基于虚拟样机技术的双螺旋副旋转油缸结构参数设计与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋转油缸是一种常用的液压装置,能把活塞的直线运动转变成旋转运动并做功,目前广泛地应用于各行各业中,根据旋转油缸的应用场合不一样,对旋转油缸的结构和性能要求也有所不同。在旋转油缸的传统设计过程中,设计人员主要根据自己以前的经验,结合前人的经验公式和设计参数来进行产品的具体设计,这样很难实现旋转油缸的优化设计。为了降低设计成本,缩短设计周期,本文把虚拟样机技术应用于旋转油缸的设计和研究中。
     本文借助于虚拟样机技术,结合Pro/E的三维实体造型和运动学仿真功能、ADAMS的动力学仿真功能以及ANSYS的静力学分析功能,对旋转油缸进行了设计与研究。首先利用Pro/E软件实现了360度双螺旋副旋转油缸的三维物理建模和虚拟装配,并对装配模型进行了干涉检查和运动学分析。结合装配实体模型,建立了360度双螺旋副旋转油缸的多体动力学模型,并进行了动力学分析,仿真结果与理论计算结论基本一致,验证了虚拟样机模型的合理性和正确性。研究了不同牙形角参数时输出螺杆的旋转特性和轴承受力特性。建立了有限元静力学分析模型,研究了360度双螺旋副旋转油缸的关键零件的应力、应变特性,为油缸的结构设计和优化提供了可靠依据。最后搭建了360度双螺旋副旋转油缸实验平台,进行了实验验证研究,验证了研究结论的正确性,达到了预期的研究目标。本文中所使用的设计思维和方法对启迪其它产品的开发研究也有一定的意义。
As one of hydraulic devices in common use, Rotating hydraulic cylinder can translate linear motion of the piston into rotary movement and do work, it has been widely used in all walks of life, there are different requirements of the structure form and performance for different application situations, it is difficult to achieve optimal design of rotating hydraulic cylinder by using traditional design method, for in the traditional design, the designer primarily on the basis of past design experience, combined with a large number of empirical formula and the design parameters for the specific design. This paper applies the Virtual Prototyping Technology to design the rotating hydraulic cylinder for solving the issues in the traditional design, which is longer design cycle and higher cost.
     Based on the Virtual Prototyping Technology, In this paper studies the optimal design of the rotating hydraulic cylinder. With the CAD/ CAE/CAM feature-based modeling tool of the Pro/E(Pro/ENGINEER), mechanical dynamics simulation software, ADAMS (Automatic Dynamic Analysis Mechanical System) and the finite element software of ANSYS. First of all, the three-dimensional model of the rotating hydraulic cylinder is built up and accomplished its virtual assembling with the software of Pro/E, validating the correctness of the model by doing kinematics analysis. The multibody dynamics model of 360-degrees of double screw pair of rotating hydraulic cylinder is built up by Utilizing the ADAMS software and make a research, the result of simulation is similar with calculation in the theory. Verify the correctness of the virtual prototype. Study the output screw rotation and bearing load characteristics with different Toothed-shaped angle. based the boundary condition, the FEA static analysis of the key parts of the rotating hydraulic cylinder, is made with the FEA software-ANSYS. These analysis provide the theory for the structural design and optimization. In the end, the rotating hydraulic cylinder experiment is carried out for verifying the correctness of design and reaching the design goal. The method and theory used in this paper can also be used in other products design and research.
引文
[1]刘涛,赵桂范,孙以泽.复杂机械的虚拟样机技术[J].机械设计,2004,(08):58-59.
    [2]宋明正.摆缸式螺旋压力机[J].传动技术,2001,(01):46-47.
    [3]张利平.美国推出型摆动液压、气动马达[J].机床与液压,2002,(06):109.
    [4]朱华山,刘东源.意大利SOLIMEC公司R622HD旋挖钻机履带底盘的改进方案探讨[J].中国煤炭地质,2009,(1):53-54.
    [5]金志民.动力与精确的天合之作—HKS摆动液压缸[J].现代零部件,2004,(08):40-41.
    [6]姜永成,任福君,颜兵兵,张连军.基于虚拟样机的转摆摆工作台运动特性仿真[J].科技导报,2008,(07):38-42.
    [7]石延平.凿岩钻车螺旋回转变幅机构设计[J].矿山机械,1999,(11):27-29.
    [8]周青山.三爪卡盘螺旋摆动式液压缸增力机构的设计[J].现代机械,2004,(01):25-27.
    [9]Hendrickson A, Buckhurst C. Screw Mechanisms [M]. Focal Press,2007:233-238.
    [10]孙建民,刘文超,柯晖.一种新型传动机构——摆杆齿条变程器[J].湖北工学院学报,2003,(02):43-45.
    [11]邱家修,姚建松,时阳等.新型双回转式压缩机的结构原理及其特点[J].郑州轻工业学院学报(自然科学版),1999,(02):1-3.
    [12]杨永清,郭虹,纪玉杰.液压摆动机机械手设计[J].液压与气动,2008,(01):41-43.
    [13]周海强,陈道良.摆动液压缸内部结构改进设计[J].液压气动与密封,2007,(06):32-34.
    [14]石延平,扬力.大摆角螺旋摆动液压缸的设计[J].液压与气动,1999,(06):5-7.
    [15]尚久明,李国斌,赵歧华.一种新型千斤顶的设计[J].起重运输机械,2007,(12):102-103.
    [16]王跃辉,宋振成.螺旋角的设计计算[J].机械工程师,2004,(03):56-57.
    [17]陈德生,曹志锡.螺旋升降柱[J].起重运输机械,2004,(01):39-40.
    [18]梁锡昌,蒋建东,李润方等.特种螺旋传动机构的研究[J].机械工程学报,2003,(10):106-110.
    [19]王建军,李文革.螺旋传动的参数设计与检验[J].计测技术,2006,(05):56-58.
    [20]周先辉,孙友松,魏良模.高效重载滑动螺旋副实现途径的分析[J].机械传动,2007,(02):88-93.
    [21]陶海军.61°螺旋齿轮的加工[J].机械制造,2002,(05):18.
    [22]李长江,朱新才,徐明,林顺洪.利用Pro/E生成工程装配图的方法[J].机械工程师,2007,(12):74-75.
    [23]易勇.基于Pro/E的普通螺栓三维参数化建模[J].机械工程师,2008,(06):94-95.
    [24]杨延波.基于Pro/E软件创建螺纹收尾特征方法的探讨[J].科技创新导报,2008,(23):6-7.
    [25]邱荣茂,王大鸣,崔振勇.螺纹的三维建模[J].现代制造工程,2003,(07):38-39.
    [26]吕佳力.普通螺纹的三维建模[J].成都大学学报(自然科学版),2005,(04):311-313.
    [27]Souchon F, Renaux P, Berthier Y. Helical scan head and tape contact behavior:optimization of tribological and magnetic aspects[J]. Tribology International,1998,31(8):479-484.
    [28]Rossignac J, Kim J J, Song S C, et al. Boundary of the volume swept by a free-form solid in screw motion[J]. Computer-Aided Design,2007,39(9):745-755.
    [29]Zhang H, Hua L, Han X. Computerized design and simulation of meshing of modified double circular-arc helical gears by tooth end relief with helix[J]. Mechanism and Machine Theory, 2010,45(1):46-64.
    [30]Chen Y, Tsay C. Stress analysis of a helical gear set with localized bearing contact[J]. Finite Elements in Analysis and Design,2002,38(8):707-723.
    [31]Hedlund J, Lehtovaara A. Modeling of helical gear contact with tooth deflection[J]. Tribology International,2007,40(4):613-619.
    [32]Litvin F L, Gonzalez-Perez I, Fuentes A, et al. Design, generation and stress analysis of face-gear drive with helical pinion[J]. Computer Methods in Applied Mechanics and Engineering,2005,194(36-38):3870-3901.
    [33]张姝玉,王述洋,周贯平.基于Pro/E与ADAMS传递过程的探讨[J].林业机械与木工设备,2006,(06):27-28
    [34]杜中华,王兴贵.Pro/E和ADAMS传递过程中曲线丢失问题的处理办法[J].机械工程师,2001,(11):27-28.
    [35]杜中华,狄长春,王兴贵.Pro/E与ADAMS建立的虚拟样机结构尺寸优化[J].机电工程技术,2002,(04):31-32.
    [36]李晓娟.Pro/E与ADAMS联合建模方法的研究[J].装备制造技术,2008,(12):31-33.
    [37]张星.基于Pro/E的凸轮参数化设计及ADAMS仿真[J].科技经济市场,2008,(02):11-12.
    [38]田会方,林喜镇,赵恒.基于Pro/E和ADAMS齿轮啮合的动力学仿真[J].机械传动,2006,(06):66-69.
    [39]李昌,韩兴,孙志礼.基于Pro/E和ADAMS的齿轮啮合精确动力学仿真[J].机械与电子,2008,(01):55-58.
    [40]田广才,徐进友.基于Pro/E和ADAMS的高速比减速器的运动学仿真[J].精密制造与自动化,2008,(02):39-41.
    [41]侯国柱,张晓峰.基于Pro/E和ADAMS的机器人虚拟设计与仿真[J].机械设计与制造,2009,(03):183-185.
    [42]杨丽华,李晓豁.基于Pro/E和ADAMS的连续采煤机截割滚筒的运动仿真[J].辽宁工程技术大学学报,2007,(2):210-212.
    [43]姚晓光,郭晓松,冯永保,孟令辉.基于Pro/E和ADAMS联合仿真的夹钳机构设计与优化[J].机床与液压,2006,(06):233-235.
    [44]陈志刚,吴雪飞.基于Pro/E及Adams圆柱齿轮减速器的参数化建模及运动仿真[J].机械研究与应用,2005,(02):105-109.
    [45]芮执元,程林章.基于Pro/E与ADAMS结合的虚拟样机动态仿真[J].现代制造工程,2005,(01):56-58.
    [46]刘春景,胡天翔.基于Pro/E与ADAMS蜗轮蜗杆传动仿真研究[J].林业机械与木工设备,2007,(10):44-49.
    [47]赵丽娟,李世旭,刘杰.基于Pro/E与ADAMS协同仿真中的图形数据交换[J].机械与电子,2006,(12):78-80.
    [48]Ryu J, Kim H, Wang S. A method for improving dynamic solutions in flexible multibody dynamics[J]. Computers & Structures,1998,66(6):765-776.
    [49]Van Staeyen K, Tijskens E, Ramon H. A multibody dynamic approach for colliding particles[J]. Journal of Sound and Vibration,2003,266(3):481-491.
    [50]Zhao X, Mair P, Wu J. A new multibody modelling methodology for wind turbine structures using a cardanic joint beam element[J]. Renewable Energy,2007,32(3):532-546.
    [51]Wasfy T M, Noor A K. Modeling and sensitivity analysis of multibody systems using new solid, shell and beam elements[J]. Computer Methods in Applied Mechanics and Engineering, 1996,138(1-4):187-211.
    [52]Flores P. Modeling and simulation of wear in revolute clearance joints in multibody systems[J]. Mechanism and Machine Theory,2009,44(6):1211-1222.
    [53]Bauchau O A, Ju C. Modeling friction phenomena in flexible multibody dynamics[J]. Computer Methods in Applied Mechanics and Engineering,2006,195(50-51):6909-6924.
    [54]Bei Y, Fregly B J. Multibody dynamic simulation of knee contact mechanics[J]. Medical Engineering & Physics,2004,26(9):777-789.
    [55]Schiehlen W, Guse N, Seifried R. Multibody dynamics in computational mechanics and engineering applications[J]. Computer Methods in Applied Mechanics and Engineering,2006, 195(41-43):5509-5522.
    [56]Blundell M, Harty D. Multibody systems simulation software [M]. Butterworth Heinemann, 2004, (3):75-130.
    [57]Sudarsan R, Sathiya Keerthi S. An efficient approach for the numerical simulation of multibody systems[J]. Applied Mathematics and Computation,1998,92(2-3):195-218.
    [58]Ryu J, Sung-Soo K, Sang-Sup K. An efficient computational method for dynamic stress analysis of flexible multibody systems[J]. Computers & Structures,1992,42(6):969-977.
    [59]Bayo E, De Jal J G, Avello A, et al. An efficient computational method for real time multibody dynamic simulation in fully cartesian coordinates[J]. Computer Methods in Applied Mechanics and Engineering,1991,92(3):377-395.
    [60]Kromer V, Dufoss F, Gueury M. An object-oriented design of a finite element code: application to multibody systems analysis[J]. Advances in Engineering Software,2004, 35(5):273-287.
    [61]Teng T, Chang F, Liu Y, et al. Analysis of dynamic response of vehicle occupant in frontal crash using multibody dynamics method[J]. Mathematical and Computer Modelling,2008, 48(11-12):1724-1736.
    [62]Mukras S, Kim N H, Mauntler N A, et al. Analysis of planar multibody systems with revolute joint wear[J]. Wear,2010,268(5-6):643-652.
    [63]朱俊,陈振华.Pro/E、Adams、Ansys在取玻璃机器人设计中的联合应用[J].机械工程师,2008, (07):3-5.
    [64]张胜利,Pro/E、ADAMS与ANSYS在机械系统设计中的联合运用[J].机械设计与制造,2005,(11):143-145.
    [65]刘治波,禹宏云.Pro/E、ADAMS与ANSYS在虚拟设计中的联合应用[J].机械工程与自动化,2008,(02):48-53.
    [66]Shen-Tarng C, Fei-Ya C. Kinetostatic analysis of variable lead screw mechanisms with conic frustum meshing elements[J]. Mathematical and Computer Modelling,1998, 27(1):17-30.
    [67]黄志东,任继文,卢怀亮等.滑动螺旋传动中螺牙应力和工作压力的研究[J].锻压技术,2004,(02):56-59.
    [68]钱学毅,邹丽梅,郭波.滑动螺旋副螺纹牙根应力有限元分析[J].机械设计与制造,2006,(11):132-134.
    [69]尹益辉.螺栓啮合螺纹段的轴力、等效应力分布及摩擦的影响分析[J].机械强度,2006,(04):524-531.
    [70]周先辉,孙友松,张尔文.基于有限元方法的传动螺纹螺牙轴向载荷分布规律分析[J].机械设计与制造,2008,(01):16-18.
    [71]Rao C R M, Muthuveerappan G. Finite element modelling and stress analysis of helical gear teeth[J]. Computers & Structures,1993,49(6):1095-1106.