夹钳技术的研究及系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学研究对象向微小、超精密领域的方向的发展,机器人所要操作的对象也从宏观领域扩展到亚微米、纳米级的微观领域。微操作机器人系统是多学科理论交叉结合的高科技产物,它集计算机技术、图像处理技术、自动控制原理、计算机视觉、精密机械加工于一身,依靠计算机图像处理技术,通过自动控制原理实微操作机器人的智能目标识别、目标操作等工作。
     本论文的研究工作由国家高技术863计划804主题项目“靶装配微型智能机械手研究”资助,在微装配机器人系统的平台上,研究微夹钳的结构及控制电路的设计,根据精密靶装配的实际需求,开发了一套靶零件微夹持系统,内容包括:1.设计和开发两种不同类型的靶零件微夹持器(靶球微夹持器和柱腔微夹持器);2.设计和开发两种夹持器的控制器电路。
     本文的微夹钳利用PVDF的逆压电效应实现对微夹钳微力感知,通过PVDF输出信号来实现夹取力的读取,同时通过对微夹钳驱动电源电压的控制来保证能够很好的夹取零件。主要工作是微夹钳结构改进及控制器电路的设计与改进。包括靶球微夹持器的真空气路,电源,真空气路元件的控制,柱腔微夹持器的正反向驱动电路微力检测电路等。
     论文在最后进行了微夹钳操作的实验,并对全文进行了总结,对微操作机器人,微装备机器人及微夹钳技术的发展前进作了展望。
With the object of scientific research to the small, ultra-precision of the direction of the field of development of robot to be the target of the operation is also extended to the area from the macro sub-micron, the field of micro-nano-scale. Micro-robot system is a combination of multi-disciplinary theory of high-tech cross-product of computer technology, image processing technology, automatic control theory, computer vision, precision machining in one, relying on computer image processing technology, through the automatic control is the principle of microrobot target identification, target operation and so on.
     The research work is funded by the National 863 Project 804 high-tech theme of the project "Intelligent target assembly of micro-mechanical studies", in the micro-robot platform system to study the structure of microgripper and control circuit design, according to the target precision assembly the actual demand, the development of a set of target micro-gripper system components, including: 1. Design and development of two different types of target micro-gripper parts (the target micro-gripper and the ball cavity micro-gripper column); 2. Design and development of two kinds of gripper controller circuit.
     In the thesis, the use of PVDF microgripper of the inverse piezoelectric effect to achieve micro-force sensing microgripper through PVDF output signal power to achieve the read folder access, at the same time microgripper driven by the supply voltage to the control to ensure good check parts folder. main task is to improve the microgripper structure and controller design and improvement of the circuit. Including the target micro-gripper ball real air routes, power, real control of the air path components, column the pros and cons of micro-gripper to the drive circuit, such as micro-power detection circuit.
     Thesis carried out at the end of the experiment micro-gripper operation, and a summary of the full text of the micro-robot, micro robot equipment and technology development microgripper looking forward were made.
引文
[1]王守杰,宗光华.微操作机器人与宏微观.自然辩证法研究,1998,24(9):24~27
    [2]赵新,孙明.微型机器人发展概述.机器人技术与应用,2005, 38(10): 39-43
    [3] http://www.bjkp.gov.cn/bjkpzc/kxbl/jqr/180119.shtml
    [4] Sun Y, Wan K T, Roberts K P, et al, Mechanical property characterization of mouse zona pellucida, IEEE/SAME Transactions on Nanobioscience, 2003, 2(4):379~286
    [5] http://baike.baidu.com/view/95093.html
    [6]毕树生,宗光华,赵玮,张建勋.生物工程中的微操作机器人系统,高技术通讯, 1998, 8(11): 53-57
    [7]毕树生,宗光华.微操作机器人系统的研究开发.中国机械工程, 1999, 10(9): 1024~1027
    [8]蔡鹤皋.微操作机器人系统发展现状.见:中国第五届机器人学术会议论文集.哈尔滨:哈尔滨工业大学出版社,1997.32~38
    [9] Tamio Tanikawa, Tatsuo Arai. Development of a Micro-Manipulation System Having a Two-Fingered Micro-Hand, IEEE Transaction on Robotics and Automation, 1999, 15(1):152~162
    [10] S. Fatikow, J. Seyfried, S. Fahlbusch, A. Burkle et al. A flexible microrobot-based microassembly station. Journal of Intelligent & Robotic System, 2000, 27(1): 135-169
    [11] F. Schmoeckel, S. Fatikow. Smart flexible microrobots for SEM applications. Journal of Intelligent Material Systems and Structures, 2000, 11(3): 191-198
    [12] F. Schmoeckel, S. Fahlbusch, J. Seyfried, A. Burkle et al. Development of a microrobot-based micromanipulation cell in an SEM. Proc. of SPIE Int. Symposium on Intelligent Systems, Boston, USA: SPIE, 2000. 129-140
    [13] Wolfgang Zesch, Markus Brunner, Ariel Weber. Vacuum tool for handling microobjects with a nanorobot. In: Proceedings of the 1997 IEEE, International Conference on Robotics and Automation. Albuquerque, New Mexico: 1997. 1761~1766
    [14] R. Andrew Russell. A robotic system for performing sub-millimeter grasping and manipulation tasks. Robotics and Automation Systems, 1994(13): 209~218
    [15]卢桂章,张建勋,赵新.面向生物工程实验的微操作机器人.南开大学学报(自然科学), 1999, 32(3): 42~46
    [16]李银妹,楼立人,操传顺,王浩威等.细胞激光微操作系统.细胞生物学杂志, 1999, 21(2): 67-70
    [17]孙立宁,孙绍云,荣伟彬,蔡鹤皋.基于PZT的宏/微驱动机器人研究,哈尔滨工业大学学报, 2004, 36(1): 16-19
    [18]孙立宁,王振华,曲东升,王建国等.六自由度压电驱动并联微动机构设计与分析,压电与声光, 2003, 25(4): 277-286
    [19]孙立宁,董为,杜志江.宏/微双重驱动机器人系统的研究现状与关键技术,中国机械工程, 2005, 16(1): 89-93
    [20] Deok-Ho Kim, Moon Gu Lee, Byungkyu Kim. A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors: a numerical and experimental study, Smart Materials And Structures. 2005, 14:1265~1272
    [21] D.-H. Kim, B. Kim, H. Kang. Development of a piezoelectric polymer-based sensorized microgripper for microassembly and micromanipulation, Microsystem Technologies. 2004, 10:275~280
    [22] Kristian M?lhave, Ole Hansen. Electro-thermally actuated microgrippers with integrated force-feedback, Journal of Micromechanics and Microengineering. 2005, 15:1265~1270
    [23] F. Arai, D. Andou, Y. Nonnoda, T. Fukuda et al. Integrated microendeffector for micromanipulation, IEEE Trans. on Mechatronics, 1998, 3(1): 17-23
    [24] X.H. Huang, J.H. Cai, M. Wang, X.D. Lv. A piezoelectric bimorh microgripper with micro-force sensing. In: Proc. of IEEE Int. Conf. on Information Acquisition, Hongkong, China: IEEE, 2005. 145-149
    [25]王家畴,荣伟彬,孙立宁.微操作中力的检测及控制.压电与声光,2007, 4(1):465~466
    [26] Menciassi A, Eisinberg M A, Carrozza M C, et al, Force sensing microinstrument for measuring tissue properties and pulse in microsurgery, IEEE/ASME Transactions on Mechatronics, 2003,8(1):10~17
    [27]吕遐东.微装配机器人显微伺服关键技术研究:[博士学位论文].华中科技大学, 2007
    [28] Sun Y, Wan K T, Roberts K P, et al, Mechanical property characterization of mouse zona pellucida, IEEE/SAME Transactions on Nanobioscience, 2003, 2(4):379~286
    [29]王振中.PVDF压电薄膜传感器.自动化仪表,1991,12(1):6~10
    [30]罗志增,何发昌.用PVDF制作的机器人传感器.传感器技术,1997,16(3):1~4
    [31] Shigeru Ando and Hiroyuki Shinoda. Ultrasonic Emission Tactile Sensing. SICEconference in Tokyo, July 25, 1993:61~69
    [32]孙立宁,孙绍云,荣伟彬,蔡鹤皋.微操作机器人的发展现状,机器人, 2002, 24(2): 184-187
    [33]蔡建华.新型微夹钳技术研究:[硕士学位论文].华中科技大学, 2006
    [34]刘敏,彭刚,黄心汉.适用于微粒操作的真空微夹研究.兵工自动化, 2002, 21(4): 9-12
    [35] Vincent Piefort. Finete element modelling of piezoelectric active structures. Doctoral thesis of Universite Libre de Bruxelles.
    [36]宋道仁.压电效应与应用.北京:科学普及出版社,1987年第一版
    [37] An American National Standard. IEEE Standard on Piezoelectricity, ANSI/IEEE Std 176-1987
    [38]全小平,何发昌. PVDF智能传感器的研究[J].工程设计, 1997,(02)
    [39]蔡建华,黄心汉,吕遐东.一种集成微力检测的压电式微夹钳.机器人,2006,28(1): 59~64
    [40]张铁锋.基于PVDF的智能微夹钳研究:[硕士学位论文].华中科技大学, 2007
    [41]童诗白,华成英.模拟电子技术基础.北京:高等教育出版社(第三版),2003.368-369
    [42] Hatamura Y, Nakao M, Sato T. Construction of an integrated manufactureing system for 3D microstructure--concept design and realization [J]. Annals of the CIRP, 1997, 46(1):313~318
    [43]罗翔,俞华开,颜景平.微装配技术的进展和发展趋势.仪器仪表学报,2001,22(3): 325~326