气动肌肉并联关节高精度位姿控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气动肌肉是一种具有类似人类肌肉输出特性的柔性执行器,它是根据人类肌肉的运动原理设计而成。气动肌肉既具有清洁、质量轻、价格低、易维护等气动元件的优点,与气缸相比,还具有较大的功率/体积比和功率/质量比,并且由于其力—位移关系特性与人类肌肉特性相似而具有很好的柔顺性。并联关节机构具有承载能力强、无累积误差、精度高和反应速度快等优点。我们提出一种结构简单的气动肌肉并联关节,采用三根气动肌肉连接运动平台和基座,使用成本低的高速开关阀来控制气动肌肉的充气量实现气动肌肉收缩,从而达到多自由度的关节转角控制。该机构充分发挥气动肌肉与并联关节机构的优点,具有功率/重量比和功率/体积比大、结构紧凑、安装方便、成本低、运动平滑、自然柔顺性好、不易损害操作对象等诸多优点,在机器人、工业自动化、仿生机械等领域中具有较好的应用前景。
     但是,气动肌肉的强非线性和参数时变性以及并联关节的多输入多输出耦合影响和模型不确定,给气动肌肉并联关节的高精度控制带来挑战。首先,气动肌肉的收缩力、收缩位移和内部压力之间具有复杂的非线性关系,其收缩力不易精确获得;气动肌肉的摩擦力和滞回受压力、温度等多种因素影响,其特性很难获得:气动肌肉内部压力微分方程的非线性,假定气体为多变过程,这将造成模型的不准确对控制量带来干扰,而且,虽然气腔内的压力可假定为均匀的,但温度却是不均匀的。其次,经过阀口的流量计算方法都是基于稳态流量测试标准,不能测试阀口的瞬态流量,存在较大的模型误差;高速开关阀存在流量脉动、开关延迟等多种不利控制因素。再者,气动肌肉并联关节为多输入多输出且耦合的非线性系统,各种参数不易精确获得;且存在未知的外部干扰力矩。
     本论文以气动肌肉并联关节为研究对象,以实现高精度轨迹跟踪控制为研究目标,采用理论分析与试验研究相结合的方法,系统地且逐层深入地研究了气动肌肉并联关节位姿的高精度控制方法。
     针对冗余的控制自由度使得工作点时变从而导致轨迹跟踪精度一致性变差的问题,提出在基于反步法的自适应鲁棒控制中加入期望等效平均刚度约束来消除冗余的控制自由度,并根据测量噪声增益对等效平均刚度进行优化设计,既保证了高精度的位姿轨迹跟踪又减少了控制量振荡。针对无压力传感器时的参数自适应问题,提出多执行器耦合气动系统的非线性自适应压力观测方法,并与自适应鲁棒控制策略相结合将伪解耦过程中新增的不确定、压力观测误差产生的动态不确定和模型本身的不确定一起进行抑制与补偿,从而实现无压力传感器时气动肌肉并联关节的高精度位姿轨迹跟踪。针对并联关节运动方向改变时瞬态跟踪误差较大的问题,提出基于复合误差最小化准则的参数估计方法获得具有冗余特征系统动力学方程的可靠且合理的参数估计,并与自适应鲁棒控制相结合,设计了直接/间接复合自适应鲁棒控制器。此控制方法获得的稳态误差小于0.01°,正弦轨迹跟踪的平均误差小于0.1°和最大跟踪误差小于0.3°。
     本论文的主要研究分为九章,现分述如下:
     第一章,介绍了气动肌肉的发展历程、主要特点和使用形式;探讨了国内外在气动肌肉的数学模型、相关特性、控制方法和系统应用等方面的研究现状;最后概述了本课题的研究意义、研究难点以及研究内容。
     第二章,描述了气动肌肉并联关节系统实验装置的机构原理与硬件组成;根据数学建模的假设条件,通过建立并联关节的动力学模型、气动肌肉收缩力模型和压力微分方程、温度微分方程、平均流量方程,获得气动肌肉并联关节系统完整的非线性模型;根据附加的简化假设条件,将并联关节和执行器的动力学模型进行简化,获得气动肌肉并联关节系统简化的非线性模型以便设计非线性控制器;通过数学模型线性化、求取静平衡状态的系统工作点和进行开环控制下的系统仿真,分析系统的特性和各模型参数对系统性能的影响。
     第三章,根据并联关节的一般刚度定义,推导出气动肌肉并联关节的静态刚度和动态刚度,分析了不同位姿点的静态刚度和静态刚度对系统性能的影响;首次定义了气动肌肉并联关节的等效平均刚度,并给出了使用等效平均刚度作为约束来消除冗余控制自由度的原理;从等效平均刚度的可调范围、优化方法和等效平均刚度与等效平均压力的关系三个方面,分析了等效平均刚度的选取原则,并给出其应用时的注意事项。
     第四章,建立了气动肌肉并联关节的控制量和状态量互相伪解耦的三阶动态系统模型;构造了输出微分观测器以获取速度信号和加速度信号;分别设计了带边界层线性切换函数的全阶滑模控制器和带边界层线性或非线性切换函数的降阶滑模控制器;分析了跟踪误差与滑模切换函数、控制参数和系统不确定量之间的关系;探讨了边界层的影响和气源压力的影响。
     第五章,导出了参数不确定形式的系统模型;设计了基于非连续参数投影映射的自适应鲁棒控制器,通过自适应参数估计来补偿因系统模型中某些参数未知而引起的参数不确定,通过鲁棒反馈抑制系统模型中的严重非线性不确定,通过优化的等效平均刚度消除冗余控制自由度以确定系统的工作点从而解决轨迹跟踪精度的一致性变差问题和减少控制量的振荡;从理论上分析了控制器的参数对系统控制性能的影响;从实验上分析了等效平均刚度对系统控制性能特别是归一化的控制变化量的影响。
     第六章,为提高可靠性和降低成本而取消压力传感器,这样不仅存在气动肌肉并联关节系统的参数不确定和严重非线性不确定,而且新增了压力未知导致的动态不确定;导出了单支路的单输入单输出伪解耦模型以便构造压力观测器来估计未知的压力;设计了基于压力观测的自适应鲁棒控制器实现气动肌肉并联关节无压力传感器时的高精度轨迹跟踪;分析了气源压力对系统控制性能的影响。
     第七章,为获得气动肌肉并联关节系统的精确模型,将并联关节的动力学模型表示为参数线性化的修正模型以便把未建模误差表示出来;提出基于复合误差最小化准则的参数估计算法,给出离散形式的参数辨识获取修正模型参数的初始值,给出连续形式的参数辨识以便实现在线的自适应参数估计;通过单根气动肌肉收缩长度的定长控制对流量模型进行了修正。在此基础上,设计了基于参数投影映射的直接/间接复合自适应鲁棒控制器以解决气动肌肉并联关节运动方向改变时瞬态跟踪误差较大的问题,同时获得了可靠且合理的参数估计。
     第八章,在气动肌肉并联关节上对直接/间接复合自适应鲁棒控制器进行了各种试验测试;给出了阶跃位姿响应、正弦轨迹跟踪、任意连续轨迹跟踪的试验结果;通过施加突变干扰测试了控制器的鲁棒性;分析了气源压力、气动肌肉理论收缩力、误差准则权值和等效平均刚度对系统控制性能的影响。
     第九章,总结归纳了本博士论文的主要工作、研究结论和创新点,同时对气动肌肉并联关节的未来发展进行了展望与预测,为本方向的后继研究提供了参考。
Pneumatic muscle is a new type of flexible pneumatic actuator with the same out-put characteristics as human muscle, and is designed according to motion principle ofhuman muscle. It has not only the advantages of cleanliness, lightweight, cheapnessand easy maintenance possessed by pneumatic actuators, but also the special feature ofhigher power/weight ratio and power/volume ratio as well as good compliance ow-ing to its force-length characteristics similar to human muscle when compared withthe pneumatic cylinder. The parallel manipulator has the characteristics of high loadingcapability, no accumulative errors, high accuracy and fast response. The parallel manip-ulator driven by pneumatic muscles proposed in this dissertation is a new applicationof pneumatic muscle, which consists of three pneumatic muscles connecting the mov-ing platform to its base platform. Multiple degrees-of-freedom (DOF) rotation motion ofthe parallel manipulator can be realized by using cheap fast switching valves to regulatethe pressure inside each pneumatic muscle. Integrating the advantages of both pneu-matic muscle and parallel manipulator, such a test-rig has the characteristics of compactstructure, easy assembly, cheapness, smooth movement, good natural compliance andsafety operation, higher power/weight ratio and power/volume ratio, which will havepromising wide applications in robotics, industrial automation, and bionic devices.
     However, there are not only severe nonlinearity and time-varying parameters ex-isting in the pneumatic muscles but also the MIMO coupling effect and large uncertain-ties existing in the parallel manipulator. These factors bring a challenge for the highprecision posture controlling of the parallel manipulator driven by pneumatic muscles.Firstly, the relationship among contractive force, contractive length and inner pressureis highly nonlinear, and the accurate contractive force is not easily obtained. Frictionforce and hysteresis of pneumatic muscle are influenced by its pressure and tempera-ture etc., and the characteristics of the friction force are difficult to obtain. The innerpressure dynamics of the pneumatic muscle is nonlinear. If we regard it as polytropicprocess, this inaccurate model will bring disturbances to controlling of parallel manipu-lator. Furthermore, though the pressure in tube may be assumed to be uniform, the tem-perature in tube is non-uniform. Secondly, the method for calculating flow rate through fast switching valves is based on the steady-state measurement, thus the instantaneousflow rate through them could not be obtained resulting in large model errors. There aresome disadvantages of controlling the system from fast switching valves, such as pul-satory flow rate, delay time of opening and closing fast switching valves. Thirdly, theparallel manipulator is a MIMO coupling nonlinear system, and the accurate parame-ters are difficult to obtain. There also exist unknown external disturbance moments inthe parallel manipulator.
     Research object of this doctoral dissertation is a parallel manipulator driven bypneumatic muscles, and research aim is to realize the high precision posture trajectorytracking of the parallel manipulator. With the help of theoretical analysis and experi-mental research, the high precision control strategies of the parallel manipulator drivenby pneumatic muscles are investigated systemically and thoroughly step-by-step.
     In order to tackle the deteriorated consistency of tracking accuracy due to timevarying operating points induced by redundancy, an equivalent-average-stiffness-likeconstraint is integrated into the adaptive robust controller to remove the redundancy,and the equivalent average stiffness is optimized through minimizing measurementnoise gain. Thus, not only high precision posture trajectory tracking is achieved butalso control chattering is reduced. In order to solve the problem of parameter adapta-tion without pressure sensors, a nonlinear pressure observing method is presented inthe pneumatic system with multiple actuators coupling. An adaptive robust controllerbased on the above pressure observer is developed to compensate and attenuate theadded uncertainties from pseudo-decoupling process, the dynamic uncertainties fromobservation errors of pressure and the uncertainties of model itself for achieving highprecision posture trajectory tracking of the parallel manipulator without pressure sen-sors. In order to deal with large transient tracking errors in the process of changingdirection, a new parameter estimation algorithm based on composite error minimiz-ing criterion is proposed for the first time to obtain reliable and reasonable parame-ter estimation results for the dynamic equation with redundancy. Integrating the newalgorithm with adaptive robust control, an integrated direct/indirect adaptive robustcontroller is developed. This controller achieves excellent experimental results of thesteady-state error being less than 0.01°and average tracking error less than 0.1°andmaximum tracking error less than 0.3°during tracking sinusoidal trajectory.
     Main research contents of this doctoral dissertation are divided into the followingchapters.
     In Chapter 1, development course, main characteristics and usage form of the pneu-matic muscle are introduced. The domestic and foreign research stage of pneumaticmuscle is discussed on the mathematical model, related characteristics, control methodand system application. Finally, necessity, difficulties and main contents of this projectare summarized concisely.
     In Chapter 2, the mechanism and hardware components of the parallel manipulatordriven by pneumatic muscles are introduced briefly. According to the valid modelingassumptions, the full nonlinear mathematical models of the parallel manipulator drivenby pneumatic muscles are obtained through respectively establishing dynamic equationof the parallel manipulator, the contractive force equation of pneumatic muscle, the dif-ferential equation of pressure, the differential equation of temperature and the averageflow rate equation. Then, according to the added assumptions, the simplified nonlinearmathematical models that are convenient to design nonlinear controller are obtained.The characteristics of the system and the influence of model parameters on the perfor-mance are analyzed through linearizing the nonlinear mathematical models to obtainthe operating points of static equilibrium and simulating the system under the condi-tion of open-loop control.
     In Chapter 3, according to the stiffness definition of a general parallel manipulator,both static stiffness and dynamic stiffness of the parallel manipulator driven by pneu-matic muscles are deduced, and moreover, the static stiffness under different posturesand the influence of static stiffness on the performance are analyzed. An equivalentaverage stiffness of parallel manipulator driven by pneumatic muscles is defined forthe first time, and then the principle of utilizing the equivalent average-stiffness-likedesired constraint in the posture controller to remove the control redundancy of theparallel manipulator is developed. Moreover, it is presented that the choosing prin-ciples of the equivalent average stiffness respectively from three aspects of adjustablerange, optimization method and the relation between equivalent average stiffness andequivalent average pressure. Furthermore, attention points of utilizing the equivalentaverage stiffness are also given.
     In Chapter 4, a three-order dynamic equation with pseudo-decoupling between the control inputs and the state variables is established for the parallel manipulator drivenby pneumatic muscles. An output differential observer is constructed to obtain velocitysignals and acceleration signals. A full order sliding-mode controller with boundarylayer and linear switching function is designed and two reduced order sliding-modecontrollers with boundary layer and nonlinear or linear switching function are also de-signed respectively. The relations of tracking errors to switching function of sliding-mode controller, control parameters and model uncertainties are analyzed. And theinfluence of boundary layer and supply pressure on the performance is also discussed.
     In Chapter 5, the system model in form of parametric uncertainties is derived atfirst. Then, a discontinuous projection-based adaptive robust controller (ARC) is de-signed, which utilizes the parameter adaptation to compensate large parametric uncer-tainties from unknown parameters in the system model, and uses the robust feedback toattenuate rather severe nonlinear uncertainties, and applies the equivalent average stiff-ness to remove control redundancy and determine the operating points of the systemso that the problem of consistency of tracking accuracy deteriorating is solved while theproblem of control chattering is reduced. In addition, the influence of control param-eters on the performance is analyzed theoretically. Finally, the influence of equivalentaverage stiffness on performance (especially on the control chattering) is analyzed ex-perimentally.
     In Chapter 6, for enhancing the system reliability and saving the system cost, pres-sure sensors are canceled, so there are not only the large parametric uncertainties andrather severe nonlinear uncertainties in the system but also the added dynamic uncer-tainties from unknown pressures. A single-input-single-output (SISO) pseudo-decouplingmodel of the single driving-unit is derived for constructing a nonlinear pressure ob-server and estimating unknown pressure. Then, a pressure observer based adaptiverobust controller is developed to accomplish high precision posture trajectory trackingof the parallel manipulator driven by three pneumatic muscles without pressure sen-sors. Finally, the influence of supply pressure on the performance is analyzed.
     In Chapter 7, in order to obtain more accurate model of the system, the dynamicequation of the parallel manipulator is described as the modified model in the form ofparametric linearization to express unmodeled errors. A new parameter estimation al-gorithm based on composite error minimizing criterion is presented, then the discrete parameter estimation algorithm is proposed to obtain the initial values of parametersin the modified model and the continuous parameter estimation algorithm is proposedto realize on-line parameter adaptation. The flow rate equation is modified throughcontrolling the constant contractive length of a single pneumatic muscle. On the abovebasis, an integrated direct/indirect adaptive robust controller is developed to solve theproblem of large transient tracking errors when the direction of motion in the paral-lel manipulator is changed, and the reliable and reasonable parameter estimation isachieved.
     In Chapter 8, the integrated direct/indirect adaptive robust controller is tested onthe parallel manipulator driven by pneumatic muscles under various experimental con-ditions. The experimental results of step response, sinusoidal trajectory tracking andarbitrary continuous trajectory tracking are given. The robustness of the system is ver-ified through applying sudden disturbance on a position transducer. The influence ofsupply pressure, the theoretical contractive force, the weights of error criterion and theequivalent average stiffness on the performance are analyzed.
     In Chapter 9, main research work, conclusions and innovation points of this doc-toral dissertation are summarized. At the same time, future development of parallelmanipulator driven by pneumatic muscles is predicted in order to provide referencesfor the further research on this project.
引文
[1] Plettenburg D.H. Pneumatic actuators: a comparison of energy-to-mass ratio's. Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, Chicago, IL, USA, Jun 28-Jul 1, 2005. 545-549.
    [2] Chou C. P, Hannaford B. Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Transactions on Robotics and Automation, 1996, 12(1):90-103.
    [3] Tondu B, Boitier V, Lopez P. Naturally compliant robot-arms actuated by McKibben artificial muscles. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, San Antonio, USA, Oct 2-5, 1994. 2635-2640.
    [4] 隋立明,包钢,王祖温.气动肌肉在康复工程中的应用.中国临床康复,1996,12(1):90-103.
    [5] http://www.festo.com.
    [6] 范伟,彭光正,黄雨.气动人工肌肉驱动器的研究现状及发展趋势.机床与液压,2003(1):32-36.
    [7] 王雄耀.介绍一种气动新产品—仿生气动肌肉腱.液压气动与密封,2002(2):31-35.
    [8] Tsagarakis N, Caldwell D. G, Medrano-Cerda G. A. A 7 DOF pneumatic muscle actuator (PMA) powered exoskeleton. Proceedings of the IEEE International Workshop on Robot and Human Communication, Pisa, Italy, Sep 27-29, 1999. 327-333.
    [9] Yaegashi K, Saga N, Satoh T. Control of robot arm using pneumatic artificial muscle with spherical joint. Proceedings of the IEEE International Conference on Mechatronics and Automation(ICMA2005), Niagara Falls, Canada, Ju129-Aug 1, 2005. 1093-1098.
    [10] Manuello B. A, Ruggiu M. Characterization and modeling of air muscles. Mechanics Research Communications, 2004, 31(2):185-194.
    [11] Smagt P, Groen F, Schulten K. Analysis and control of a rubbertuator arm. Biological Cybernetics, 1996,75(5):433.
    
    [12] Tondu B, Lopez P. Modeling and control of McKibben artificial muscle robot actuators. IEEE Control Systems Magazine, 2000,20(2):15-38.
    [13] Daerden F. Conception and realization of pleated pneumatic artificial muscles and their use as compliant actuation elements: [PhD Thesis]. Brussel, Belgium: Vrije Universiteit Brussel, 1999.
    [14] Chan S. W, Lilly J. H, Repperger D. W, et al. Fuzzy PD+I learning control for a pneumatic muscle. Proceedings of the IEEE International Conference on Fuzzy Systems, St. Louis, United States, May 25-28,2003. 278-283.
    [15] Ramasamy R, Juhari M. R, Mamat M. R, et al. An application of finite element modelling to pneumatic artificial muscle. American Journal of Applied Sciences, 2005,2(11):1504-1508.
    [16] Angelo C, Massimiliana C, Carlo F, et al. Flexible pneumatic actuators for underwater robot. Proceedings of the 3rd FPNI-PhD Symposium on Fluid Power, Terrassa, Spain, Jun 30-Jul 2, 2004. 59-66.
    [17] Daerden F, Lefeber D. Pneumatic artificial muscles: actuators for robotics and automation. European Journal of Mechanical and Environmental Engineering, 2002,47(1):11-21.
    [18] Davis S, Caldwell D. G, Tsagarakis N, et al. Enhanced modelling and performance in braided pneumatic muscle actuators. International Journal of Robotics Research, 2003,22(3-4):213-227.
    [19] Pierce R. C. Expansible cover, 1936. US Patent, No. 2041950.
    [20] Pierce R. C. Expansible cover, 1940. US Patent, No. 2211478.
    [21] Haven H. D. Tensioning device for producing a linear pull, 1949. US Patent, No. 2483088.
    [22] Galyord R. H. Fluid actuated motor system and stroking device, 1958. US Patent, No. 2844126.
    [23] http://www.merlinsystemscorp.co.uk/merlin_wiki/index.php/Research.
    [24] http://www.shadowrobot.com/airmuscles.
    [25] http://www.imagesco.com/catalog/airmuscle/AirMuscle.html.
    [26] http://www.vertigo-inc.com/pma/.
    [27] DStefan H. The fluidic muscle in application. Germany: Festo AG and Co.KG, 2003.
    [28] 杨钢,李宝仁,刘军.一种新型气动执行元件—气动人工肌肉.中国机械工程,2003,14(15):1347-1349.
    [29] 隋立明,王祖温,包钢.气动肌肉驱动人工关节的建模研究.机械科学与技术,2003,22卷增刊:77-79.
    [30] 隋立明,包钢,王祖温.气动人工肌肉驱动关节特性研究.液压与气动,2002(3):3-5.
    [31] MedranooCerda G. A, Bowler C. J, Caldwell D. G. Adaptive position control of antagonistic pneumatic muscle actuators. Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburgh, PA, USA, Aug 5-9, 1995. 550-555.
    [32] Chou C. P, Hannaford B. Static and dynamic characteristics of McKibben pneu matic artificial muscles. Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, May 8-13, 1994. 281-286.
    [33] Klute G. K, Hannaford B. Accounting for elastic energy storage in McKibben artificial muscle actuators. ASME Journal of Dynamic Systems, Measurements, and Control, 2000, 122(2): 386-388.
    [34] Delson N, Hanak T, Loewke K, et al. Modeling and implementation of McKibben actuators for a hopping robot. Proceedings of the 2005 International Conference on Advanced Robotics, Seattle, WA, United States, Ju118-20, 2005. 833-840.
    [35] Robb W. C, Gabriel M. N, Roger D. Q. Modeling of braided pneumatic actuators for robotic control. Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2001): Expanding the Societal Role of Robotics in the Next Millennium,vol.4, Maui, USA, Dec 29-Nov 3, 2001. 1964-1970.
    [36] Caldwell D. G, Tsagarakis N, Medrano-Cerda G. A. Bio-mimetic actuators: polymeric pseudo muscular actuators and pneumatic muscle actuators for biological emulation. Mechatronics, 2000, 10(4-5):499-530.
    [37] Tsagarakis N, Caldwell D. G. Improved modelling and assessment of pneumatic muscle actuators. Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, USA, Apr 24-28, 2000. 3641-3646.
    [38] Davis S, G.Caldwell D. Braid effects on contractile range and friction modeling in pneumatic muscle actuators. International Journal of Robotics Research, 2006, 25(4):359-369.
    [39] Tondu B, Lopez P. The McKibben muscle and its use in actuating robotarms showing similarities with human arm behaviour. Industrial Robot, 1997, 24(6):432-439.
    [40] Kerscher T, Albiez J, Zollner J. M, et al. Evaluation of the dynamic model of fluidic muscles using quick-release. Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy, Feb 20-22, 2006. 637-642.
    [41] Kim D, Bae S, Choi K. Characteristic analysis and experimental evaluation of fluidic muscle cylinder. Key Engineering Materials, 2006, 326-328:119-122.
    [42] Kim D, Bae S, Choi K. Characteristic analysis and experimental evaluation of artificial pneumatic cylinder. Proceedings of the SPIE-The International Society for Optical Engineering v6048, Optomechatronic Actuators and Manipulation, Sappora, Japan, Dec 5-7, 2005. 60480D.
    [43] 刘荣,宗光华.人工肌肉驱动特性研究.高技术通讯,1998(6):34-38.
    [44] 卫玉芬,李小宁.气动肌肉的驱动特性研究.液压与气动,2004(7):24-26.
    [45] Zhou A, Shi G, Zhong T. Model improvement and experiment validation of pneumatic artificial muscles. Chinese Journal of Mechanical Engineering (English Edition), 2004, 17(1):36-39.
    [46] 隋立明,包钢.气动人工肌肉改进模型研究.液压气动与密封,2002(2):1-4.
    [47] 王向东.气动人工肌肉特性研究:[硕士学位论文].哈尔滨:哈尔滨工业大学,2001.
    [48] 李醒飞,郑奇,张国雄.类人气动肌肉模型与实验研究.天津大学学报;自然科学与工程技术版,2005,38(3):242-247.
    [49] 杜经民,朱端阳,杨钢,等.气动人工肌肉静态特性实验研究.液压与气动,2005(5):21-23
    [50] Zhou B, Accorsi M. L, Leonard J. W. A new finite element for modeling pneumatic muscle actuators. Computers and Structures, 2004, 82(11-12):845-856.
    [51] Zhang W, Accorsi M. L, Leonard J.W. Analysis of geometrically nonlinear anisotropic membranes: application to pneumatic muscle actuators. Finite Elements in Analysis and Design, 2005, 41(9-10):944-962.
    [52] Reynolds D. B, Repperger D. W, Phillips C. A, et al. Modeling the dynamic characteristics of pneumatic muscle. Annals of Biomedical Engineering, 2003, 31(3):310-317.
    [53] Caldwell D. G, Tsagarakis N, Medrano-Cerda G. A, et al. Pneumatic muscle actuator driven manipulator for nuclear waste retrieval. Control Engineering Practice, 2001, 9(1):23-36.
    [54] Nakamura N, Sekiguchi M, Kawashima K, et al. Developing a robot arm using pneumatic artificial rubber muscles. Proceedings of Bath International Workshop on Power Transmission and Motion Control (PTMC2002), University of Bath, UK, Sep 11-13, 2002. 365-375.
    [55] Hildebrandt A, Sawodny O, Neumann R, et al. A flatness based design for tracking control of pneumatic muscle actuators. Proceedings of the 7th International Conference on Control, Automation, Robotics and Vision, Marine Mandarin, Singapore, Dec 2-5, 2002. 1156-1161.
    [56] Hildebrandt A, Sawodny O, Neumann R, et al. Cascaded control concept of a robot with two degrees of freedom driven by four artificial pneumatic muscle actuators. Proceedings of the 2005 American Control Conference, Portland, OR, United States, Jun 8-10, 2005. 680-685.
    [57] 隋立明,包钢,王祖温.一种由气动肌肉驱动的关节模型研究.机床与液压,2002(6):55-56.
    [58] 隋立明,包钢,王祖温.气动肌内及其构成的关节模型研究.机械设计与研究,2002,18(6):19-20.
    [59] 李宝仁,刘军,杨钢.气动人工肌肉系统建模与仿真.机械工程学报,2003,39(7):23-28.
    [60] 杨钢,李宝仁,刘军.气动人工肌肉特性分析的新方法.液压与气动,2002(10):22-25.
    [61] 杨钢,李宝仁,傅晓云.气动人工肌肉系统动态特性研究.中国机械工程,2006,17(12):1294-1298.
    [62] 傅晓云,刘军,杨钢,等.气动人工肌肉执行系统动态特性的实验研究.液压气动与密封,2003(6):6-9.
    [63] Klute G. K, Hannaford B. Fatigue characteristics of McKibben artificial muscle actuators. Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent Robots and SystemsPart 3 (of 3), Victoria, Can, Oct 13-17, 1998. 1776-1781.
    [64] Hannaford B, Jaax K, Klute G. Bio-inspired actuation and sensing. Autonomous Robots, 2001, 11(3):267-272.
    [65] Klute G. K, Czerniecki J. M, Hannaford B. McKibben artificial muscles: pneumatic actuators with biomechanical intelligence. Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, USA, Sep 19-23, 1999. 221-226.
    [66] Klute G. K. Artificial muscles: actuators for biorobotic systems: [PhD Thesis]. Washington: University of Washington, 1999.
    [67] Daniel A. K, Roger D. Q. Fatigue life and frequency response of braided pneumatic actuators. Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC, USA, May 11-15, 2002. 2830-2835.
    [68] Enrico R. Monitoring of fluidic muscles by infrared thermography. International Journal of Fluid Power, 2006, 7(3):5-12.
    [69] 王祖温,包钢,隋立明.气动肌肉结构参数的分析与设计.液压与气动,2003(10):12-14.
    [70] 隋立明,王祖温,包钢.气动肌肉与生物肌肉的力学特性对比研究.机床与液压,2004(6):22-24.
    [71] 隋立明,王祖温,包钢.气动肌肉的刚度特性分析.中国机械工程,2004,15(3):242-244
    [72] Zong G, Liu R. On the implementation of stiffness control on a manipulator using rubber actuators. Proceedings of the 1995 IEEE International Conference on Systems, Man and Cybernetics Part 1 (of 5), Vancouver, BC, Can., Oct 22-25, 1995. 183-188.
    [73] 刘荣.并联机构柔顺控制及人工肌肉驱动研究:[博士学位论文].北京:北京航空航天大学,1996.
    [74] 傅晓云,方敏,李宝仁.气动人工肌肉驱动的直线关节的研究.机床与液压,2006(8):75-76+82.
    [75] Repperger D. W, Johnson K. R, Phillips C. A. Nonlinear feedback controller design of a pneumatic muscle actuator system. Proceedings of the American Control Conference, San Diego, CA, USA, Jun 2-4,1999. 1525-1529.
    [76] Repperger D. W, Phillips C. A, Krier M. Controller design involving gain scheduling for a large scale pneumatic muscle actuator. Proceedings of the 1999 IEEE International Conference on Control Applications (CCA) and IEEE International Symposium on Computer Aided Control System Design (CACSD), Kohala Coast, HI, USA, Aug 22-27, 1999. 285-290.
    [77] Djouadi S. M, Repperger D. W, Berlin J. E. Gain-scheduling H~∞ control of a pneumatic muscle using wireless MEMS sensors. Proceedings of the 2001 Midwest Symposium on Circuits and Systems, Dayton, OH, Aug 14-17,2001. 734-737.
    [78] Carbonell P, Jiang Z. P, Repperger D. W. Nonlinear control of a pneumatic muscle actuator: backstepping vs. sliding-mode. Proceedings of the IEEE Conference on Control Applications, Mexico City, Sep 5-7,2001. 167-172.
    [79] Repperger D. W, Johnson K. R, Phillips C. A. A VSC position tracking system involving a large scale pneumatic muscle actuator. Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, USA, Dec 16-18,1998. 4302-4307.
    [80] Balasubramanian K, Rattan K. Fuzzy logic control of a pneumatic muscle system using a linearizing control scheme. Proceedings of the International Conference on North American Fuzzy Information Processing Society, Chicago, Illinois USA, Jul 24-26,2003. 432-436.
    [81] Balasubramanian K, Rattan K. Feedforward control of a non-linear pneumatic muscle system using fuzzy logic. Proceedings of the IEEE International Conference on Fuzzy Systems, St. Louis, MO, United States, May 25-28,2003. 272-277.
    [82] Carbonell P, Jiang Z. P, Repperger D. W. A fuzzy backstepping controller for a pneumatic muscle actuator system. Proceedings of the 2001 IEEE International Symposium on Intelligent Control, Mexico City, Sep 5-7,2001. 353-358.
    [83] Lilly J. H. Adaptive tracking for pneumatic muscle actuators in bicep and tricep configurations. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(3):333-339.
    [84] Kimura T, Hara S, Fujita T, et al. Control for pneumatic actuator systems using feedback linearization with disturbance rejection. Proceedings of the American Control Conference, Seattle, USA, Jun 21-23,1995. 825-829.
    [85] Kimura T, Hara S, Fujita T, et al. Feedback linearization for pneumatic actuator systems with static friction. Control Engineering Practice, 1997, 5(10):1385-1394.
    [86] Kimura T, Hara S, Tomisaka T. H~ control with minor feedback for a pneumatic actuator system. Proceedings of the 35th Conference on Decision and Control, Kobe, Japan, Dec 11-13, 1996. 2365-2370.
    [87] Fan W, Peng G, Chai S, et al. Study on the control of single pneumatic muscle actuator. Chinese Journal of Mechanical Engineering (English Edition), 2003, 16(4):428-432.
    [88] Fan W, Peng G, Ning R. Position control of single pneumatic muscle actuator. Journal of Beijing Institute of Technology (English Edition), 2005, 14(1):63-66.
    [89] 范伟,彭光正,高建英,等.带修正因子的自组织摸糊PID控制在气动人工肌肉位置控制中的应用.液压与气动,2003(9):30-33.
    [90] 黄雨,彭光正,范伟.气动人工肌肉驱动关节PID位置控制研究.液压与气动,2003(4):13-15.
    [91] 范伟,彭光正,李英.神经元自适应PSD控制在气动人工肌肉力控制中的应用.液压与气动,2004(10):53-54.
    [92] 高建英,彭光正,范伟,等.基于BP网络的气动人工肌肉位置跟踪的研究.液压与气动,2004(5):5-7.
    [93] 高建英,张玉平,范伟,等.单神经元自适应PID算法在气动人工肌肉位置控制中的应用研究.液压与气动,2004(1):18-20.
    [94] 李英,彭光正,范伟.模糊PID控制在气动人工肌肉位置控制中的应用.液压与气动,2005(4):31-33.
    [95] 杜经民,杨钢,傅晓云,等.气动人工肌肉系统控制性能的实验研究.华中科技大学学报(自然科学版),2004,32(4):35-37.
    [96] 杨钢,李宝仁.气动人工肌肉位置控制策略.华中科技大学学报(自然科学版),2006,34(8):71-73.
    [97] 杨钢,李宝仁.基于CMAC的气动人工肌肉变结构位置控制研究.机械工程学报,2004,40(10):92-96.
    [98] Yang G, Li B, Fu X, et al. Fuzzy variable structure position control of a pneumatic muscle actuator system. Proceedings of the 6th International Conference on Fluid Power Transmission and Control, Hangzhou, China, Apr 5-8,2005. 357-362.
    [99] 杨钢,李宝仁,傅晓云.气动人工肌肉并联机器人平台.机械工程学报,2006,42(7):39-45. 42(7):39-45.
    
    [100] Hesselroth R, Sarkar K, Smagt P, et al. Neural network control of a pneumatic robot arm. IEEE Transactions on Systems, Man and Cybernetics, 1994, 24(1):28-38.
    [101] Smagt P, Schulten K. Control of pneumatic robot arm dynamics by a neural network. Proceedings of the World Congress on Neural Networks, Portland, OR, Jul 11-15,1993. 180-183.
    [102] Yang L, Lilly J. H. Sliding mode tracking for pneumatic muscle actuators in bi-cep/tricep pair configuration. Proceedings of the 2003 American Control Conference, Denver, CO, United States, Jun 4-6,2003. 4669-4674.
    [103] Lilly J. H, Quesada P. M. A two-input sliding-mode controller for a planar arm actuated by four pneumatic muscle groups. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2004,12(3):349-359.
    [104] Lilly J. H, Yang L. Sliding mode tracking for pneumatic muscle actuators in opposing pair configuration. IEEE Transactions on Control Systems Technology, 2005, 13(4):550-558.
    [105] Cai D, Yamura H. A robust controller for manipulator driven by artificial muscle actuator. Proceedings of the 1996 IEEE International Conference on Control Applicatins, Dearborn, Mi, Sep 15-18,1996. 540-545.
    [106] Cai D, Dai Y. A sliding mode controller for manipulator driven by artificial muscle actuator. Proceedings of the 2000 IEEE International Conference on Control Applications, Anchorage, Alaska, USA, Sep 25-27, 2000. 668-673.
    [107] Hamerlain M. An anthropomophic robot arm driven by artificial muscles using a variable structure control. Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburgh, USA, Aug 5-9, 1995. 550-555.
    [108] 王祖温,隋立明,包钢.气动肌肉驱动关节的输入整形研究.机械工程学报,2005,41(1):66-70.
    [109] Caldwell D. G, Medrano-Cerda G. A, Goodwin M. J. Control of pneumatic muscle actuators. IEEE Control Systems Magazine, 1995, 15(1):40-48.
    [110] Bowler C. J, Caldwell D. G, Medrano-Cerda G. A. Pneumatic muscle actuators: musculature for an anthropomorphic robot arm. Proceedings of the IEE Colloquium on Actuator Technology: Current Practice and New Developments, London, UK, May 10, 1996. var paging.
    [111] D. G. Caldwell M. J. G. Braided pneumatic actuator control of a multi-jointed manipulator. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Le Touquet, France, Oct 17-20, 1993. 423-428.
    [112] Caldwell D. G, Medrano-Cerda G. A, Goodwin M. J. Characteristics and adaptive control of pneumatic muscle actuators for a robotic elbow. Proceedings of the IEEE International Conference on Robotics and Automation, San Diego, CA, USA, May 8-13, 1994. 3558-3563.
    [113] Caldwell D. G, Tsagarakis N. Biomimetic actuators in prosthetic and rehabilitation applications. Technology and Health Care, 2002, 10(2):107-120.
    [114] Caldwell D. G, Tsagarakis N. G. Development and control of a 'soft-actuated' exoskeleton for use in physiotherapy and training. Autonomous Robots, 2003, 15(1): 21-33.
    [115] Ozkan M, Inoue K, Negishi K, et al. Defining a neural network controller structure for a rubbertuator robot. Neural Networks, 2000, 13(4):533-544.
    [116] Colbrunn R. W, Nelson G. M, Quinn R. D. Design and control of a robotic leg with braided pneumatic actuator. Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, USA, Oct 29-Nov 3, 2001. 992-998.
    [117] Verrelst B, Vanderborght B, Vermeulen J, et al. Control architecture for the pneumatically actuated dynamic walking biped "Lucy". Mechatronics, 2005, 15(6):703-729.
    [118] Vanderborght B, Verreist B, Ham R. V, et al. Controlling a bipedal walking robot actuated by pleated pneumatic artificial muscles. Robotica, 2006,24(4):401-410.
    [119] Vanderborght B, Verrelst B, Ham R. V, et al. Dynamic control of a bipedal walking robot actuated with pneumatic artificial muscles. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, Apr 18-22,2005. 1-6.
    [120] Verrelst B, Ham R, Vanderborght B, et al. Exploiting adaptable passive behaviour to influence natural dynamics applied to legged robots. Robotica, 2005,23(2):149-158.
    [121] Vanderborght B, Verrelst B, Ham R. V, et al. Torque and compliance control of the pneumatic artificial muscles in the biped "Lucy". Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, United States, May 15-19,2006. 842-847.
    [122] Vanderborght B, Verrelst B, Ham R. V, et al. A pneumatic biped: experimental walking results and compliance adaptation experiments. Proceedings of the 5th IEEE-RAS International Conference on Humanoid Robots, Tsukuba, Japan, Dec 5-7,2005. 44-49.
    [123] Vanderborght B, Verrelst B, Ham R. V, et al. Exploiting natural dynamics to reduce energy consumption by controlling the compliance of soft actuators. International Journal of Robotics Research, 2006,25(4):343-358.
    [124] Ham R. V, Verrelst B, Daerden F, et al. Fast and accurate pressure control using on-off valves. International Journal of Fluid Power, 2005, 6(1):53-58.
    [125] Ham R. V, Daerden F, Verrelst B, et al. Control of pneumatic artificial muscles with enhanced speed up circuitry. Proceedings of the 5th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Paris, France, September, 2002. 195-202.
    [126] Ham R. V, Daerden F, Verrelst B, et al. Control of a joint actuated by two pneumatic artificial muscles with fast switching on-off valves. Proceedings of the 6th National Congress on Theoretical and Applied Mechanics, Ghent, Belgium, May, 2003. paper no. 075(CD-ROM).
    [127] Ham R. V, Verrelst B, Daerden F, et al. Pressure control with on-off valves of pleated pneumatic artificial muscles in a modular one-dimensional rotational joint. Proceedings of the International Conference on Humanoid Robots, Karlsruhe and Munich, October, 2003. 35+CDROM.
    [128] Tonietti G, Bicchi A. Adaptive simultaneous position and stiffness control for a soft robot arm. Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland, Sep 30-Oct 4,2002. 1992-1997.
    [129] Ahn K. K, Thanh T. D. C, Ahn Y. K. Intelligent switching control of pneumatic artificial muscle manipulator. JSME International Journal, C: Mechanical Systems, Machine Elements and Manufacturing, 2006,48(4):657-667.
    [130] Ahn K. K, Thanh T. D. C. Performance improvement of artificial pneumatic muscle manipulator. Proceedings of the 8th Korea-Russia International Symposium on Science and Technology - Proceedings: KORUS, Tomsk, Russian Federation, Jun26-Jul 3,2004. 99-103.
    [131] Ahn K. K, Thanh T. D. C, Yang S. Y. Improvement of control performance of pneumatic artificial muscle manipulator using intelligent switching control. Proceedings of the SICE Annual Conference, Sapporo, Japan, Aug 4-6,2004. 91-96.
    [132] Thanh T. D. C, Ahn K. K. Intelligent phase plane switching control of pneumatic artificial muscle manipulators with magneto-rheological brake. Mechatronics, 2006,16(2):85-95.
    [133] Thanh T. D. C, Ahn K. K. Nonlinear PID control to improve the control performance of 2 axes pneumatic artificial muscle manipulator using neural network. Mechatronics, 2006,16(9)577-587.
    [134] Park N. C, Yang H. S, Park H. W, et al. Position/vibration control of two-degree-of-freedom arms having one flexible link with artificial pneumatic muscle actuators. Robotics and Autonomous Systems, 2002, 40(4):239-253.
    [135] Park N. C, Park H. W, Yang H, et al. Robust vibration/force control of a 2 D.O.F. arm having one flexible link with artificial pneumatic actuators. JVC/Journal of Vibration and Control, 2002, 8(3):405-423.
    [136] 宗光华.利用变结构系统理论实现人工肌肉的夹持力控制.机器人,1990,12(4):15-20.
    [137] 田社平,林良明.人工肌肉测控系统的研制.测控技术,1997,16(3):27-28.
    [138] 田社平,林良明.人工肌肉静态特性及其测量.实用测试技术,1998,24(6):12-14.
    [139] 田社平,丁国清,林良明,等.人工肌肉自适应预测控制.仪器仪表学报,2001,22(z2):86-87.
    [140] 田社平,林良明,颜国正.基于神经网络的人工肌非线性控制.上海交通大学学报,2001,35(5):713-716.
    [141] 林良明,田社平,颜国正.医疗机器人用空气压人工肌线性控制的研究.中国医疗器械杂志,2006,26(1):7-9+13.
    [142] 田社平,丁国清,颜德田,等.人工肌肉系统神经网络建模与控制.中国生物医学工程学报,2003,22(4):300-308.
    [143] Tian S, Ding G, Yan D, et al. Nonlinear modeling and controlling of artificial muscle system using neural networks. Chinese Journal of Mechanical Engineering (English Edition), 2004, 17(2):306-310.
    [144] Tian S, Ding G, Yan D, et al. Nonlinear controlling of artificial muscle system with neural networks. Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, Shenyang, China, Aug 22-26, 2004. 56-59.
    [145] 田社平.人工肌肉快速、高精度位置控制的研究:[博士学位论文].上海:上海交通大学,1999.
    [146] 范伟,彭光正,高建英,等.气动人工肌肉驱动三自由度球面并联机器人关节的位置控制研究.液压气动与密封,2003(6):1-5.
    [147] Caldwell D. G, Andersen U, Bowler C. J, et al. High power/weight dextereous manipulator using 'sensory glove' based motion control and tactile feedback. Transactions of the Institute of Measurement and Control, 1995, 17(5):234-241.
    [148] Costa N, Caldwell D. G. Control of a biomimetic "soft-actuated" 10DOF lower body exoskeleton. Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Pisa, Italy, Feb 20-22, 2006. 495-501.
    [149] Caldwell D. G, Tsagarakis N, Artrit P, et al. Biomimetic and smart technology principles of humanoid design. Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Como, Italy, Jul 8-12, 2001. 965-970.
    [150] Caldwell D. G, Tsagarakis N, Badihi D, et al. Pneumatic muscle actuator technology a light weight power system for a humanoid robot. Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium, May 16-20, 1998. 3053-3058.
    [151] Caldwell D. G, Tsagarakis N, Medrano-Cerda G. A, et al. Development of a pneumatic muscle actuator driven manipulator rig for nuclear waste retrieval operations. Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, MI, USA, May 10-15, 1999. 525-530.
    [152] Kobayashi H, K.Hiramatsu. Development of muscle suit for upper limb. Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, United States, Apr 26-May 1, 2004. 2480-2485.
    [153] Saga N, Nakamura T, Ueda S. Study on peristaltic crawling robot using artificial muscle actuators. Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Kobe, Japan, Ju120-24, 2003. 679-684.
    [154] Saga N, Saikawa T, Okano H. Flexor mechanism of robot arm using pneumatic muscle actuators. Proceedings of the IEEE International Conference on Mecha-tronics and Automation, Niagara Falls, Canada, Jul 29-Aug 1,2005. 1261-1266.
    [155] Toshiro N, Toshihiro T. Application of rubber artificial muscle manipulator as a rehabilitation robot. IEEE/ASME Transactions on Mechatronics, 1997, 2(4):259-267.
    [156] Toshiro N, Yoshio T. Task assist system using a rubber artificial muscle manipulator. Advanced Robotics, 2000,14(5):363-365.
    [157] Toshiro N, Daisuke S, Masahiro T. Application of artificial pneumatic rubber muscles to a human friendly robot. Proceedings of the IEEE International Conference on Robotics and Automation, Taipei, Taiwan, Sep 14-19,2003. 2188-2193.
    [158] Daisuke S, Toshiro N, Masahiro T, et al. Application of artificial pneumatic rubber muscles to a human friendly robot. Proceedings of the 13th IEEE International Workshop on Robot and Human Interactive Communication, Okayama, Japan, Sep 20-22,2004. 655-660.
    [159] Gao L, Noritsugu T, Takaiwa M, et al. Development of wearable power assist device using curved pneumatic artificial rubber muscle. Proceedings of the 6th International Conference on Fluid Power Transmission and Control ICFP 2005, Hangzhou, China, Apr 5-8,2005. 330-334.
    [160] Takuma T, Hosoda K. Controlling the walking period of a pneumatic muscle walker. International Journal of Robotics Research, 2006,25(9):861-866.
    [161] Takuma T, Nakajima S, Hosoda K, et al. Design of self-Contained biped walker with pneumatic actuators. Proceedings of the SICE Annual Conference, Sapporo, Japan, Aug 4-6,2004. 393-397.
    [162] Kawashima K, Sasaki T, Ohkubo A, et al. Application of robot arm using fiber knitted type pneumatic artificial rubber muscles. Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, LA, United States, Apr 26-May 1, 2004. 4937-4942.
    [163] Takahiro S, Kawashima K. Development of a remote control system for construction machinery for rescue activities with a pneumatic robot. Advanced Robotics, 2006, 20(2):213-232.
    [164] Lee Y. K, Shimoyama I. Skeletal framework artificial hand actuated by pneumatic artificial muscles. Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, MI, USA, May 10-15,1999. 926-931.
    [165] Lee Y K, Shimoyama I. A Multi-channel micro valve for micro pneumatic artificial muscle. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), Las Vegas, Jan 20-24,2002. 702-705.
    [166] Suzumori K, Miyagawa T, Kimura M, et al. Micro inspection robot for 1-in pipes. IEEE/ASME Transactions on Mechatronics, 1999,4(3):286-292.
    [167] http:/ /brl.ee. washington.edu/Research_Past/Biologically_Based /Project_01 _Arm-/Anthroform-Arm.html.
    
    [168] http:/ /brl.ee.washington.edu/Research_Past/Biologically_Based/Project_02_Pros-thetics/Powered_Prosthetics.html.
    [169] He J, Koeneman E. J, Schultz R. S, et al. RUPERT: A device for robotic upper extremity repetitive therapy. Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology Society, Shanghai, China, Sep 1-4, 2005. 6844-6847.
    [170] He J, Koeneman E. J, Schultz R. S, et al. Design of a robotic upper extremity repetitive therapy device. Proceedings of the 9th IEEE International Conference on Rehabilitation Robotics, Chicago, IL, United States, Jun 28-Jul 1,2005. 95-98.
    [171] Bharadwaj K, Hollander K. W, Mathis C. A, et al. Spring over muscle (SOM) actuator for rehabilitation devices. Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, United States, Sep 1-5,2004. 2726-2729.
    [172] Knight R. B, He J, Carhart M. R, et al. Design and development of a simple, low cost gait assistive device. Proceedings of the 25th Annual International Conference of the IEEE EMBS Training, Cancun, Mexico, Sep 17-21, 2003. 1724-1727.
    [173] Quinn R. D, Nelson G. M, Bachmann R. J, et al. Toward mission capable legged robots through biological inspiration. Autonomous Robots, 2001, 11(3):215-220.
    [174] Kingsley D. A, Quinn R. D, Ritzmann R. E. A cockroach inspired robot with artificial muscles. Proceedings of International Symposium on Adaptive Motion of Animals and Machines (AMAM 2003), Kyoto, Japan, Mar 4-8,2003.
    [175] Birch M. C, Quinn R. D, Hahm G, et al. Design of a cricket microrobot. Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco. CA, Apr 24-28,2000. 1109-1114.
    [176] Ferris D. P, Czerniecki J. M, Hannaford B. An ankle-foot orthosis powered by artificial pneumatic muscles. Journal of Applied Biomechanics, 2005, 21(2):189-197.
    [177] Gordon K. E, Sawicki G. S, Ferris D. P. Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis. Journal of Biomechanics, 2006, 39(10):1832-1841.
    [178] Northrup S, Brown E. E, Parlaktuna J. O, et al. Biologically-inspired control architecture for an upper limb, intelligent robotic orthosis. International Journal of Human-friendly Welfare Robotic Systems, 2001, 2(3):4-8.
    [179] Pack R. T, Christopher J. L. J, Kawamura K. A rubbertuator-based structure-climbing inspection robot. Proceedings of the IEEE International Conference on Robotics and Automation, Part 3 (of 4), Albuquerque, USA, Apr 20-25,1997.1869-1874.
    [180] Brown G, Haggard R, Benney R. Parachute retraction soft-landing systems using pneumatic muscle actuators. Technical Report AIAA-2000-4308, USA, 2000.
    [181] Yakimenko O, Kaminer I, Dellicker S. Preliminary design and control strategy analysis of the affordable guided airdrop system. Proceedings of the 9th Mediterranean Conference on control and automation, Dubrovnik, CROATIA, Jun 27-29, 2001.
    [182] Tondu B, Ippolito S, Guiochet J, et al. A seven-degrees-of-freedom robot-arm driven by pneumatic artificial muscles for humanoid robots. International Journal of Robotics Research, 2005,24(4):257-274.
    [183] Berkelman P, Cinquin P, Troccaz J, et al. A compact, compliant laparoscopic endoscope manipulator. Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC, United States, May 11-15,2002. 1870-1875.
    [184] Berkelman P, Cinquin P, Boidard E, et al. Design, control and testing of a novel compact laparoscopic endoscope manipulator. Journal of Systems and Control Engineering, 2003,217(4):329-341.
    [185] Berns K, Kepplin V, Muller R, et al. Six-legged robot actuated by fluidic muscles. Proceedings of the CLAWAR 2000 - Climbing and Walking Robots and the Support Technologies for Mobile Machines, Madrid, Spain, Oct 2-4,2000. 545-550.
    [186] Kerscher T, Albiez J, Berns K. Joint control of the six-legged robot airbug driven by fluidic muscles. Proceedings of the Third International Workshop on Robot Motion and Control, Bukowy Dorek, Poland, Nov 9-11,2002. 27-32.
    [187] Kerscher T, Zullner J. M, Dillmann R, et al. Model and control of compliant joints driven by fluidic muscles. Proceedings of ACODUASIS one step further in the automatic control design workshop. (ACODUASIS-workshop), Torino, Italy, Oct 3,2005.
    [188] Ritter H, Haschke R, Koiva R, et al. A layered control architecture for imitation grasping with a 20-DOF pneumatic anthropomorphic hand. Available at http://www.techfak.uni-bielefeld.de/ jsteil/RitterHaschkeKoivaRoethlingSteil2005-ALC.pdf.
    [189] http://www.festo.com/INetDomino/coorp_sites/zh.
    [190] Francesco D, Terenziano R, Pierluigi B. Z. A 4 d.o.f. upper-limb orthosis driven by pneumatic muscles. Proceedings of the 3rd FPNI-PhD Symposium on Fluid Power, Terrassa, Spain, Jun 30-Jul 2, 2004. 123-130.
    [191] Daerden F, Lefeber D, Verrelst B, et al. Pleated pneumatic artificial muscles: compliant robotic actuators. Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Maui, USA, Oct 29-Nov 3, 2001. 1958-1963.
    [192] Daerden F, Lefeber D, Verrelst B, et al. Pleated pneumatic artificial muscles: actuators for automation and robotics. Proceedings of the 2001 IEEE/ASME International Conference on Advanced Intelligent Mechalronics, Como, Italy, Jul 8-12, 2001. 738-743.
    [193] Daerden F, Lefeber D. The concept and design of pleated pneumatic artificial muscles. International Journal of Fluid Power, 2001, 2(3):41-50.
    [194] Verrelst B, Ham R. V, Daerden F, et al. Design of a biped actuated by pleated pneumatic artificial muscles. Proceedings of the 5th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Paris, France, September, 2002. 195-202.
    [195] Verrelst B, Ham R. V, Vanderborght B, et al. The pneumatic biped "Lucy" actuated with pleated pneumatic artificial muscles. Autonomous Robots, 2005, 18(2):201-213.
    [196] Kopecny L. Producing of tactile feedback via pneumatic muscles. Proceedings of the 2003 IEEE International Conference on Industrial Technology, Maribor, Slovenia, Dec 10-12, 2003. 685-687.
    [197] Tuijthof G. J. M, Herder J. L. Design actuation and control of an anthropomorphic robot arm. Mechanism and Machine Theory, 2000, 35(7):945-962.
    [198] 孙中圣,王祖温,包钢,等.力反馈数据手套单关节研究.液压与气动,2006(7):14-15.
    [199] 隋立明,王祖温,包钢.气动肌肉驱动仿人臂的设计.液压与气动,2004(9):7-8.
    [200] 刘洪波.基于气动人工肌肉的六足步行机研究:[硕士学位论文].哈尔滨:哈尔滨工业大学,2003.
    [201] 范伟,彭光正,高建英,等.气动人工肌肉驱动球面并联机器人的位置控制研究.北京理工大学学报,2004,24(6):516-519.
    [202] 范伟,彭光正,高建英,等.气动人工肌肉驱动球面并联机器人的力控制研究.机器人,2004,26(4):336-341.
    [203] 范伟,余麟,刘昭博,刘昊,彭光正.气动人工肌肉驱动仿人灵巧手的设计.机床与液压,2006(8):62-65.
    [204] 彭光正,余麟,刘昊.气动人工肌肉驱动仿人灵巧手的结构设计.北京理工大学学报,2006,26(7):593-597.
    [205] 张之璐,彭光正,朱智乾,等.气动人工肌肉驱动器驱动六足爬行机器人的步态选择和结构设计.液压与气动,2004(4):29-30.
    [206] 范伟,彭光正,宁汝新,等.气动人工肌肉驱动器在六足步行机器人中的应用.机器人技术与应用,2003(1):40-42.
    [207] 郑奇,李醒飞,张国雄.类人上肢的双肌肉驱动系统的设计.液压与气动,2003(11):7-8.
    [208] 李醒飞,张国雄,裘祖荣,等.利用肌电信号实现仿生肘关节运动控制的研究.机械工程学报,2004,40(4):32-35.
    [209] 沈伟,施光林.气动人工肌肉主动悬架系统的可变自整定离散PID控制.系统仿真学报,2005,17(9):2226-2230.
    [210] 沈伟,施光林,周爱国.气动肌肉主动悬架系统的仿真研究.流体传动与控制,2004(1):35-40.
    [211] 沈伟,施光林,周爱国.气动肌肉主动悬架系统的仿真模型与分析.计算机仿真,2004,21(6):162-166.
    [212] 周爱国,施光林,钟廷修,等.气动人工肌肉并联驱动多自由度平台的系统设计.液压与气动,2004(5):41-43.
    [213] Shi G, Zhou A, Zhong T. Nonlinear characteristics of the multi-DOF platform driven by pneumatic artificial muscle. Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2004, 32(9): 41-49.
    [214] 卫玉芬,李小宁.气动肌肉驱动的柔顺机器人操作手的设计和实现.机器人,2005,27(5):445-449.
    [215] 韦晓孝,钟康民,郭旭红.一种气动肌肉驱动的偏心夹具.液压与气动,2005(10):70-71.
    [216] 司广琚,钟康民.气动肌腱驱动的双边铰杆增力夹具及其力学计算.组合机床与自动化加工技术,2005(1):30-31.
    [217] 陆雯,王兵,钟康民.气动肌腱与铰杆增力机构的三种组合系统及其比较.机械设计,2005,22(2):53-54.
    [218] 沈铭,芮延年.气动肌肉连杆增力式夹具的设计.制造技术与机床,2005(4):50-60.
    [219] 付春梅.气动肌腱驱动的杠杆-铰杆式二次增力机构.液压与气动,2005(1):36-37.
    [220] 鹿霖,钱志良.气动肌腱驱动的二次型铰链增力机构.液压与气动,2006(2):51-52.
    [221] 王明娣,钟康民,左敦稳.气动肌腱与杠杆-铰杆增力机构的组合装置.新技术新工艺,2005(12):26-27.
    [222] 王明娣,钟康民,左敦稳,等.绿色夹具-基于气动肌腱与机械增力机构的夹具系统.南京航空航天大学学报,2005,37(B11):113-117.
    [223] 王明娣,钟康民,左敦稳.气动肌腱驱动的铰杆-杠杆增力机械手.机械制造,2005,43(9):67-68.
    [224] 王兵,曹华,钟康民.气动肌腱驱动的双作用双级气-液复合传动装置.机床与液压,2006(6):169-170.
    [225] 赵怀林,余达太,李果.一个由McKibben肌肉驱动的类人关节.北京科技大学学报,2006,28(11):1096-1100.
    [226] 赵怀林,李果,余达太.气动人工肌肉驱动的类人关节研究.郑州大学学报(工学版),2005,26(4):81-84.
    [227] 赵怀林,李果,余达太.McKibben气动人工肌肉特性研究.液压与气动,2005(7):29-31.
    [228] 黄真,孔令富,方跃法.并联机器人理论与控制.北京:机械工业出版社,1997.
    [229] Dasgupta B, Mruthyunjaya T. S. A Newron-Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mechanical Machine Theory, 1998, 33(8):1135-1152.
    [230] Dasgupta B, Mruthyunjaya T. S. Closed-form dynamic equations of the general Stewart platform through the Newton-Euler approach. Mechanical Machine Theory, 1998, 33(7): 993-1012.
    [231] 朱世强,王宣银.机器人技术及其应用.杭州:浙江大学出版社,2001.
    [232] 李建藩.气压传动系统动力学.广州:华南理工大学出版社,1991.
    [233] Richer E, Hurmuzlu Y. A high performance pneumatic force actuator system: part Ⅰ-nonlinear mathematical model. Transactions of the ASME Journal of Dynamic Systems, Measurement, and Control, 2000, 122(9): 416-425.
    [234] Linde R. Q. Design, analysis, and control of a low power joint for walking robots by phasic activation of McKibben muscles. IEEE Transactions on Robotics and Automation, 1999, 15(4): 599-604.
    [235] Li Y, Wang J, Wang L. Stiffness analysis of a Stewart platform-based parallel kinematic machine. Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington DC, USA, May 11-15, 2002. 3672-3677.
    [236] 王丰尧.滑模变结构控制.北京:机械工业出版社,2001.
    [237] 姚琼芸,黄继起,吴汉松.变结构控制系统.重庆:重庆大学出版社,1997.
    [238] 朱义胜,董辉,李作洲等译.非线性系统.北京:电子工业大学出版社,2005.
    [239] Slotine J.E,Li W.Applied nonlinear control.北京:机械工业出版社,2004.
    [240] Arun K. P, Moshra J. K, Radke M. G. Reduced order sliding mode control for pneumatic actuator. IEEE Transactions of Control System Technology, 1994, 2(3):271-276.
    [241] Liu S, Bobrow J. E. An analysis of a pneumatic servo system and its application to a computer-controlled robot. ASME Journal of Dynamics Systems, Measurements and Control, 1988, 110(3): 228-235.
    [242] 张厚祥,宗光华.分段变结构Bang-Bang控制器在气动脉宽调制位置伺服系统中的研究.机器人,2001,23(6):515-519.
    [243] 齐国元,陈增强,袁著祉.非线性系统高阶微分反馈控制.中国工程科学,2003,5(8):35-44.
    [244] Xu L, Yao B. Adaptive robust precision motion control of linear motors with negligible electrical dynamics: theory and experiments. IEEE/ASME Transactions on Mechatronics, 2001, 6(4): 444-452.
    [245] Yao B. Advanced motion control: an adaptive robust framework. Proceedings of AMC'04, The 8th IEEE International Workshop on Advanced Motion Control, Kawasaki, Japan, Mar 25-28, 2004. 565-570.
    [246] Yao B, Tomizuka M. Adaptive robust control of SISO nonlinear systems in a semistrict feedback form. Automatica, 1997, 3(5): 893-900.
    [247] Yao B, Bu F, Reedy J, et al. Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments. IEEE/ASME Transactions on Mechatronics, 2000, 5(1):79-91.
    [248] Yao B, Bu F, Chiu G. T. C. Nonlinear adaptive robust control of electro-hydraulic servo systems with discontinuous projections. Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, Florida USA, Dec 14-20, 1998. 2265-2269.
    [249] Yao B, Xu L. Observer based adaptive robust control of a class of nonlinear systems with dynamic uncertainties. International Journal of Robust and Nonlinear Control, 2001, 11(4):335-356.
    [250] Gulati N, Barth E. J. Pressure observer based servo Control of pneumatic actuators. Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, California, USA, July 24-28, 2005. 498-503.
    [251] Hildebrandt A, Kharitonov A, Sawodny O, et al. On the zero dynamic of servo pneumatic actuators and its usage for trajectory planning and control. Proceedings of the IEEE International Conference on Mechatronics and Automation, Niagara Falls, Canada, Jul 29-Aug 1, 2005. 1241-1246.
    [252] Pandian S. R, Takemura F, Hayakawa Y, et al. Pressure observer-controller design for pneumatic cylinder actuators. IEEE/ASME Transactions on Mechatronics, 2002, 7(4):490-499.
    [253] 刘豹.现代控制理论.北京:机械工业出版社,1989.
    [254] Ahmed-Ali T, Lamnabhi-Lagarrigue F. Sliding observer-controller design for uncertain triangular nonlinear systems. IEEE Transactions on Automatic Control, 1999, 44(6):1244-1249.
    [255] Garimella P, Yao B. Nonlinear adaptive robust observer design for a class of nonlinear systems. Proceedings of the 2003 American Control Conference, Denver, Colorado, USA, June 4-6, 2003. 4391-4396.
    [256] Yao B. Integrated direct/indirect adaptive robust control of SISO nonlinear systems in semi-strict feedback form. Proceedings of the 2003 American Control Conference, Denver, Colorado, June 4-6, 2003. 3020-3025.
    [257] Ljung L. System identification-theory for the user. Beijing: Tsinghua University Press, 2002.
    [258] 方崇智,萧德云.过程辨识.北京:清华大学出版社,1988.
    [259] 张金槐.线性模型参数估计及其改进(第二版).湖南,长沙:国防科技大学出版社,1999.
    [260] Astrom K. J, Wittenmark B. Adaptive control(2nd edition). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1995.
    [261] Bobrow J. E, McDonell B.W. Modeling, identification, and control of a pneumatically actuated, force controllable robot. IEEE Transaction on Robotics and Automation, 1998, 14(5): 732-742.
    [262] 陶国良.电-气比例/伺服连续轨迹控制及其在多自由度机械手中的应用研究:[博士学位论文].杭州:浙江大学,2000.
    [263] Yao B, Bu F, George J. R, et al. Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments. Proceedings of the American Control Conference, San Diego, California, June 2-4, 1999. 759-763.
    [264] Yao B. Adaptive robust control theory and applications to integrated design of intelligent and precision mechatronic systems. Proceedings of the 2004 International Conference on Intelligent Mechatronics and Automation, Chengdu, China, Aug 26-31, 2004. 35-40.
    [265] Yao B, Dontha R. G. Integrated direct/indirect adaptive robust precision control of linear motor drive system with accurate parameter estimate. Proceedings of the 2nd IFAC Conference on Mechatronic Systems, Berkeley, USA, Dec 9-11,2002. 633-638.