单片柔顺机构微夹钳的性能分析及控制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着微纳米技术(Micro/nanotechnology)和微机电(Micro-electro Mechanical Systems, MEMS)系统的兴起和发展,对多个微小零件装配成复杂的微机电系统的微装配与微操作技术成为迅速发展起来的一个研究领域。微夹钳在微操作和微装配过程中直接与夹持对象接触,其作为微操作和微装配系统中典型的末端微执行器,对微操作和微装配任务的实现有着重要的作用。微夹钳技术是一门涉及微机械、材料、传感器、自动控制、电子技术和计算机等的交叉学科,在微机械、微电子学、光学、微流体和生物科学等领域有着广泛的应用。装配零件的尺寸和形状都不固定,而且容易变形和破碎。一方面微夹钳的夹爪位移应行程大、分辨率高,在显微视觉视场中可以准确地移动;另一方面为避免损伤微型零件,应对夹持力进行传感和反馈控制。因此,研究具有大行程、高分辨率的夹爪位移,并集成夹持力/位移传感器和反馈控制的微夹钳具有重要的意义。
     本文在开发的夹爪平行移动的压电驱动微夹钳基础上,建立了力/位移输入输出关系模型,并对动力学模型进行了改进。分析了微夹钳的单片柔顺机构的传感特性,集成了夹持力和夹爪位移传感器,并完成了传感器的标定。建立了实验平台并对微夹钳的夹持力特性进行了测试。在集成传感基础上,辨识了微夹钳的驱动电压与夹持力和夹爪位移之间的关系模型。研究了力/夹爪位移的反馈控制技术,采用了PID反馈和模型参考自适应控制来提高夹持力/夹爪位移的控制精度。
     本文的主要研究工作和成果包括:
     1.在开发的压电致动微夹钳的基础上,对微夹钳的夹持力和夹爪位移的性能进行了分析。运用伪刚体模型法建立了微夹钳的单片柔顺机构的夹持力、输入力、夹爪位移与输入位移之间的关系模型并进行讨论。对原有的单片柔顺机构的动力学模型进行了改进。理论分析为微夹钳夹持力的传感与控制提供了理论基础。
     2.分析了微夹钳的单片柔顺机构在夹爪移动和夹持物体过程中的应变特性及实现夹爪位移传感和夹持力传感的可行性,分别建立了单边柔顺铰链最大应变与输入力、夹爪位移,柔性梁最大应变与梁变形、夹持力的之间关系模型,并与有限元仿真结果进行比较。利用ANSYS软件仿真分析了单片柔顺机构的应变特性和粘贴的应变片的应变分布。仿真结果表明,可在单片柔顺机构单边柔顺铰链和柔性梁上分别粘贴应变片构成夹爪位移传感器和夹持力传感器,并且传感器输出呈线性关系。
     3.在单片柔顺机构的单边柔顺铰链和柔性梁上分别粘贴半导体应变片实现了夹爪位移和夹持力的测量,并利用惠斯通单臂电桥和差动电桥连接实现了传感信号的转换和处理。根据微夹钳的单片柔顺机构的夹爪平行移动的特点,利用标准悬臂梁的受力与梁弯曲变形之间关系,提出一种利用非接触式位移传感器测量柔性梁的形变量来实现夹持力传感器标定的方法。
     4.建立了相应的实验装置分别对夹持力传感器和夹爪位移传感器进行了标定,实验测试了微夹钳的夹持力特性并与理论模型进行了比较,给出了夹持微小物体的实验来模拟实际的夹持过程。实验结果表明,微夹钳的夹爪位移与输入力、夹持力与输入力呈线性关系,夹持力模型符合实际的夹持过程。
     5.在集成传感基础上,辨识了微夹钳的驱动电压与夹持力和夹爪位移之间的关系模型。研究了力/夹爪位移的反馈控制技术,采用PID反馈和模型参考自适应控制来提高夹持力/夹爪位移的控制精度。为了验证反馈控制系统的有效性,对系统进行了仿真研究。仿真结果表明,夹持力/夹爪位移的PID控制的误差呈周期性变化,而自适应控制对期望输入的跟踪控制误差小,控制效果较好。
     本文的研究工作为压电驱动微夹钳的单片柔顺机构的设计、分析与控制提供了理论基础和设计方法。
Micro-assembly and micromanipulation, which assemble parts with extremely small dimensional size as a complicated micro-electro mechanical system (MEMS), is a rapidly developed field with development of micro/nanotechnology and MEMSs. Microgrippers, which directly contact the operated objects as the end-effectors of micro-assembly and micromanipulation systems, play a crucial role in micro-assembly and micromanipulation. Microgripper technology, which involves micro-machinery, materials, sensors, automation, electronics, and computers, is widely applied to MEMS, microelectronics, optics, microfluidics and biological sciences, and other fields. The size and shape of operated objects are not fixed and fragile. On the one hand, microgrippers should possess large tip displacement with high resolution and be moved accurately in vision field of microscopes. On the other hand, in order to avoid damaging micro-parts, the gripping force should be monitored and feedback controlled. Therefore, microgrippers with large tip displacement, high resolution, integrated gripping force and tip displacement sensors, and feedback controller are desired.
     In this thesis, based on a piezoelectric-driven microgripper with parallel movement of gripping jaws, the relationships between the input and output of the gripping force/tip displacement are established, and the dynamic model is improved. The monolithic compliant mechanism (MCM) is integrated with gripping force sensor (GFS) and tip displacement sensor (TDS) based on analyzing the strain of the MCM, and both the gripping force sensor and tip displacement sensor are calibrated. The gripping force characteristics of the developed microgripper are tested using the established experimental setup. Based on the integrated gripping force sensor tip displacement sensor, the relationships between the applied voltage and the gripping force and tip displacement are modeled. The PID feedback control and model reference adaptive control (MRAC) are applied to improve the control accurary of the gripping force and tip displacement.
     The major research works completed in this thesis include:
     1.Based on the developed piezoelectric-driven microgripper, the characteristics of the gripping force and tip displacement are analyzed, and the relationships between the gripping force, input force, tip displacement, and input displacement of the MCM for microgrippers are established with the pseudo-rigid-body-model (PRBM) method and analyzed. The original dynamic model of the MCM has been improved. The theoretical analyses have established a theoretical foundation for monitoring and control of the gripping force.
     2.The strain characteristics of the MCM and the possibility of monitoring griping force and tip displacement are analyzed. The relationships between the maximum strain of the single-notch flexure hinges with the tip displacement and input force, and the relationships between the maximum strain of the cantilever beams with the gripping force and the deformation cantilever beams are established, respectively. Comparisons between the theoretical models of strain characteristics for the MCM and the simulation results using FEM are carried out. The strain characteristics of the MCM and the strain distribution of the strain gauges bonded onto the MCM are analyzed using ANSYS software. The research results indicate that the strain gauges can be bonded onto the single-notch flexure hinges and the cantilever beams as tip displacement sensor and gripping force sensor, respectively, and the outputs of sensors are linear.
     3.The tip displacement and gripping force are measured by semiconductor strain gauges pasted at the single-notch flexure hinges and the cantilever beams, and the outputs of strain gauges are transformed and processed by Wheatstone bridge. Based on the parallel movement of the jaws and the cantilever beam bending theory, a method to calibrate the gripping force sensor by using a non-contact displacement sensor to measure the deformation of the cantilever beam is proposed.
     4.The gripping force sensor and tip displacement sensors are calibrated using the established experimental setup. The gripping force characteristics are tested and compared with the theoretical model, a case of gripping a micro object to simulate the gripping process is shown. The experimental results indicate that the relationship between the tip displacement and input force, and the relationship between the gripping force and input force are linear. Theoretical model of the gripping force can predict the actual gripping process.
     5.Based on the integrated gripping force sensor and tip displacement sensor, the relationships between the applied voltage and the gripping force and tip displacement are modeled. The PID feedback control and model reference adaptive control are applied to improve the control accurary of the gripping force and tip displacement. In order to evaluate the proposed method, the corresponding simulation system is established and experimently verified. The simulation results indicate that the control error by the PID feedback control is periodical, while the tracking control error of the adaptive control for the gripping force and tip displacement is small, and the control accurary by the adaptive control is better than the PID control.
     The research works in this thesis provide theoretical basis and method for design, analysis, and control of MCMs for microgrippers.
引文
[1]席文明,姚斌.微装配与微操作[M].北京:国防工业出版社,2006:236.
    [2] Kim C J, Pisano A P, and Muller R S. Silicon-processed overhanging microgripper [J]. Journal of microelectromechanical systems, March 1992, 1(1): 31-36.
    [3]张培玉,武国英,郝一龙,李志军.微夹钳研究的进展与展望[J].光学精密工程,2000,8(3):292-296.
    [4]李路明,任延同,王立鼎,邵培革.微夹钳技术发展现状及应用研究[J].光学精密工程,1997,5(4):8-13.
    [5] Koyano K and Sato T. Micro object handling system with concentrated visual fields and new handling skills [C]. Proceedings of the IEEE International Conference on Robotics and Automation, April 1996, 3: 2541-2548.
    [6] Sanchez-Salmeron A J, Lopez-Tarazon R, Guzman-Diana R, and Ricolfe-Viala C. Recent development in micro-handling systems for micro-manufacturing [J]. Journal of Materials Processing Technology, August 2005, 167(2-3): 499-507..
    [7]李庆祥,李玉和等.微装配与微操作技术[M].北京:清华大学出版社,2004:263.
    [8] Tsui K, Geisberger A A, Matt Ellis, and Skidmore G D. Micromachined end-effector and techniques for directed MEMS assembly [J]. Journal of Micromechanics and Microengineering, April 2004, 14(4): 542-549.
    [9]刘静.操纵微小世界的工具-微/纳米镊的研究与应用[J].微纳电子技术,2005,42(3):97-122.
    [10] Gursel Alici and Nam N Huynh. Performance quantification of conducting polymer actuators for real applications: a microgripping system [J]. Transactions on Mechatronics, February 2007, 12(1).
    [11] Xie H, Regnier S. Three-dimensional automated micromanipulation using a nanotip gripper with multi-feedback [J]. Journal of Micromechanics and Microengineering, Jul 20091, 9(7), Article No. 075009.
    [12] Wang L D, Mills J K, and Cleghorn W L. Automatic microassembly using visual servo control [J]. IEEE Transactions on Electronics Packaging Manufacturing, October 2008, 31(4): 316-325.
    [13] Fahlbusch St., Mazerolle S, Breguet J M, Steinecker A, Agnus J, Perez R, and Michler J. Nanomanipulation in a scanning electron microscope [J]. Journal of Materials Processing Technology, August 2005, 167(2-3): 371-382.
    [14] Agnus J, Nectoux P, and Chaillet N. Overview of microgrippers and design of a micromanipulation station based on a MMOC microgripper [C]. Proceedings of 2005 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA 2005), June 2005, pp. 117-123.
    [15]陈海初,王振华,李满天等.两级位移放大微夹持器的研究[J].压电与声光,2005,27(3):300-302.
    [16] Mathieu Grossard, Christine Rotinat-Libersa, Nicolas Chaillet, Mehdi Boukallel. Mechanical and control-oriented design of a monolithic piezoelectric microgripper using a new topological optimization method [J]. Transactions on Mechatronics, February 2009, 14(1).
    [17]李勇,李玉和,李庆祥等.基于体硅工艺的静电致动微夹持器制作工艺分析[J].光学精密工程, 2003, 11(2): 109-113.
    [18] Harmanpreet S Bassan, Rajni V Patel, and Mehrdad Moallem. A novel manipulator for percutaneous needle insertion: design and experimentation [J]. Transactions on Mechatronics, December 2009, 14(6).
    [19] Brussel H Van, Peirs J, Reynaerts D, Delchambre A, Reinhart G, Roth N, Weck M, and Zussman E. Assembly of Microsystems [J]. Annals of the CIRP, 2000, 49(2): 451-472.
    [20]聂品.椭圆弧柔性铰链研究及其在微机械中的应用[D].西安:西安电子科技大学,2007.
    [21] Cohn M B, B?hringer K F, Novorolski J M, Singh A, Keller C G, Goldberg K Y, and Howe R T. Microassembly technologies for MEMS [C]. Proceedings of the SPIE Conference on Micromachining and Microfabrication Process Technology IV, September 1998, Santa Clara, CA, 3511, pp. 2-16.
    [22] Shao-Kang Hung, En-Te Hwu, Mei-Yung Chen, and Li-Chen Fu. Dual-stage piezoelectric nano-positioner utilizing a range-extended optical fiber Fabry-Perot interferometer [J]. Transactions on Mechatronics, June 2007, 12(3).
    [23] Ouyang P R, Zhang W J, Gupta M M, Zhao W. Overview of the development of a visual based automated bio-micromanipulation system [J]. Mechatronics, 2007, 17(10): 578-588.
    [24] Weck M, Peschke C. Equipment technology for flexible and automated micro-assembly [J]. Microsystem Technologies, March 2004, 10(3): 241-246.
    [25] http://www.nanotechnik.com/mgs2-em.html.
    [26] Y Choi, J Ross, etc. Mechanically driven microtweezers with integrated microelectrodes [J]. Journal of Micromechanics and Microengineering, 2004, 8(6): 065004 (9 pp.).
    [27] Mohd Nashrul Mohd Zubir and Bijan Shirinzadeh. Development of a high precision flexure-based microgripper [J]. Precision Engineering, 2009, 33(4): 362-370.
    [28] Mohd Nashrul Mohd Zubir, Bijan Shirinzadeh and Yanling Tian. Development of a novelflexure-based microgripper for high precision micro-object manipulation [J]. Sensors and Actuators A: Physical, 2009, 150(2): 257-266.
    [29] Maria Chiara Carrozza, Anna Eisinberg, et al. Towards a force-controlled microgripper for assembling biomedical microdevices [J]. Journal of Micromechanics and Microengineering, 2000, 10: 271-276.
    [30] Eisinberg, A Menciassi, et al. PI force control of a microgripper for assembling biomedical microdevices [J]. Circuits, Devices and Systems, IEE Proceedings, 2001, 148(6): 348-352.
    [31] Menciassi, A Eisinberg, et al. A sensorizedμelectro discharge machined superelastic alloy microgripper for micromanipulation: simulation and characterization [C]. Intelligent Robots and System,IEEE/RSJ International Conference on, 2002, 2(2): 1591-1595.
    [32] A Eisinberg, I Izzo, et al. A portable sensorized micro end-effector for operating in biomedical test-benches [C]. Intelligent Robots and Systems, 2003. (IROS 2003).2003, 3(3): 2589-2593.
    [33] R Salim, H Wurmus, A Harnisch D H Microgrippers created in microstructurable glass [J]. Microsystem Technologies, 1997, 4: 32-34.
    [34] Arai F, Andou D, Nonoda Y, Fukuda T, Iwata H, and Itoigawa K. Integrated microendeffector for micromanipulation [J]. IEEE/ASME Transactions on Mechatronics, March 1998, 3(1): 17-23.
    [35] Fumihito Arai, Yukio Nonoda, et al. New force measurement and micro grasping method using laser raman spectrophotometer [C]. Proceedings of the IEEE International Conference on Robotics and Automation Minneapolis, Minnesota,1996.
    [36] H Seki. Modeling and impedance control of a piezoelectric bimorph microgripper [C]. IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, July 7-10 1992:958-965.
    [37] Y Haddab, N Chaillet, and A Bourjault. A microgripper using smart piezoelectric actuators [C] Proceedings of IEEE/RSJ International Conference on Intelligent Robot and Systems, Takamatsu Japan, 2000.
    [38] R Keoschkerjan H W. A novel microgripper with parallel movement of gripping arms [C]. 8th International Conference on New Actuators,Bremen, Germany,2002.
    [39] Michael Goldfarb, Nikola Celanovic. A flexure-based gripper for small-scale manipulation [C]. Robotica, Cambridge University Press, 1999, 17(2): 181-187.
    [40] Kanty Rabenorosoa, Yassine Haddab, et al. A low cost coarse/fine piezoelectrically actuated microgripper with force measurement adapted to eupass control structure [C]. Micro-Assembly Technologies and Applications, Boston: Springer Boston, 2008, 260: 235-242.
    [41] S K Nah, Z W Zhong. A microgripper using piezoelectric actuation for micro-objectmanipulation [J]. Sensors and Actuators, 2006, 218-224.
    [42]吴徽,刘理天.表面微机械静电梳状驱动结构的研究[J].清华大学学报, 1999, 39:69-73.
    [43] P B Chu, S J Pister. Analysis of closed-loop control of parallel-plate electostatic microgripper [C]. Proceedings of IEEE International Conference On Robotics and Automation, SanDiego, May 1994, 1:820-825.
    [44] Chang Jin kim, Albert, et al. Polysilicon Microgripper [J]. Technical Digest IEEE Solid-State and Actuator Workshop, 1990, 6: 48-51.
    [45] F Beyeler, D J Bell, B J Nelson, Y Sun, A Neild S, Oberti J D. Design of a micro-gripper and an ultrasonic manipulator for handling micron sized objects [C]. International Conference on Intelligent Robots and Systems, Beijing China, 2006.
    [46] Y Suzuki. Flexible microgripper and its application to micromeasurement of mechanical and thermal properties [C]. Micro Electro Mechanical Systems, MEMS '96 Proceeding, 1996, 406-411.
    [47] Giouroudi I, et al. Development of a microgripping system for handling of microcomponents [J]. Precision Engineering , 2007.
    [48] G Bogelsack. Mechanismus zur Bewegungs-und Kraftübertragung [C].1994, DE 44 32, 253 A1.
    [49] W H Chu and M Mehregany Microfabicated tweezers with large gripping force and a large range motion [C]. Proceedings of IEEE, Solid State Sensor and Actuator Workshop, Hilton Head, June 13-16 1994: 107-110.
    [50] H Du, C Su, M Lim, and W Jin. A micromachined thermally driven gripper: a numerical and experimental study [J]. Journal of Smart Materials and Structures, 1999, (8): 616-622.
    [51] Nogimori W, Irisa K, Ando M, and Naruse Y. A Laser-Powered Microgripper [C]. Proceedings IEEE tenth Annual International Workshop, 1997:267-271.
    [52] C G Keller and R T Howe. Hexsil tweezers for teleoperated microassembly [C]. Micro Electro Mechanical Systems, MEMS '97, Proceedings IEEE, Tenth Annual International Workshop on, 1997: 72-77.
    [53] Lee, S h Kwang-cheol Lee et al. Fabrication of an electrothermally actuated electrostatic microgripper [C]. Transducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on, 2003. 2003: 1552-5551.
    [54] Chronis, N, Lee L P. Electrothermally activated SU-8 microgripper for single cell manipulation in solution [C]. Microelectromechanical Systems, Journal of Publication Date: Aug. 2005. 2005, 14(4): 857-863.
    [55] Nam-trung Nguyen S H. A polymeric microgripper with integrated thermal actuators [J].Journal of Micromechanics and Microengineering, 2004: 969-974.
    [56] Abraham P Lee, Dino R Ciarlo et al. A practical microgripper by fine alignment, eutectic bonding and SMA actuation [J]. Sensors and Actuators A: Physical. 1996, 54(1-3): 755-759.
    [57] Han Zhang, Burdet, E et al. Robotic micro-assembly of scaffold/cell constructs with a shape memory alloy gripper [C]. Proceedings of the 2002 IEEE lntemational Conference on Robotics 8 Automation, Washington, DC.2002, 2:1483- 1488.
    [58] M Kohl, E Just, W Pfleging, and S Miyazaki. SMA microgripper with intergrated antagonism [J], Journal of Sensors and Actuators, 2000, (83): 208-213.
    [59] Y bellouard, R Clavel, R Gotthardt, J Bidaux T S. A new concept of monolithic shape memory alloy micro-devices used in micro-robotics [C]. Actuator'98- 6th International Conference on New Actuators - Bremen, Germany, June 17-19, 1998.
    [60] Z W Zhong, C K Y. Development of a gripper using SMA wire [J]. Sensors and Actuators A, 2006, 126:375–381.
    [61] J h Kyung, B g Ko et al. Design of a microgripper for micromanipulation of microcomponents using SMA wires and flexible hinges [J]. Sensors and Actuators A 141 (2008) . 2007, 141(1): 144-150.
    [62] Park Jungyul, Kim Sangmin, Kim Deok-Ho, Kim Byungkyu, Kwon SangJoo, Park Jong-Oh and Lee Kyo-I1. Advanced controller design and implementation of a sensorized microgripper for micromanipulation [C]. Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orleans, LA, April 2004, pp. 5025-5032.
    [63] Kim D H, Kim B, Kang H. Development of a piezoelectric polymer-based sensorized microgripper for microassembly and micromanipulation [J]. Microsystem Technologies, 2004, 10(1): 275-280.
    [64]蔡建华,黄心汉等.一种集成微力检测的压电式微夹钳[J].机器人, 2006, 28(1):59-64.
    [65]陈国良,黄心汉等.面向微装配的压电陶瓷微夹钳建模与控制[J].高技术通讯, 2006, 16(11).
    [66]陈伟.一种集成3-DMEMS力传感器的微夹持器的研究[D].哈尔滨工业大学, 2006.
    [67]荣伟彬,谢晖等.一种集成三维微力传感器的微夹持器研制[J].压电与声光, 2007, 29(2): 175-178.
    [68]李勇.微夹持理论与系统的研究[D].清华大学, 2002.
    [69]巩娟,李玉和等.基于SMA的微夹持系统实验研究[J].新技术新工艺, 2005(6):18-20.
    [70]郝秀春,褚金奎等.电热微夹钳的热效应分析和数值模拟[J].中国机械工程, 2005, 16(14): 1269-1271.
    [71]郝秀春.电热驱动微夹钳的拓扑设计及相关问题研究[D].大连:大连理工大学, 2006.
    [72] Huibao Chen, Ping sun. The design of two-layer flexible hinge milli-gripper [C]. Micro Machine and Human Science, Proceedings of the Seventh International Symposium, Nagoya, Japan: 1996.
    [73]陈建宇,孙麟治.压电元件驱动的微小夹持器的研制[J].光学精密工程, 1997, 5(4): 41-48.
    [74] Menciassi A, Scalari G, Eisinberg A, Anticoli C, Francabandiera P, Carrozza M C, Dario P. An instrumented probe for mechanical characterization of soft tissues [J]. Biomedical Microdevices [J], 2001, 3(2):149-156.
    [75] Menciassi A, Eisinberg A, Scalari G, Anticoli C, Carrozza M C, and Dario P. Force feedback-based microinstrument for measuring tissue properties and pulse in microsurgery [C]. Proceedings 2001 IEEE International Conference on Robotics and Automation (ICRA’2001), 2001, 1: 626-631.
    [76] Greminger M A, Nelson B J. Vision-based force measurement [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, March 2004, 26(3): 290-298.
    [77] Kim D H, Lee M G, Kim B, and Sun Y. A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors a numerical and experimental study [J], Smart Materials and Structures, 2005, 14(1): 1265-1272.
    [78] Yantao Shen, Ning Xi, Wen Jung Li and Jindong Tan. A high sensitivity force sensor for microassembly: design and experiments [J]. IEEE Advanced Intelligent Mechatronics, Jnly 2003, 2(1): 703-708.
    [79] M?lhave K and Hansen O. Electro-thermally actuated microgrippers with integrated force-feedback [J]. Journal of Micromechanics and Microengineering, 2005, 15(1): 1265-1270.
    [80] Duc T C, Lau G K, Creemer J F, Sarro P M. Electrothermal microgripper with large jaw displacement and integrated force sensors [J]. Journal of Microelectromechanical Systems, Dec 2008, 17(6): 1546-1555.
    [81] Chen Tao, Chen Liguo, Sun Lining, Li Xinxin. Design and fabrication of a four-arm-structure MEMS gripper [J]. IEEE Transactions on Industrial Electronics, April 2009, 56(4): 996-1004.
    [82] Beyeler F, Neild A, Oberti S, Bell D J, Yu Sun, Dual J, Nelson B J. Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field [J]. Journal of Microelectromechanical Systems, Feb 2007, 16(1): 7-15.
    [83] Kim K, Liu X, Zhang Y, and Sun Y. Micronewton force-controlled manipulation of biomaterials using a monolithic MEMS microgripper with two-axis force feedback [C]. Proceedings of IEEE International Conference on Robotics and Automation (ICRA 2008), May2008, 3100-3105.
    [84] Chu H K, Mills J K, Cleghorn W L. MEMS capacitive force sensor for use in microassembly [C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2008), Xian China, July 2008, 797-802.
    [85] Enikov E T, Nelson B J. Three-dimensional microfabrication for a multi-degree-of-freedom capacitive force sensor using fibre-chip coupling [J]. Journal of Micromechanics and Microengineering, Dec 2000, 10(4): 492-497.
    [86] Nelson B J, Zhou Y, and Vikramaditya B. Sensor-based microassembly of hybrid MEMS devices [J]. IEEE Control Systems Magazine, Dec 1998, 18(6): 35-45.
    [87] Lu Z, Chen P C Y and Lin W. Force sensing and control in micromanipulation [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, Nov 2006, 36(6): 713-724.
    [88]朱炜.基于Bouc-Wen模型的压电陶瓷执行器的迟滞特性模拟与控制技术的研究[D].重庆,重庆大学, 2009.
    [89]胡斌梁,陈国良.压电陶瓷微夹钳迟滞环自适应逆控制研究[J].中国机械工程, 2006,17(8): 798-801.
    [90]陶永华.新型PID控制及其应用(第2版) [M].北京:机械工业出版社, 2004, 1-30.
    [91]于靖军,毕树生,宗光华.全柔性微位移放大机构的设计技术研究[J].航空学报,2004,25(1): 74-78.
    [92] Howell L L, Compliant Mechanisms [M], John Wiley & Sons, Inc., pp. 459, 2001.
    [93]杨群.一种夹爪平行移动的压电致动微夹钳的研究[D].重庆,重庆大学, 2009.
    [94] Gui-Min Chen, Jian-Yuan Jia, and Zhi-Wu Li. Right-circular Corner filleted Flexure Hinges [J], Proc. IEEE, Aug. 2005, 249-253.
    [95] Handley D C, Lu T F, Yong Y K, and Zhang W J. A simple and efficient dynamic modeling method for compliant micropositioning mechanisms using flexure hinges [C]. Proceedings of SPIE Conference on Device and Process Technologies for MEMS, Microelectronics, and Photonics III, 2004, 5276(1):67-76.
    [96] Yang R, Jouaneh M, and Schweizerb R. Design and characterization of a low-profile micropositioning stage [J]. Precision Engineering, January 1996, 18(1): 20-29.
    [97] Paros J M and Weisbord L. How to design flexure hinges [J]. Machine Design, 1965, 37: 151-156.
    [98] Tanicawa T, Kawai M. etc. Force control system for autonomous micro manipulation [C], Proceedings 2001 IEEE International Conference on Robotics and Automation (ICRA’2001), 2001, 1:610-615.
    [99] Wang D H, Zhu W, Yang Q, and Ming W D. A high-voltage and high-power amplifier for driving piezoelectric stack actuators [J]. Journal of Intelligent Material Systems and Structures, 2009, 20(16): 1987-2001.