 1:378-383
    [37] T. Hesselroth, K. Sarkar, P. van der Smagt et al. Neural Network Control of a Pneumatic
     Robot Arm, IEEE Transaction on Systems. Ma. and Cybernetics, 1994, 24(1): 28-38
    [38] D. Cai, H. Yamaura. A Robust Controller for Manipulator Driven by Artificial Muscle
     Actuator. Proceedings of the IEEE Conference on Control Application. Dearborn, USA.
     1996: 540-545
    [39] K. Osuka, T. Kimura and T. Ono. H∞ Control of A Certain Nonlinear Actuator.
     Proceedings of the 29th Conference on Decision and Control. Honolulu, Hawaii. 1990, 1:
     370-371
    [40] 宗光华. 利用变结构理论实现人工肌肉夹持力控制. 机器人,1990,12(4):15-20
    [41] 田社平,丁国清,林良明等. 人工肌肉的自适应预测控制. 仪器仪表学报,2001,
     22(3):86-87
    [42] 田社平,林良明,颜国正. 基于神经网络的人工肌非线性控制. 上海交通大学学
     报, 2001,35(5):713-716
    [43] 曲以义. 气压伺服系统. 上海:上海交通大学出版社,1987
    [44] 邱志成,谈大龙,王宣银等. 气动伺服及气液连动控制发展概况综述. 机床与液
     压,1999(4):3-6
    [45] 黄文海. 国外气动位置控制介绍. 液压与气动,1988,1:23-26
    [46] 周洪. 气动技术的新发展. 液压气动与密封,1999,5:2-12
    [47] 裘华徕. 气动技术的近期发展及其影响因素. 液压气动与密封,2002,3:1-3
    [48] 周洪,路甬祥. 采用自适应控制的电-气比例/伺服控制系统的研究. 信息与控制,
     1989,18(5):7-12
    [49] 李宝仁,许耀铭. 气动位置伺服系统的自校正自适应研究. 黑龙江自动化技术与
     应用,1994,13(2):30-33
     - 127 -
    
    
    [50] 陆鑫盛,周洪. 气动自动化系统的优化设计. 上海:上海科学技术文献出版社,
     2000
    [51] 韩建海,张河新. 气动比例/伺服控制技术及应用. 机床与液压,2001,1:3-6
    [52] 王永昌,潘先耀. 气动伺服控制系统及阀的应用形式. 燕山大学学报,2002,26
     (3):206-208
    [53] S. Chillari, S. Guccione and G. Muscato. An Experimental Comparison Between
     Several Pneumatic Position Control Methods. Proceedings of the 40th IEEE Conference
     on Decision and Control. Orlando, Florida USA. 2001, 2: 1168-1173
    [54] 王宣银. 气动位置伺服系统 PID 控制的研究. 机床与液压,2001,2:49
    [55] 吴金波. 高压伺服气缸及其高压气动位置伺服系统的研究:[硕士学位论文]. 武
     汉:华中科技大学,2002
    [56] M. Parnichkun, C. Ngaecharoenkul. Hybrid of fuzzy and PID in kinematics control of a
     pneumatic system. Proceedings of the 26th International Conference on Industrial
     Electronics, Control and Instrumentation. Nagoya Japan. 2000, 2: 1485-1490
    [57] T. Kosaki, M. Sano. Adaptive gain control of pneumatic servo systems with disturbance
     observers and fuzzy logic. Proceedings of the 23rd International Conference on
     Industrial Electronics, Control and Instrumentation. New Orleans, USA. 1997, 3:
     1012-1015
    [58] K. Balasubramanian, K. S. Rattan. Fuzzy logic control of a pneumatic muscle system
     using a linearizing control scheme. The 22nd International Conference of the North
     American Fuzzy Information Processing Society. 2003: 432-436
    [59] K. Balasubramanian, K. S. Rattan. Feedforward control of a non-linear pneumatic
     muscle system using fuzzy logic. The 12th IEEE International Conference on Fuzzy
     Systems. 2003, 1: 272-277
    [60] S. W. Chan, J. H. Lilly, D. W. Repperger et al. Fuzzy PD+I learning control for a
     pneumatic muscle. The 12th IEEE International Conference on Fuzzy Systems. 2003, 1:
     278-283
    [61] 郑学明. 开关阀式气压数字位置伺服系统的研究:[博士学位论文]. 哈尔滨:哈尔
     滨工业大学,1995
    [62] 张翠芳,吕强,段运波等. 神经网络在气动 PWM 位置伺服系统中的应用. 哈尔滨
     工业大学学报,1997,29(2):1-3
    [63] D. C. Gross, K. S. Rattan. An adaptive multilayer neural network for trajectory tracking
     - 128 -
    
    
    control of a pneumatic cylinder. IEEE International Conference on Systems, Man, and
     Cybernetics. San Diego, USA .1998, 2: 1662 - 1667
    [64] Gi Sang Choi, Han Koo Lee, Gi Heung Choi. A study on tracking position control of
     pneumatic actuators using neural network. Proceedings of the 24th International
     Conference on Industrial Electronics, Control and Instrumentation. Aachen Germany.
     1998, 3: 1749- 1753
    [65] Wang Qi, Tao Qian, Hou Linqi et al. Online learning neural network controller for
     pneumatic robot position control. IEEE International Conference on Systems, Man, and
     Cybernetics. San Diego, USA. 1998, 4: 3436-3441
    [66] 胡跃明. 变结构控制理论与应用. 科学出版社,2003
    [67] R. P. Shunmugham, H. Yasuhiro, K. Yoshinori et al. Practical Design of a Sliding Mode
     Controller for Pneumatic Actuators. ASME Journal of Dynamic Systems, Measurement,
     and Control, 1997, 119(12): 666-674
    [68] R. Edmond, H. Yildirim. A High Performance Pneumatic Force Actuator System: Part II
     —Nonlinear Control Design. ASME Journal of Dynamic Systems, Measurement, and
     Control, 2000, 122: 426-434
    [69] Mohamed Bouri and Daniel Thomasset. Sliding Control of an Electropneumatic
     Actuator Using an Integral Switching Surface. IEEE Transaction on Control Systems
     Technology, 2001, 9 (2): 368-375
    [70] C. S. Wu, Y. E. Chun. Variable structure control of a rodless pneumatic servoactuator
     with discontinuous sliding surfaces. Proceedings of the 2000 American Control
     Conference. Chicago, Illinois. 2000, 3: 1617-1621
    [71] Tankut Acarman, Cem Hatipo?lu, ümit ?zgüner. A Robust Nonlinear Controller Design
     for a Pneumatic Actuator. Proceedings of the American Control Conference. Arlington.
     2001, 6: 4990-4995
    [72] B. W. Surgenor and N. D. Vaughan. Continuous Sliding Mode Control of a Pneumatic
     Actuator. Journal of Dynamic Systems, Measurement, and Control, 1997, 119: 578-581
    [73] 曾宪菁,黄田,曾子平等. 基于三自由度球面并联机构数控回转台的机械设计.机
     器人技术与应用,2000(4):23-26
    [74] 杨钢,李宝仁,刘军. 气动人工肌肉特性分析的新方法. 液压与气动,2002,(10):
     22-25
    [75] Treloar, L R G. The Physics of Rubber Elasticity. 3rd ed. Oxford: Clarendon Press, 1975
     - 129 -
    
    
    [76] J. Wang, D. J. D. Wang, P. R. Moore et al. Modelling study, analysis and robust servo
     control of pneumatic cylinder actuator systems. IEE Proceedings-Control Theory and
     Application, 2001, 148(1): 35-42
    [77] 龚跃进,李建藩. 恒定负载双作用气缸动特性研究. 液压与气动,1985,4:2-6
    [78] 李建藩. 气压传动系统动力学. 广东:华南理工大学出版社,1991
    [79] 刘汉钧. 影响缓冲气缸动态性能的因素. 液压与气动,1987,1:33-37
    [80] 李建藩,邓晓星. 惯性负载对气缸运动特性的影响. 液压与气动,1987,4:6-4
    [81] 李宝仁,刘军,杨钢. 气动人工肌肉系统建模与仿真. 机械工程学报,2003(7):
     23-28
    [82] 朱钒. 强干扰下电液位置伺服系统自组织模糊控制的研究:[博士学位论文]. 武
     汉:华中科技大学,1997
    [83] 高为炳,程勉,夏小华. 非线性控制系统的发展. 自动化学报,1991,17(5):513-523
    [84] 冯纯伯,费树岷. 非线性控制系统分析与设计. 北京:电子工业出版社,1998
    [85] 姚金荟,黄继起,吴汉松. 变结构控制系统. 重庆:重庆大学出版社,1997
    [86] 王丰尧. 滑模变结构控制. 北京:机械工业出版社,1995
    [87] 高为炳. 变结构控制理论基础. 北京:中国科学技术出版社,1990
    [88] C. M. Kwan. Sliding mode control of linear systems with mismatched uncertainties.
     Automatica, 1995, 31(2): 303-307
    [89] 胡剑波,褚健,苏宏业. 不匹配不确定性系统的近似变结构输出跟踪控制. 控制
     与决策,2001,16(1):25-28
    [90] D. Nganga-Kouya, M.Saad, L. Lamarche et al. Backstepping adaptive position control
     for robotic manipulators Proceedings of the American Control Conference. Arlington,
     USA. 2001, 1: 636-640
    [91] S. Torkel Glad, O. Hakegard. Backstepping control of a rigid body. Proceedings of the
     IEEE Conference on Decision and Control. Las Vegas, USA. 2002, 4: 3944-3945
    [92] Ali J. Koshkouei and Alan S. I. Zinober. Adaptive Backstepping Control of Nonlinear
     Systems with Unmatched Uncertainty. Proceedings of the 39th IEEE Conference on
     Decision and Control. Sydney, Australia. 2000, 5: 4765-4770
    [93] Chiang-Cheng Chiang and Yan-Shiang Tzeng. Dynamic Sliding Mode Adaptive
     Controller for Nonlinear Systems with Higher-order and Unmatched Uncertainties.
     Proceedings of 1999 IEEE International Conference on Systems, Man, and Cybernetics.
     Tokyo Japan. 1999, 1: 44-49
     - 130 -
    
    
    [94] Y. A. Zhang, Y. A. Hu, Z. Q. Song et al. CMAC Neural Networks-Based Adaptive
     Control for Discrete-Time Nonlinear Systems with Unmatched Uncertainties by
     Backsteeping. Proceedings of the 3rd World Congress on Intelligent Control and
     Automation. Hefei China. 2000, 5:3200-3204
    [95] 庄开宇,苏宏业,张克勤等. 不匹配不确定时滞系统的自适应变结构控制. 浙江
     大学学报(工学版),2002,36(4):410-415
    [96] 闫茂德,徐德民. 一类不匹配不确定非线性系统鲁棒变结构控制. 火力与指挥控
     制,2001,26(2):41-43
    [97] 杨盐生. 不匹配不确定系统的变结构鲁棒控制及应用. 交通运输工程学报,2001,
     1(2):103-107
    [98] J. J. E. Slotine and S. S. Sastry. Tracking control of non-linear systems using sliding
     surfaces with application to robot manipulators. International Journal of Control. 1983,
     38(2): 465-492
    [99] J. J. E. Slotine and W. Li. Applied nonlinear control. Englewood Cliffis, N. J.: Prentice
     Hall, 1991
    [100] Xu Jian-Xin, Lee Tong-Heng, Wang Mao et al. Design of variable structure controllers
     with continuous switching control. International Journal of Control, 1996, 65(3):
     409-431
    [101] G. Bontolini. An improved, chattering free, VSC scheme for uncertain dynamical
     system. IEEE Transaction on Automatic Control, 1996, 41(8): 241-246
    [102] F. Zhou and D. Fisher. Continuous Sliding mode control. International Journal of
     Control, 1992, 55(2): 313-327
    [103] 高为炳,程勉. 变结构控制的品质控制. 控制与决策,1989,4(4):1-6
    [104] 金耀初,蒋静坪. 一类非线性系统的模糊变结构控制及应用. 控制与决策,1992,
     7(1):36-40
    [105] Tsu-Tian Lee and Kun-Yang Tu. Fuzzy Logic Controller Design Based on Variable
     Structure Control. Proceedings of 1993 IEEE/RSJ International Conference on
     Intelligent Robots and Systems. Yokohama, Japan. 1993, 2: 958-964
    [106] Ranjan Vepa. Fuzzy Learning based on Variable Structure Control System Theory. IEE
     Colloquium on Two Decades of Fuzzy Control - Part 2. London UK. 1993:1-4
    [107] Ming-Chang Shih and Chin-Sham Lu. Pneumatic Servomotor Drive a Ball-Screw with
     Fuzz-Sliding Mode Position Control. Proceedings of IEEE International Conference on
     - 131 -
    
    
    Systems, Man, and Cybernetics. Le Touquet France. 1993, 3: 50-54
    [108] F. C. Sun, Z. Q. Sun and G. Feng. An Adaptive Fuzzy Controller Based on Sliding Mode
     for Robot Manipulators. IEEE Transaction on System, Man and Cybernetics-Part B:
     Cybernetics, 1999, 29(4): 661-667
    [109] 张昌凡. 神经网络滑模鲁棒控制器及其应用. 信息与控制,2000,30(3):209-217
    [110] Wei-Song Lin and Chin-Pao Hung. Variable structure control of unknown parameters dc
     servo system using CMAC-based learning approach. Proceedings of the American
     Control Conference. Arlington, USA. 2001, 6: 5016-5021
    [111] S. Li, Z. Feng and H. Fang. Variable Structure Control For 6-6 Parallel Manipulators
     Based on Cascaded CMAC. Proceedings of the 4th World Congress on Intelligent
     Control and Automation. Shanghai, China. 2002, 2: 1939-1943
    [112] Gang Yang, Baoren Li. CMAC-Based Variable Structure Control of Pneumatic Muscle
     Actuators. AMSE Journal of Advanced in Modeling and Analysis (Accepted)
    [113] Yang Gang, Li Baoren, Fu Xiaoyun et al. An Optimal Robust Nonlinear Control of
     Pneumatic Muscle Actuator Systems. Proceeding of the 4th International Symposium
     on Fluid Power Transmission and Control. Wuhan China. 2003: 295-299
    [114] 诸静. 模糊控制原理与应用. 北京:机械工业出版社,1995
    [115] 何平,王鸿绪. 模糊控制器的设计及应用. 北京:科学出版社,1997
    [116] 王伟,徐国华. 多媒体定时器在工业控制中的应用. 微型机与应用. 2001,20(12):
     8-10
    [117] 金孚安. 计算机控制系统中采样周期的选择. 传动与控制,1995,3:39-42
    [118] 文福安,杨光. 并联机器人机构概述. 机械科学与技术,2000,19(1):69-72
    [119] 黄真,孔令富,方跃法. 并联机器人机构学理论及控制. 北京:机械工业出版社,
     1997
    [120] Kevin Cleary, Tatsuo Arai. A Prototype Parallel Manipulator: Kinematics, Construction,
     Software, Workspace Result, and Singularity Analysis. Proceedings of the 1991 IEEE
     International Conference on Robotics and Automation. Sacramento, USA. 1991, 1:
     566-571
    [121] J. P. Merlet. Direct Kinematics of Parallel Manipulators. IEEE Transactions on Robotics
     and Automation, 1993, 9(6): 842-846
    [122] Carlo Innocenti, Vincenzo Parenti-Castelli. A Novel Numerical Approach to the Closure
     of the 6-6 Stewart Platform Mechanism. Proceedings of the Fifth International
     - 132 -
    
    
    Conference on Advanced Robotics. Pisa, Italy. 1991, 1: 851-855
    [123] J. P. Merlet. An algorithm for the Forward kinematics of general parallel manipulators.
     Proceedings of the Fifth International Conference on Advanced Robotics. Pisa, Italy.
     1991, 2: 1136-1140
    [124] M. Raghavan. The Stewart Platform of General Geometry Has 40 Configurations,
     Journal of Mechanical Design, 1993, 115: 277-280
    [125] Y. K. Yiu, H. Cheng, Z. H. Xiong et al. On the Dynamics of Parallel Manipulators.
     Proceedings of the 2001 IEEE International Conference on Robotics and Automation.
     Seoul, Korea. 2001, 4: 3766-3771
    [126] Imme Ebert-Uphoff, C.M. Gosselin. Dynamic Modeling of a Class of Spatial
     Statically-Balanced Parallel Platform Mechanisms. Proceedings of the 1999 IEEE
     International Conference on Robotics and Automation. Detroit, Michigan. 1999, 2:
     881-888
    [127] B. Dasgupta, T. S. Mruthyunjaya. Closed-form dynamic equation of the general Stewart
     platform through the Newton-Euler approach. Mechanism & Machine Theory, 1998,
     33(7): 993-1012
    [128] 刘敏杰,田涌涛,李从心. 并联机器人动力学的子结构 Kane 方法. 上海交通大学
     学报,2001,35(7):1032-1035
    [129] M. R. Sirouspour and S. E. Salcudean. Nonlinear Control of a Hydraulic Parallel
     Manipulator. Proceedings of the 2001 IEEE International Conference on Robotics and
     Automation. Seoul, Korea. 2001, 4: 3760-3765
    [130] 方跃法,黄真. 三自由度 3-RPS 并联机器人机构的运动分析. 机械科学与技术,
     1997(1):82-87
    [131] C.M. Gosselin, J. Sefrioui and M.J. Richard. On the direct kinematics of general
     spherical three-degree-of–freedom parallel manipulators. Proceedings of the 22nd
     ASME Mechanisms Conference. Phoenix. 1992, 1: 7-11
    [132] 蔡光起,胡明,郭成等. 机器人化三腿磨削机床的研制. 制造技术与机床,1998
     (10):4-6
    [133] V. Parenti-Castelli, R. Di Gregorio. Real-Time Computation of the Actual Posture of the
     General Geometry 6-6 Fully-Parallel Mechanism Using Two Extra Rotary Sensors.
     Journal of Mechanical Design, 1998, 120: 549-554
    [134] Doik Kim, Wankyun Chung, Youngil Youm. Analytic Singularity Expression for 6-DOF
     - 133 -
    
    
    Stewart Platform-Type Parallel Manipulators. Proceedings of the 1998 IEEE/RSJ
     International Conference on Intelligent Robots and Systems. Victoria, Canada. 1998, 2:
     1015-1020
    [135] 黄真,曲义远. 空间并联机器人机构的特殊位形分析. 东北重型机械学院学报,
     1989,13(2):1-6