高效率的微器件自动装配技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微器件装配技术是获得三维微细结构、解决工艺兼容性问题和组件级分工合作问题的有效手段。这种技术采用有别于传统微细加工手段的整体加工方法,根据器件不同组成部分的工艺或功能进行划分,分别加工出这些组件后再进行组装。微装配技术降低了复杂结构的加工成本,把微细加工的生产组织方式向传统生产组织方式靠拢,是实现毫米或亚毫米大小复杂机器系统的关键技术之一。
     目前,微装配技术中仍亟待解决的核心问题是进一步提高装配效率。由于微器件操纵的拾取、转移、释放三个阶段都深受粘附力的影响。对粘附力的应对直接关系到操纵的成败和微器件最终安装的位置精度。而粘附力的三种主要组成部分,范德华力、静电力和表面张力都受到环境参数特别是相对湿度的影响。所以研究环境参数如何影响微操纵成功率对于实现高效率的微器件装配有着重要意义。此外,对于一次完成上万个器件加工的并行微细加工技术来说,这种串行化的组装过程会是一个严重的速度瓶颈。所以还要缩短单个器件装配所消耗的时间。
     本论文通过对环境参数如何影响微操纵成功率的研究,为不同的操纵原理和实验配置选择一个最优的环境相对湿度水平,以便在不改变其它实验装置的情况下获得最优的操纵成功率;并在视觉伺服系统的支持下,实现了微器件自动装配,以提高操作速度和可重复性。论文完成的具体研究工作可以概括为如下三方面:
     1.基于动力学模型,用镀金的钨探针作为粘附型微操作器在大气环境下进行微操纵实验。并在恒温恒压条件下,研究不同环境相对湿度下进行微操纵的效率变化。实验结果的统计分析表明,环境相对湿度对操纵过程中的接触界面破坏和粘附两个阶段均有显著影响。虽然对于不同的实验配置(样品情况和基底情况),操纵效率的具体数值会有不同,但对这种操纵方式来说,操纵效率受环境湿度的影响都表现出了类似的变化趋势。即随着环境适度的增加,释放微器件的效率会增加。而拾取微器件的效率先逐渐增加,在相对湿度大于85%后出现急剧下降,在相对湿度大于90%的环境下难于拾取任何物体。总的来说,对于我们的实验配置,在相对湿度处于65-85%之间时可以获得最优的操纵效率。在此研究基础上,本文用镀金的探针对高分子小球、随机形状的氧化硅颗粒、氮化硅覆盖的高分子小球等样品在硅片和镀金的粗糙硅片上进行了成功的操纵。然后用三维立体光刻技术在玻璃基底上制作了微型齿轮和齿轮轴,并用该装配技术将这些零件装配成互相啮合且传动良好的齿轮组。
     2.研制了适合实现自动操作的微操作器。该机械夹持微操作器利用压电陶瓷双晶片驱动,能对球、立方体、圆柱体等多种形状的微小物体进行操纵。在视觉伺服系统的帮助下,实现了压电微操作器的位移视频反馈控制,并结合夹持臂的刚度实现了夹持力控制。该微操作器在70V的电压驱动下可以闭合约200μm的距离,适用于10μm到200μm之间的微小物体操纵。微操作器的位移控制精度为亚微米,夹持力控制精度约200 nN。
     3.研制了环境可控的微器件自动装配系统。整个微装配系统的执行部件都放置在一个环境控制系统的工作腔内,该环境控制系统可以调节工作腔内的气压和温度,并可以通过调节腔内的气体成分来调节相对湿度。自动微装配系统采用视觉反馈,除了工作台的位置反馈之外,所有的工作场景信息均来自于视觉伺服系统。在视觉系统的支持下,能够完成显微镜系统的自动聚焦和定标,微操作器和微器件的识别和位置测量,以及微操作器的位移反馈控制和夹持力控制等。在18×的光学放大倍率下,本系统能够进行亚微米精度的显微镜系统定标,对物体的位置测量精度约1μm。自动微装配系统可以在10秒内完成一次微器件装配,操纵高分子小球时达到了约93%的成功率。
Micro assembly technology is used for producing 3D micro structures, solving the problem of process compatibility, and distributed manufacture. The micro components are devied by their different manufacture process or function. Then they are manufactured and followed by an assembly process. This process likes macro manufacture rather than traditional micro manufacture process. It is one of the key technologies to realize millimeter or sub-millimeter robotic systems.
     After more than ten years research, the biggest problem remained of micro assembly is the unsatisfactory assembly efficiency. At microscopic level, the dominant adhesion forces between micro objects affect micro handling dramatically. The handing success rate and positioning accuracy of micro objects are influenced by them. However, the main component of adhesion forces, van der Waals force, electrostatic force and surface tension force are related to the ambient environmental relative humidity condition. In order to obtain an effective micro handling efficiency, we should understand how environmental parameters affect micro handling efficiency. Moreover, the speed of serial micro assembly is very slow comparing with that of parallel micro process. Hence we must reduce the time consuming of assembly a micro part.
     This dissertation investigated the environment influences on micro handling efficiency. By choosing suitable environmental parameters, we could obtain the best handling efficiency while the experimental configuration is not changed. Furthermore, In order to improve the handling speed and stability, a vision servo automated micro assembly system was developed. The main research subjects of this dissertation are detailed as follows:
     1. Micro objects are handled by an adhesive type micromanipulator (a gold coated tungsten tip) in atmosphere environment. And how the handling efficiency varies with the ambient environmental relative humidity level are investigated. The experimental results indicate that both the contact interface cracking process and adhering process during micro object handling operation are remarkably affected by the environmental humidity. The micro object release success rate increases with the environmental humidity, and the pickup success rate also shows a tendency of increase but followed by a rapid decrease. For our adhesive type manipulator, the best handling efficiency will be obtained when the environmental relative humidity is between 65% and 85%. It is possible to obtain a satisfactory handling efficiency by controlling the environmental humidity in a proper range.
     2. A piezoelectric driven micromanipulator is developed. It can be used to handle micro objects with shapes of sphere, cubic, cylinder and so on. The displacement of the micromanipulator is measured by a vision feed back system. By considering the elastic ratio of the end-effectors, the grasping force is controlled by applying an extra driven voltage after the end-effectors contact a micro object. The micromanipulator generates a displacement of about 200μm while a driven voltage of 70 V is applied. The displacement resolution is sub-micron. The grasping force resolution is about 200 nN.
     3. An environmental controllable automated micro assembly system is developed. The environmental control system can adjust the air pressure, temperature and relative humidity of the working chamber. The vision servo micro assembly system is full automated. It can focus and calibrate the microscope system, recognize micro objects and measure their positions, control the displacement and grasping force of the micromanipulator, and so on. The microscope calibration precision is sub-micron while the magnification ratio of the microscope is 18×. The system can assemble a micro object within 10 seconds automatically. The success rate of handling polymer spheres is about 93%.
引文
[1]. V. D. Samper, A. J. Sangster, R. L. Reuben, U.Wallrabe, Torque evaluation of a LIGA fabricated electrostatic micromotor [J], Journal of Microelectromechanical Systems, 1999, 8(1): 115-123
    [2]. C. K. Malek, V. Saile, Applications of LIGA technology to precision manufacturing of high-aspect-ratio micro-components and -systems: A review [J], Microelectronics Journal, 2004, 35 (2): 131-143
    [3]. H. Kotera, I. Kanno, T. Inoue, T. Suzuki, Deformable micro-mirror for adaptive optics composed of piezoelectric PZT thin films [C], IEEE/LEOS Optical MEMS 2005: International Conference on Optical MEMS and Their Applications, 2005, pp. 31-32
    [4]. C. S. Lim, M. H. Hong, A. S. Kumar et al., Fabrication of concave micro lens array using laser patterning and isotropic etching, International Journal of Machine Tools and Manufacture, 2006, 46 (5): 552-558
    [5].殷玲,陈非凡,可编程相位光栅的结构设计与制作工艺[J],清华大学学报(自然科学版),2003,8:1009-1012
    [6]. M. T. Yah, H. T Chien, Monitoring and control of the micro wire-EDM process [J], International Journal of Machine Tools and Manufacture, 2007, 47 (1): 148-157
    [7]. J. C. Hung, B. H. Yan, H. S. Liu et al., Micro-hole machining using micro-EDM combined with electropolishing [J], Journal of Micromechanics and Microengineering, 2007, 16 (8): 1480-1486
    [8]. P.G. Hodor, C. A. Ettensohn, The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo [J], Developmental Biology, 1998, 199 (1): 111-124
    [9]. S. R. Wiegand, S. Cheng,W. H. Wright et al., Laser induced cell fusion in combination with optical tweezers: The laser cell fusion trap [J], Cytometry, 1991, 12(6): 505-510
    [10]. Y. Sun, B. J. Nelson, Biological cell injection using an autonomous microrobotic system [J], International Journal of Robotics Research, 2002, 21 (10-11): 861-868
    [11]. R. H. Taylor, D. Stoianovici, Medical Robotics in Computer-Integrated Surgery [J], IEEE Transactions on Robotics and Automation, 2003, 19 (5): 765-781
    [12]. S. E. Burner, M. Ghodoussi, A real-time system for tele-surgery [C], Proceedings of the International Conference on Distributed Computing Systems, 1999, pp. 236-243
    [13]. A.R. Aurora, M. A. Talamini, A comprehensive review of anti-reflux procedures completed by computer-assisted tele-surgery [J], Minerva Chirurgica, 2004, 59 (5): 417-425
    [14]. L. Chen, W. Rong, L. Sun et al., Micromanipulation robot for automatic fiber alignment [C], Proceedings of the IEEE International Conference on Mechatronics and Automation, ICMA 2005, pp. 1756-1759
    [15]. B. Kim, H. Kang, D. H. Kim, Flexible Microassembly System based on Hybrid Manipulation Scheme [C], Proceedings of the IEEE International Conference on Intelligent Robots and Systems 2, 2005, pp. 2061-2066
    [16]. C. R. Witham, M. W. Beranek, B. R. Carlisle et al., Fiber-optic pigtail assembly and attachment alignment shift using a low-cost robotic platform [C], Proceedings of the Electronic Components and Technology Conference, 2005, pp. 21-25
    [17]. S. Kawata, H. B. Sun, T. Tanaka et al., Finer features for functional micro devices [J], Nature, 2001, 412:697-698
    [18]. O. Lehmann, F. Foulon and M. Stuke, Surface and three-dimensional processing by laser chemical vapor deposition [J], NATO Advanced Science Institutes Series E, 1994, 265:91
    [19]. H. Koops, J. Kretz, M. Rudolph et al., Characterization and Application of Materials Grown by Electron-Beam-Induced Deposition [J], Japanese Journal of Applied Physics, Part 1, 1994, 33:7099-7107
    [20]. S. Matsui, T. Kaito, J. Fujita et al., Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition [J], Journal of Vacuum Science and Technology B, 2000, 18 (6): 3181-3184
    [21]. J. Fujita, M. Ishida, T. Sakamotoet al., Observation and characteristics of mechanical vibration in threedimensional nanostructures and pillars grown by focused ion beam chemical vapor deposition [J], Journal of vacuum science and technology B, 2001, 19(6): 2834-2837
    [22]. K. Watanabe, Y. Morita, R. Kometani et al., Nanoimprint using three-dimensional microlens mold made by focused-ion-beam chemical vapor deposition [J], Journal of vacuum science and technology B, 2004, 22(1): 22-26
    [23]. R. Kometani, T. Morita, K. Watanabe et al., Nanomanipulator and actuator fabrication on glass capillary by focused-ion-beam-chemical vapor deposition [J], Journal of vacuum science and technology B, 2004, 22(1): 257-263
    [24]. L. Zhang, W. Lin, R. Maeda, Microscanner actuated by double PZT thin film [C], Proceedings of SPIE, Proceedings of SPIE Vol. 4408, 2001,528-534
    [25]. R. Syms, E. Yeatman, V. Bright et al., Surface Tension-Powered Self-Assembly of Microstructures—The State-of-the-Art [J], Journal of Microelectromechanieal Systems, 2003, 12(4): 387-417
    [26]. R. Linderman, P. Kladitis, and V. Bright, Development of the micro fan [J], Sensors and Actuators, 2002, A95: 135-142
    [27]. B.E. Volland, H. Heerlein, I. W. Rangelow, Electrostatically driven microgripper. Microelectronic Engineering [J], Microelectronic Engineering, 2002, 61-62:1015-1023
    [28]. T. Tanikawa, T. Arai, Development of a Micro-Manipulation System Having a Two-Fingered Micro-Hand [J]. IEEE Transaction on Robotics and Automation, 1999, 15(1): 152-162
    [29]. S. Sakai, N. Tsuda, R. Fujimori, Development and Assembling of Chopstic-type Micro Manipulator [C], Proceedings of the International Workshop on Microfactory, 2002, pp.113-116
    [30].吴建华,褚家如,一种压电驱动微操作器及其释放位置精度分析[J],光学精密工程,2005,3(3),283-290
    [31]. F. Arai, T. Fukuda, A New Pick up & Release Method by Heating for Micromanipulation [C], Proceedings of the 10th Annual International Workshop on Micro Electro Mechanical Systems, 1997, pp.383-388.
    [32]. W. Zesch, M. Brunner, A. Weber, Vacuum Tool for Handling Microobjects with a Nanorobot [C]. Proceedings of the IEEE International Conference on Robotics and Automation, 1997, pp. 1761-1766.
    [33]. J. Wu, J. Lu, J. Chu et al., Mierodevice assembling by adhesive type probe in humid environment [J], Review of Scientific Instruments, 2005, 76, 085104
    [34]. K. Koyano, T. Sato, Micro object handling system with concentrated visual fields and new handling skills [C], Proceeding of the IEEE International Conference on Robotics and Automation, 1996, pp.2541-2548
    [35]. T. Kasaya, H. Miyazaki et al., Micro Object Handling Under SEM by Vision-based Automatic Control [C]. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 1999), 1999, 3:2189-2198
    [36]. F.M. Moesner, T. Higuchi, Electrostatic devices for particle micro-handling [C], Proceedings of the IEEE Conference on Industry Applications, 1995, pp. 1302-1309
    [37]. P. Kruger, X. Luo, M. W. Klein et al., Trapping and Manipulating Neutral Atoms with Electrostatic Fields [J], Physical Review Letters, 2003, 91 (23): 233201
    [38]. [38] S. M. Kim, K. Kim et al., Position and Force Control of a Sensorized Microgripper [C], Proceedings of the 2002 International Conference on Control, Automation and System, 2002, pp. 319-322
    [39].[39]李勇,李玉和,李庆祥等,基于体硅工艺的静电致动微夹持器制作工艺分析[J].光学精密工程,2003,11(2):109-113
    [40]. K. lvanova, T. ivanov, A. Badar et al., Thermally driven microgripper as a tool for micro assembly [J], Microelectronic Engineering, 2006, 83:1393-1395
    [41]. V. A. Henneken, M. Tichem, P. M. Sarro, In-package MEMS-based thermal actuators for micro-assembly [J], Journal of Micromechanics and Microengineering, 2006, 16 (6):S107-S115
    [42]. N. Chronis, L. P. Lee, Electrothermally activated SU-8 microgripper for single cell manipulation in solution [J], Journal of Microelectromechanical Systems, 2005, 14 (4): 857-863
    [43]. M. Zeman, E. Bordatchev, G. Knopf, Design, kinematic modeling and performance testing of an electro-thermally driven microgripper for micromanipulation applications [J], Journal of Micromechanics and Microengineering, 2006, 16 (8): 1540-1549
    [44]. M. Kohl, B. Krevet, E. Just, SMA microgripper system [J], Sensors and Actuators, A: Physical, 2002, 97-98:646-652
    [45]. S. Butefisch, G. Pokar, S. Buttgenbach et al., A new SMA actuated miniature silicon gripper for micro assembly [C], Proceedings of the 7th International Conf on New Actuators, 2000, pp. 334-337
    [46]. A. Menciassi, A. Eisinberg, I. Izzo, P. Dario, From "macro" to "micro" manipulation: models and experiments [J], IEEE/ASME Transactions on Mechatronics, 2004, 9(2): 311-320
    [47]. A. Neild, S. Oberti, F. Beyeler et al., A micro-particle positioning technique combining an ultrasonic manipulator and a microgripper [J], Journal of Micromechanics and Microengineering, 2006, 16 (8): 1562-1570
    [48]. C. Clevy, A. Hubert, J. Agnus et al., A micromanipulation cell including a tool changer [J], Journal of Micromechanics and Microengineering, 2005, 15(10): S292-S301
    [49]. B. Chang, Q. Zhou, H. N. Koivo, Experimental Study of Microforces in a Controlled Environment [C], Proceedings of the 2nd VDE World Microtechnologies Congress, 2003, pp.89-94
    [50]. Q. Zhou, B. Chang, H. N. Koivo, Ambient environmental effects in micro/nano handling [C], Proceedings of the 4th International Workshop on Microfactories, 2004, pp. 146-51
    [51]. Q. Zhou, P. Korhonen, B. Chang et al., 6 DOF dexterous microgripper for inspection of microparts [C], Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2005, pp. 534-539
    [52].李银妹,宋孝武,张磊,一种用于生物研究的光镊与激光微束系统[J],量子电子学,1993,10(3)
    [53].周辉,李银妹,李先锋等,单光镊技术测量红细胞膜弹性新方法的建立[J],生物化学与生物物理学进展,2001,28:904
    [54]. L. Sun, Q. Ding, X. Liu et al., Design of a novel three-DOF high-speed and high-precision manipulator [C], Proceedings of the International Conference on Manufacturing Automation: Advanced Design and Manufacturing in Global Competition, 2004. pp.659-666
    [55].谢晖,孙立宁,荣伟彬等,一种MEMS自动微装配机器人[J],哈尔滨工业大学学报,2006,38(7):1013-1016
    [56].刘冲,徐征,王立鼎等,微操作系统的实时业微立体成像研究[J],中国机械工程,2002,13(18):1567-1569
    [57].于靖军,毕树生,宗光华,面向生物工程的微操作机器人机构型综合研究[J],北京航空航天大学学报,2001,27(3):356-360
    [58].宗光华,孙明磊,毕树生等,宏-微操作结合的自动微装配系统[J],中国机械工程,2005,16(23):2125-2130
    [59]. M. Last, V. Subramaniam, K. Pister, Out-of-plane Motion of Assembled Microstuctures Using a Singlemask SOl Process [C], Transducers 2005, Seoul, Korea
    [60]. Z. Jandric, J. Randall, R. Saini et al., Characterization of Assembled MEMS [C], Proc. of SPIE Vol. 5716, Bellingham, WA, 2005, 70-80
    [61]. T. Huang, E. Nilsen, M. Ellis et al., 3-D, Self-aligned, Micro-assembled, Electrical Interconnects for Heterogeneous Integration [C], Proceedings of SPIE Vol. 4981, 2003, 189-201
    [62]. K. Tsui, A. Geisberger, M. Ellis et al., Micromachined end-effector and techniques for directed MEMS assembly [J], Journal of Micromechatronics and Microengineering, 2004, 14: 542-549
    [63]. N. Dechev, W. Cleghorn, J. Mills, Construnction of a 3D MEMS Microcoil Using Sequential Robotic Microassembly Operations [C], Proceedings of ASME IMECE 2003, 1-7
    [64]. N.Dechev, W. Cleghorn, J. Mills, Tether and joint design for micro-components used in microassembly of 3D microstructures [C], Proceedings of SPIE Vol. 5344, Bellingham, WA, 2004, 134-146
    [65]. N. Dechev, J. Mills, W.Cleghorn, Mechanical Fastener Design for Use in the Microassembly of 3D Microstructure [C], Proceedings of IMECE 2004, 1-10
    [66]. N.Dechev, W. Cleghorn, J. Mills, Mieroassembly of 3-D Microstructures Using a Compliant, Passive Microgripper [J], Journal of Micromechatronical Systems, 2004, 13(2): 176-189
    [67]. J. Fang and K. Bohringer, Parallel micro component-to-substrate assembly with controlled poses and high surface coverage [J], Journal of Micromechatronics and Microengineering, 2006, 16:721-730
    [68]. X.. Xiong, Y. Hanein, J. Fang et al., Controlled Multibatch Self-Assembly of Microdevices, Journal of Microelectromechanical Systems, 2003, 12(2): 117-127
    [69]. M. Hori and S. Hashimoto, Self-Assembly of micro parts by controlling the environmental parameters, Proceedings of IEEE International Sympsium on Micromichatronics and Human Science, 2003, 189-195
    [70]. R. S. Fearing, Survey of Sticking Effects for Micro Parts Handling [C], Proceeddings of the IEEE/RSJ International Conference on Intelligent Robot and Systems, 1995, pp.212-217
    [71]. Y. Zhou, B. J. Nelson, Adhesion Force Modeling and Measurement for Micromaniputation [C], Proceedings of SPIE Vol. 3519, 1998, pp. 169-180
    [72]. M. Takeuchi, K. Yamanouchi, Ultrasonic micro-manipulation of small particles in liquid [J], Japanese Jounal of Appllied Physics, 1994, 33 (58): 3045-3047
    [73]. M. Takeuchi, H. Abe, K. Yamanouchi, Ultrasonic Micromanipulator Using Visual Feedback [J], Japanese Jounal of Appllied Physics, 1996, 35:3244-3247
    [74]. T. Kozuka, T. Tuziuti, H. Mitome et al., Acoustic manipulation of micro objects using an ultrasonic standing wave [C], Proceedings of the 5th lnterational Symposium on Micro Machine & Human Science, 1994, pp.83-87
    [75]. S. Saito, H. Himeno, K. Takahashi, Electrostatic Detachment of an adhering particle from a micromanipulated probe [J], Journal of Appllied Physics, 2003, 93:2219-2224
    [76]. D. S. Haliyo, Y. Rollot, S. Regnier, Manipulation of micro-objects using adhesion forces and dynamical effects, Proceedings of the IEEE Interational Conference on Robotics and Automation, 2002, pp. 1949-1954
    [77]. J. N. Israelachvili, lntermolecular and Surface Forces (London: Academic), 1985
    [78]. R. A. Bowling, A Theoretical Review of Particle Adhesion, Particles on Surfaces I, K. L. Mittal, editor, 1988, pp.129-142
    [79]. G. Ahmadi, lecture in Clarkson University
    [80].顾惕人等,表面化学,科学出版社,1994
    [81]. S. Levine and A. L. Smith, Theory of the differential capacity of the oxide/aqueous electrolyte interface [J], Discussions of the Faraday Society, 1971,52:290-301
    [82]. H. Krupp, Paricle adhesion therory and experiment [J], Advances in Colloid and Interface Science, 1967, 1: 111-239
    [83]. J. Lowell and A. C. Rose-Inns, Contact electrification [J], Advances in Physics, 1980, 29(6): 947-1023
    [84]. F. Arai, D. Andou, T. Fukuda et al., Adhesion Forces Reduction for Micro Manipulation based on Micro Physics [C], Proceedings of the IEEE Workshop on Micro Electro Mechanical Systems, 1996, 354-359
    [85]. F. Arai, D. Ando, T. Fukuda et al., Micro manipulation based on micro physics-strategy based on attractive force reduction and stress measurement-[C], Proceedings of the IEEE International Conference on Intelligent Robots System (IROS95), 1995, 2:236-241
    [86]. A. Tsuchitani, S. Suzuki, M. Matsumoto et al., Theoretical study on the surface force in microstructures [J], Transaction of the Society of Instrument and Control Engineers, 2001, E-1: 1-9
    [87]. A. A. Busnaina and T. Elsawy, The effect of relative humidity on particle adhesion and removal [J], Journal of Adhesion, 2000, 74:391-409
    [88]. G. Binning, C. F. Quate, C. H. Gerber, Atomic Force Microscope [J], Physical Review Letters, 1986, 56(9): 930-933
    [89]. H. K. Wickramasinghe, Scanned-probe microscopies [J], Scientific American, 1989, 10: 98-105
    [90]. H. Wengelnik, E. Nishimura, A. Sakai, Oxygen-induced sharpening process of W(111) tips for scanning tunneling microscope use [J], Journal of Vacuum Science and Technology A, 1990, 8(1): 438-440
    [91]. H. Lemke, T. Goddenhenrich, H. P. Bohem et al., Improved microtips for scanning probe microscopy [J],Review of Scientific Instruments, 1990, 61 (10): 2538-2541
    [92]. J. P. Ibe, P. P. Bey, J. Brandow et al., the electrochemical etching of tips for scanning tunneling microscopy [J], Journal of Vacuum Science and Technology A, 1990, 8(4): 3570-3575
    [93].胡小唐,郭育,刘安伟等,微探针电化学加工机理及针尖尺寸控制机数[J],化工学报,1995,46(5):557-561
    [94]. L. Bocquet, E. Charlaix, S. Ciliberto et al., Moisture-induced ageing in granular media and the knetics of caplillary condensation [J], Nature, 1998, 396:735-737
    [95]. S. Saito, H. T. Miyazaki, T. Sato et al., Dynamics of micro-object operation considering the adhesive effect under an SEM [C], Proceedings of the SPIE Vol. 4568, 2001, pp.12-23
    [96]. Y. Rollot, S. Regnier, J. C. Guinot, Simulation of micro-manipulations: Adhesion forces and specific dynamic models [J], International Journal of Adhesion and Adhesives, 1999, 19:35-48
    [97]. M. Soltani and G. Ahmadi, On Particle Removal Mechanisms Under Base Acceleration [J], Journal of adhesion, 1994, 44:161-175
    [98]. S. Yimoshenko et al., Theory of Elasticity (the 3rd edition), McGraw-Hill, New York, 1951
    [99]. K. L. Johnson, K. Kendal,A. D. Roberts, Surface energy and the contact of elastic solids [J], Proceedings of the Royal Society of London A, 1971,324:301-313
    [100]. Z. Jiang, Y. Zhou, D. Yuan et al., A two-photon femtosecond laser system for three-dimensional microfabrication and data storage [J], Chinese Physics Letter, 2003, 20(12): 21-26
    [101]. B. J. Nelson, Y. Zhou et al., Sensor-Based Microassembly of Hybrid MEMS Devices [J]. IEEE Control Systems, 1998, 18(6): 35-45.
    [102]. J. Wu, G. Zhao and J. Chu, Influences of Environmental humidity on micro object handling efficiency [J], Journal of Micromechanics and Microengineering, 2007, 17: 187-192
    [103]. Jianhua Wu, Jian Lu, Jiaru Chu et al., Microdevice assembling by adhesive type probe in humid environment [J], Review of Scientific Instruments, 2005, 76, 085104
    [104]. D. S. Haliyo, Y. Rollot, S. Regnier. Manipulation of micro-objects using adhesion forces and dynamical effects [C]. Proceedings of the IEEE International Conference on Robotics and Automation, 2002, 1949-1954
    [105]. http://www.tu-harburg.de/ht/deutsch/lehre/mikrosystemtechnik/pdf/kap12_eng.pdf
    [106]. H. Du, C. Su, M. K. Lim, W. L. Jin, A micromachined thermally-driven gripper: a numerical and experimental study [J], Smart materials and structures, 1999, 8:616-622
    [107]. C. Huang, Y. Y. Lin, T. A. Tang, Study on the tip-deflection of a piezoelectric bimorph cantilever in the static state [J], Journal of Micromechanics and Microengineering, 2004, 14: 530-534
    [108].李远,秦自楷,周志刚,压电与铁电材料的测量,科学出版社,1984
    [109]. H. Janoch, K. Kuhnen, Real-time compensation of hysteresis and creep in piezoelectric actuators [J], Sensors and Actuators, 2000, 79:83-89
    [110]. R. Perez, N. Chaillet, K. Domanskib et al., Fabrication, modeling and integration of a silicon technology force sensor in a piezoelectric micro-manipulator [J], Sensors and Actuators A, 2006, 128:367-375
    [111]. C. Newcomb, I. Flinn, Improving the linearity of piezoelectric ceramic actuators [J], Electronics Letters, 1982, 18(11): 442~443
    [112]. D. Newton, J. Main, E. Garcia, Piezoelectric actuation systems: Optimization of driving electronics [C], Proceedings of the SPIE, vol. 2717, 1996, pp.259-266
    [113]. J. Main, E. Garcia, D. Newton, Precision position control of piezoelectric actuators using charge feedback [J], Journal of Guidance, Control, and Dynamics,, 1995, 18(5): 1068-1073
    [114]. R. Perez, J. Agnus, C. Clevy et al., Modeling, Fabrication, and Validation of a High-Performance 2-DoF Piezoactuator for Micromanipulation [J], IEEE/ASME Transactions on Mechatronics, 2005, 10(2): 161-171
    [115].苏翼林,材料力学,高等教育出版社,1987
    [116].陆其明,DirectShow开发指南,清华大学出版社,2003
    [117].陆其明,DirectShow实务精选,科学出版社,2004
    [118]. S-K KIM, S-R PARK, J-K PAIK, Simultaneous out-of-focus blur estimation and restoration for digital auto-focusing system [J], IEEE Transactions on Consumer Electronics, 1998, 44(3): 1071-1075
    [119].刘义鹏,裴锡宇,冯华君,李奇,一种基于DFD的自动对焦算法[J],光学仪器,2005,27(4):39-44
    [120]. K-S Choi, J-S Lee, S-J Ko et al., New Autofocusing Technique Using the Frequency Selective Weighted Median Filter for Video Cameras [J], IEEE Transactions on Consumer Electronics, 1999, 45(3): 820-827
    [121]. J. W. Goodman, Aberrations and Their Efecta on Frequency Response, the 2nd edition, McGraw Hill. 1996
    [122].李奇,冯华君,徐之海等,数字图像清晰度评价函数研究[J],光子学报,2002,31(6):736-738
    [123].徐定杰,王晓溪,数字图像处理在焦距测量中的应用[J],仪表技术与传感器,1998,(7):37-39
    [124].康宗明,张利,谢攀等,一种基于能量和熵的自动聚焦算法[J],电子学报,2003,31(4):552-555
    [125].吴振锋,左洪福,邱根良,刘红星,显微镜一种新的自动聚焦算法[J],数据采集与处理,2000,15(3):351-354
    [126]. A.W. Lohmman, D. Mendlovic, Z. Zalevsky, Digital Method for Measuring the Focus Error [J]. Applied Optics, 1997, 36(28): 7204-7209
    [127]. J. Krotkov, E. Paul, Active Computer Vision by Cooperative Focus and Stereo, New York: Spinger-Verlag, 1989
    [128].王蔚,宁新宝,张胜,基于图像清晰度的自动聚焦算法[J],计算机应用与软件, 2003,(12):17-18
    [129]. J. E Schlag, A. C. Sanderson, C. P, Neumann et al,, Implementation of Automatic Focusing Algorithms for a Computer Vision System with Camera Control, Technical Report CMU-Rl-TR-83-14, Carnegie Mellon University. 1983
    [130]. M. Tenenbaum, Accommodation in Computer Vision. Ph. D. Dissertation, Stanford University. 1970
    [131]. R.A. Jarvis, Focus Optimization Criteria for Computer Image Processing [J], Microscope, 1976, 24(2): 163-180
    [132]. J. He, R. Zhou, Z. Hong, Modified Fast Climbing Search Auto-focus Algorithm with Adaptive Step Size Searching Technique for Digital Camera [J], IEEE Transactions on Consumer Electronics, 2003, 49(2): 257-262
    [133].任四刚,图像式自动聚焦系统及其测量技术的研究,重庆大学硕士论义,2003
    [134].袁详辉,固体图像传感器及其应用,重庆大学出版社,1996
    [135].吴晓波,安文斗等,图像测量系统中的误差分析及提高测量精度的途径[J],光学精密工程,1997,5(1):133-140
    [136].马俊婷等,科学级CCD相机的噪声分析和信号处理[J],华北工学院学报,2001,22(2):83-87
    [137]. N. Otsu, A Threshold Selection Method from Gray-Level Histograms [J], IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66
    [138].李庆祥,李玉和等,微操作与微装配技术,清华大学出版社,2004
    [139].何斌等,Visual C++数字图像处理,人民邮电出版社,2002
    [140]. C. Munleanu, Digital Area Correlation Tracking by Sequential Similarity Detection, ADAO47712. 1977
    [141]. B. D. Letal. A Class of Algorithm for Digital Image Registration [J], IEEE Transactions on Computers, 1972, C-21: 176-186
    [142]. V. V. Alexandrov, N. D. Gorsky, S. N. Mysko, A Fast Technique for Recursive Scene Matching using Pyramids [J], Pattern Recognition Letters, 1985, 3:413-419
    [143]. C. R. Dyer, Multiscale Image Understanding, Academic Press, 1987
    [144]. G. Bonmassar, E. L. Schwartz, Improved Cross-correlation for Template Matching on the Laplacian Pyramid [J], Patern Recognition, 1998, 19:765-770
    [145]. P. V. C. Hough, Methods and means for recognizing complex patterns, US patent, 3069654, 1962
    [146]. R. O, Duda, P. E. Hart, Use of the Hough transformation to detect lines and curves in pictures [J], Communications of the ACM, 1972, 15(1): 11-15
    [147]. J. Illingworth, J. Kittler, A survey of the Hough transform [J], Computer Vision, Graphics, and Image Processing, 1988, 44(1): 87-116
    [148]. M. K. Hu, Visual Pattern Recognition by Moment Invariants [J], IEEE Transactions on Information Theory, 1962, 8:179-187
    [149].白立芬,徐毓娴,于水等,基于图像处理的显微镜自动调焦方法研究[J],仪器仪表学报,1999,20(6)
    [150].丁明跃,常金玲,彭嘉雄,不变矩的算法研究,数据采集与处理[J],1992,7(1):1-9
    [151].潘泉,程咏梅,杜亚娟等,离散不变矩算法及其在目标识别中的应用[J],电子与信息学报,2001,23(1):30-36
    [152]. R. Y. Tsai, A versatile camera calibration technique for high accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses [J], IEEE Journal of Robotics Automation, 1987, RA-3(4): 323-344
    [153]. Z.Y. Zhang, Flexible Camera Calibration by Viewing a Plane from Unknown Orientations [C], Proceedings of the 7th IEEE International Conference on Computer Vision, 1999, pp. 666-673
    [154].[40] M. Ammi, V. Fremont, A. Ferreira, Flexible Microscope Calibration using Virtual Pattern for 3-D Telemicromanipulation [C], Proceedings of IEEE International Conference on Robotics and Automation, 2005, pp. 3888-3893
    [155]. Y. Zhou, B.J. Nelson, Calibration of a parametric model of an optical microscope [J], Optical Engineering, 1999, 38(12): 1989-1995
    [156]. H. Zhuang, W. Wu, Camera calibration with a near-parallel (Ⅲ-conditioned) calibration board configuration [J], IEEE Transactions on Robotics and Automation, 1996, 12(6): 918-921
    [157]. B. McCullagh, F. Shevlin, Coplanar camera calibration with small depth of field lens [C], Proceedings of Irish Machine Vision and Image, 2004
    [158]. B. E. Kratochvil, K. B. Yesin, V. Hess, B. J. Nelson, Design of a visually guided 6 DOF micromanipulator system for 3D assembly of hybrid MEMS [C], Proceedings of the 4th International Workshop for Microfactories, 2004, pp. 128-133
    [159]. G.A. West, T. A. Clark, A Survey and Examination of Subpixel Measurement Techniques [C], Proceedings of SPIE Vol. 1395: Close-Range Photogrammetry Meets Machine Vision, 1990, pp. 456-462
    [160].杨高波,亓波,精通MATLAB 7.0混合编程,电子工业出版社,2006
    [161].刘金琨,先进PID控制及其MATLAB仿真,电子工业出版社,2003
    [162]. J. Borenstain, Y. Koren, Real-time obstacle avoidance for fast mobile robots [J], IEEE Transactions on Systems, Man, and Cybernetics, 1989, 19(5): 1179-118
    [163].刘传才,杨静宇,自主车的局部路径规划[J],机器人,1999,21(6):436-441
    [164].张明路,焦新镜,彭商贤,基于神经网络的移动机器人对路径形式的识别与分类[J],中国机械工程,1999,10(3):304-307
    [165].邵毅,余剑峰,李原,杨海成,基于VMap的装配路径规划研究与实现[J],西北工业大学学报,2001,19(1):118-120