气动机械手夹持力控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气动机械手广泛应用于汽车、医药、食品等工业生产线、特别适用于高温、易燃、易爆、多尘、强磁、辐射等恶劣环境;在上述某些场合下,要求机械手能抓取易碎、易变形的物体,这对机械手夹持力的控制性能提出了很高的要求。因此,对气动机械手的力控制研究,已经成为气动机械手研究领域的一个重要方面具有较好的理论研究和实际工程价值。本文在查阅国内外文献的基础上,总结归纳了气动比例伺服力控制系统以及气动机械手的研究现状。介绍了气动机械手夹持力控制系统的结构组成及其工作原理,对其进行了分析研究,提出了本文研究的系统的性能指标。
     本文提出了影响夹持力控制精度的因素,并对该因素进行了理论分析研究,得出了其产生的原因和改善措施,建立了气动机械手夹持力控制系统的数学模型,分析得出包括系统的高频未建模特性、比例阀的死区特性以及气动系统的非线性等影响建模准确性的因素。主要从气动系统的动态特性、气缸的摩擦力以及爬行现象等方面对气动系统的非线性进行了相关分析,并运用MATLAB软件对气动机械手夹持力控制系统传递函数的频域特性进行了分析研究。
     由于滑模变结构控制具有良好的抗干扰能力和抗模型参数摄动能力,针对气动系统存在的压缩性、摩擦力、气源压力和负载的变化等一系列非线性因素,确定采用上述控制策略来解决气动系统中未建模部分的动态特性和有界干扰问题,以提高气动力伺服系统的控制精度和稳定性。为克服滑模变结构控制系统存在的抖振现象,通过对控制器设计方法的分析研究,选用准滑动模态控制设计,采用基于饱和函数的趋近律方法设计了滑模变结构控制器,从根本上避免或减弱了抖振。
     采用Matlab软件,对加入控制器后的气动控制系统进行了仿真研究。与未加入控制器以及加入PID控制的气动机械手夹持力控制系统的仿真结果进行分析比较。仿真结果表明,加入变结构智能控制器后系统具有较好的鲁棒性,提高了系统的响应速度和稳定性,频宽由0.53Hz提高到了5.54Hz;控制精度由2.6%提高到了0.8%;得到了较好的控制效果。
Pneumatic manipulators are widely used in industrial production lines such as automobile industry, pharmaceuticals industry, food processing industry and so on, especially in the harsh circumstances like high temperature, flammable, explosive, dust, magnetic, radiation. In some of these situations robots are required to crawl the fragile, yielding object, which need a high requirement on clamping force control the of robots. Therefore, it has become an important aspect in the force control of the pneumatic manipulator, which has better theoretical research and practical engineering value. Based on the domestic and international documents, this dissertation summarizes the current research status of pneumatic proportional servo force control system and pneumatic manipulator. The structure components and working principle of clamping force control system are introduced and analyzed in this dissertation. System performance indicators are proposed based on these analyses.
     The factors which affect accuracy of the clamping force control are proposed, and the theory of the factors is studied. Then we obtained its causes and improvement measures. Reasonable assumptions and approximations in the linear process based on the established pneumatic manipulator clamping force control system mathematical model to analyze the frequency is undesirable, including system modeling features, dead zone characteristics of proportional valve and the nonlinear characteristic of pneumatic system and other factors will affect the modeling accuracy. This dissertation is mainly from points of the dynamic characteristic of pneumatic system, cylinder friction and creep phenomena of nonlinear pneumatic system for correlation analysis. Pneumatic manipulator clamping force control system transfer function of the frequency domain characteristics were analyzed by MATLAB software.
     As the sliding mode control has a good anti-interference ability and capacity of the model parameter perturbation, for a series of non-linear factors of compression, friction, air pressure and load changing in the pneumatic system, the above control strategy is adopted to solve the unmodeled part of the pneumatic system dynamics and bounded disturbances, so it can improve accuracy and stability of the aerodynamic servo system. To overcome the chattering phenomenon of sliding mode control system, through the analysis of controller designing, selection of quasi-sliding mode control designing and design a sliding mode controller based on saturation function of reaching law to avoid or reduce the chattering.
     Pneumatic control system combined with controller is simulated in the Matlab software. Simulation result is compared with no controller or the control system with PID controller. Simulation result shows that the system combined with intelligent variable structure controller has better robustness. The system response speed and stability are improved. The control accuracy is improved from2.6%to0.8%. And the Bandwidth is improved from0.53Hz to5.54Hz, which gets a better comprehensive control effect.
引文
[1]J.L.Shearer. Study of Pneumatic Processes in the Continuous Control of Motion with Compressed Air. Trans. American Society of Mechanical Engineers,1956,17(8):233-239
    [2]袁子荣.液气压传动与控制.重庆:重庆大学出版社,2002
    [3]陈启复.气动技术现状与展望.液压气动与密封,1992,1:10-12
    [4]Ishimoto Matsiui E, Takwaki M.Learning Position Control on a Pneumatic Cylinder Using Fuzzy Reasoning. Journal of Fluid Control,2009,20(2):12-14
    [5]Bbrrows C R,Webb C R. Use of Root Loci in Design of Pneumatic Servomen chanism Control. Control and Intelligent Systems,1996,19(8):56-58
    [6]陆鑫盛,周洪.气动自动化系统的优化设计.上海:上海科学技术文献出版社,2000
    [7]陶国良.电气比例/伺服连续轨迹控制及其在多自由度机械手中的应用研究[博士学位论文].杭州,浙江大学,2000
    [8]杨钢.气动人工肌肉位置伺服系统研究及其应用[博士学位论文].武汉,华中科技大学,2004
    [9]陶国良,毛文杰等.气动伺服系统机理建模的实验研究.液压气动与密封,1999,5:26-32
    [10]Taghizadeh.A Linearization Approach in Control of PWM-Driven Servo Pneumatic Systems.40th Southeastern Symposium on System Theory,New Orleans,2008
    [11]彭光正,陈萍,赵彤.带制动装置气缸的PWM位置控制系统.北京理工大学学报,1999,19(3):334-337
    [12]D.Ben-Dov.A Force-Controlled Pneumatic Actuator for Use in Teleoperation Masters.Control and Intelligent Systems,1993,15(2):77-82
    [13]吴振顺.气压传动与控制.哈尔滨:哈尔滨工业大学出版社,1995
    [14]赵彤.从SMC看世界气动技术发展(上).液压与气动,1993,2:3-7
    [15]赵彤.从SMC看世界气动技术发展(下).液压与气动,1993,3:5-10
    [16]B.Pascal. Pressure Control of Pneumatic System with a Non-negligib Connection Port Restriction.Control and Intelligent Systems,2005,33(2):111-118
    [17]段运波,许耀铭.气动脉宽调制位置伺服系统工作原理的改进.液压与气动,1996,1:3-5
    [18]许宏光.电-气伺服控制系统的研究[博士学位论文].哈尔滨,哈尔滨工业大学,1992
    [19]周洪.电-气比例/伺服系统及其控制策略研究[博士学位论文].杭州,浙江大学,1988
    [20]向立学.立足市场经济加速我国力伺服控制技术的发展.测控技术,1996,15(4):2-6
    [21]D. P. Atherton. Nonlinear control energeering.London:Van Nostrand Reinhold Co,1975
    [22]K. Miyata. Control of Pneumatic Drive Systems by Using PCM Valves.Flucome 91,1991,9(3):373-378
    [23]Gdenis,S.Krishnaswamy.Adaptive Friction Compensation for Precision Machine Tool Drive.Control Engineering Practice.2004,12(11):1451-1464
    [24]陈启复.气动技术现状与展望.液压气动与密封,1992,1:10-12
    [25]路甬祥.液压气动技术手册.北京:机械工业出版社,2002
    [26]梁锦堂.气动技术的发展动向和应用概况.机械开发,1997,3:4-6
    [27]丁学恭.机器人控制研究.杭州:浙江大学出版社,2006
    [28]申铁龙.机器人鲁棒控制基础.北京:清华大学出版社,2001
    [29]Mohanram PV,Venkatachalam A. Pneumatic Applications Using PLC.Journal of the Institution of Engineers(India),Part TX:Textile Engineering Division,2000,18(1):12-16
    [30]李世敬,王解法,冯祖仁.基于计算力矩结构的并联机器人层叠小脑模型补偿控制研究.西安交通大学学报,2003,37(6):567-572
    [31]戴学丰,孙立宁,蔡鹤皋.柔性臂机器人定位过程模糊滑模控制研究.哈尔滨工业大学学报,2005,37(2):148-150
    [32]张友安,糜玉林.双连杆柔性臂自适应模糊滑模控制.吉林大学学报,2005,35(5):520-525
    [33]谢明江,代颖,施颂椒.基于非线性H∞状态反馈的机器人鲁棒控制.机器人,2001,23(2):161-165
    [34]苪延年.机器人技术及其应用.北京:化学工业出版社,2008
    [35]Whitney D E. Historical Perspective and State of the Art in Robot Force Control,Proc IEEE lnt Conf on Robotic Automt,1988,15(I):262-264
    [36]Asada H,SIotine J E. Robot Analysis & Control. Control Engineering Practice,1986,14(1):22-26
    [37](日)和田周平,王棣棠译.机器人技术.北京:科学出版社,1983
    [38]乔兵,吴洪涛,朱剑英等.面向位空机器人的力/位混合控制.机器人,1999,24(3):35-37
    [39](美)克莱格,负超等译.机器人学导论.北京:机械工业出版社,2006
    [40]Bobrow James E. Modeling identification and control of a pneumatically actuated, force controllable robot. IEEE transaction on robotics and Aumotation. 1998,14(5):732-742
    [41]SMC气动产品手册.SMC公司,2006
    [42]宋鹏飞,罗志增,具有触觉和滑觉的传感器及其信号处理电路.杭州电子工业学院学报,2002,23(4):56-57
    [43]尹云.基于触滑觉控制的智能假手关键问题研究[硕士学位论文].大连,大连理工大学,2004
    [44]周洪.气动比例控制技术及其应用.液压与气动,1999,3:1-3
    [45]王雪松,程玉虎.易建强.电-气位置伺服控制系统的研究进展.控制与决策,2007,8:38-40
    [46]B. M. Y. Nouri,F. AI-Bender,J. Swevers ct al.Modeling a Pnelmlafic Servo Positioning System with Friction.Proc.2000 American Control Conf.,2000,36(5):1067-1071
    [47]刘喜平,陈树海,段亚军.液压执行器爬行的机理、原因和排出措施.液压与气动,2001,9:26-28
    [48]陶国良,王宣银,杨华勇.气动比例/伺服位置控制系统的摩擦力特性分析.液压气动与密封,2001,4:29-32
    [49]C. Canudas, K. Astrom, K. Braun.Adactive friction compensation in Dc motor drives.(IEEE 1987).London,1987
    [50]丛爽.神经网络、模糊控制系统及其在运动控制中的应用.合肥:中国科技大学出版社,2001
    [51]孔祥臻.气动比例系统的动态特性与控制研究[博士学位论文].济南,山东大 学,2007
    [52]liu S,Bobrow J E. Analysis of a pneumatic servosystem and its application to a compumr controlled robot.ASME Journal of Dynamic System,Measurement and Control,1998,26(9):145-147
    [53]刘金琨.滑膜变结构控制MATLAB仿真.北京:清华大学出版社,2005