水平井多封隔器压裂管柱通过性力学关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于水平井压裂施工,多封隔器压裂管柱顺利下入井底和上提出井是压裂施工成功的必要条件。多封隔器压裂管柱下入过程,压裂管柱及封隔器与套管内壁之间存在摩擦作用,当管柱自重不足以使其顺利入井时,需要在井口施加一定的轴向载荷。而压裂管柱具有壁薄、刚度小等特点,在轴向载荷作用下将发生屈曲变形,且存在多封隔器时管柱变形情况更为复杂,使管柱与套管内壁产生新接触点,造成压裂管柱下入摩阻力增大。轴向载荷越大,新接触点越多,摩阻力越大,需要井口提供的轴向载荷也越大,当压裂管柱屈曲变形到一定程度,管柱与套管间产生摩擦锁死,此时轴向力无法向下传递,使压裂管柱下入受阻;压裂液返排过程,井口压力迅速降低,使地层裂缝与井筒流体之间形成较大压差,压裂液回流至井筒,压裂液压力作用在套管射孔孔眼上产生较强的应力集中,可能导致套管发生塑性变形或失稳挤扁等而使多封隔器压裂管柱在上提过程中遇卡。为了解决水平井多封隔器压裂管柱下入与上提遇阻的难题,本论文创新性地开展了多封隔器压裂管柱弯曲和屈曲变形力学分析,建立了考虑多封隔器压裂管柱刚度的摩阻力计算模型;考虑压裂液返排速度对套管受力的影响,建立压裂管柱上提出井的压裂液临界返排速度计算模型,为多封隔器压裂管柱顺利上提出井,提出一种预判方法。本文的主要研究工作与研究成果体现在以下几个方面:
     首先,根据材料力学弯曲梁理论,建立了两封隔器之间的压裂管柱弯曲变形挠度计算模型,分析了压裂管柱在套管内挠度变化的极限值,提出了封隔器之间压裂管柱出现新接触点的判定方法,为摩阻力计算提供了基础判定条件。
     其次,分别对压裂管柱发生屈曲变形的垂直井段、弯曲段、水平段的屈曲临界载荷问题开展研究。在垂直段,考虑压裂管柱重力对压裂管柱屈曲变形的影响,根据静力学平衡方程,建立了垂直段压裂管柱正弦屈曲及螺旋屈曲临界载荷计算模型;在弯曲段,考虑井眼弯曲作用对压裂管柱屈曲变形的影响,建立了不同曲率半径下弯曲段压裂管柱正弦屈曲及螺旋屈曲临界载荷计算模型;在水平段,考虑压裂管柱重力对压裂管柱屈曲变形的影响,建立了水平段压裂管柱正弦屈曲及螺旋屈曲临界载荷计算模型。考虑封隔器对压裂管柱屈曲变形的约束作用,建立了带封隔器的压裂管柱屈曲变形分析力学模型。得出了紧靠封隔器的非螺旋屈曲段压裂管柱长度计算方法。为屈曲摩阻力计算奠定了基础。
     根据弯曲梁挠度微分方程,建立了压裂管柱发生螺旋弯曲时压裂管柱截面最大弯矩计算模型,进而得出压裂管柱界面最大弯曲应力计算方法。计算得出了不同轴向载荷作用下,弯矩及弯曲应力变化规律,为压裂管柱强度分析提供了依据。
     再次,考虑了压裂管柱刚度作用对压裂管柱摩阻力的影响,根据静力学平衡方程,建立了水平井压裂管柱弯曲段摩阻力计算模型。考虑压裂管柱屈曲变形作用产生的正压力,建立了水平井压裂管柱屈曲摩阻力计算模型。为压裂管柱顺利下入提供一种新的下入方法。
     最后,对压裂液返排过程裂缝内流体压力分布展开研究,建立了裂缝中的压裂液压力随压裂液返排速度变化的计算模型;在此基础上,依据弹塑性力学理论,结合射孔套管的强度条件,建立了压裂液返排时引起套管径向上塑性变形或失稳的压裂液临界返排速度计算模型,为多封隔器压裂管柱顺利上提出井筒提出一种预判方法;将弹性力学理论与复变函数结合,研究了多孔套管孔眼周围的应力集中系数问题,并应用有限元模拟软件计算了多孔套管孔眼周围应力集中系数,分析了不同射孔组合对多孔套管孔眼周围应力集中系数的影响。
In the process of horizontal well fracture treatment, whether the multi-packers fracturing string can be successfully tripped into the target layer and picked up is the key to success. When the fracturing string tripped in, the existence of certain friction resistance between fracturing string and borehole requires the axial load in the well head in order to ensure the fracturing string easily tripped in. because the wall of fracturing string is thin and stiffness is small, buckling deformation appears under axial load. Meantime there forms several contact point between fracturing string and casing, which causes the friction resistance increase. The more axial load increased the more contact point comes out, so that the friction resistance much harder and that requires more axial load. By the time the buckling occurs to a certain extent, the axial force can't transmit down, so that the fracturing trapped and can't be tripped in. When fracturing fluid flows back, well head pressure dropped sharply and fracturing fluid flow back to the bore hole, pressure between fractures and the wellbore fluid effects on the casing bullet hole which creating strong stress concentration. The stress concentration leads to the casing plastic deformation or unstability collapsed which causing the casing stuck during fracturing string pick up work. In order to solve the difficult problem of multi-packers fracturing strings pass ability in horizontal well, mechanics analysis of multi-packer fracturing string buckling deformation is innovative developed in this paper. We put forward a new model for friction resistance. Casing deformation research is carried out in the process of fracturing fluid flowback under the condition of different perforation combination, which provides an anticipation method for the fracturing string easily picked up. The main research work and research results can be described in the following respects.
     Firstly, the mechanical model of fracturing string bending deformation analysis is established according to the bending beam deflection differential equation. After analyzing the bending deflection limit value of fracturing string in the casing, this paper puts forward a new method for determine contact point which afford evidence for friction resistance calculation.
     Secondly, the critical load problems on the vertical interval, bending interval and horizontal interval where the fracturing string buckling is respectively researched. In vertical interval, considering the effects of the gravity of the string on fracturing string buckling, sine buckling and spiral buckling critical load calculation model of fracturing string is established according to the static equilibrium equations. In bending interval, considering the influence of wellbore bending on the gyrose deformation of fracturing string, sine buckling and spiral buckling critical load calculate model is established under different curvature radius. In the horizontal interval, considering the affection of the gravity of fracture on fracturing string buckling, sine buckling and spiral buckling critical load calculate model of the fracturing string is established on the horizontal interval. Moreover, taking into account the constrained effect of packer on the buckling of fracturing string, the mechanical analysis model of packer section fracturing string buckling is established. A computational method calculated the length of string and the constrained force of fracturing string which abuts the packer has been devised.
     According the deflection differential equation of flexed beam, when fracturing string occurs helical buckling, a calculation model of fracturing string section maximum bending moment is established, moreover, the calculation method of maximum bending stress in fracturing string section is achieved. Using this method, the variation rules of bending moment and bending stress in different axial force can be calculated, and providing the evidence for fracturing string intensive analysis.
     Moreover, considering the effect of stiffness action to friction resistance of fracturing string, the calculation model of friction resistance in curved section of horizontal well fracturing string is established according to the static equilibrium equation. Considering the normal pressure exerted from the effect of fracturing string buckle deformation, the calculation model of buckle friction resistance of horizontal well fracturing string is established, which provides a new method for fracturing string tripped in easily.
     Finally, analyzing the pressure of casing perforation orifice in the process of fracturing flowback, the calculation model of flowback pressure of casing perforation orifice is established. Researching the relation between the stress and the variation on casing perforation orifice by the elastoplasticity theory, the mechanical analyzing model of the relation between flowback velocity and variation of fracturing fluid is established. Analyzing the effect of different perforating combination on the casing deformation, and the correctness of the model can be verified by comparing the results of calculation and simulation. This model can be used as a prediction method for lifting to the well head of the multi-packers fracturing casing. By putting elastic mechanics theory and complex-variable function together, this paper researched stress concentration problem of casing eyehole, calculated the stress concentration factor by using finite element simulation software and analyzed different perforating combination effecting on the casing eyehole stress concentration factor problem.
引文
[1]韩耀萍.国外低渗透油层改造技术[J].断块油气田,1994,2(1).
    [2]Lubinski,A.A study of the Buckling of Rotary Drilling strings[J].API Drilling and Production Practice,1950:178-214.
    [3]Lubinski,A,Blenkarn,K.A.Buckling of Tubing in Pumping wells,Its Effects and Means for Controlling It[J].Trans, AIME,210,1957:73-88.
    [4]Lubinski,A,Althouse,W.s,Logan,J.L.Helical Buckling of Tubing Sealed in Packers[J]. JPT,1962,14(3):655-670.
    [5]Paslay,P.R.,Bogy,D.B.The stability of a circular Rod Laterally constrained to Be in Contact with an Inclined Circular Cylinder[J].J of Applied Mechanics,1964(5):606-610.
    [6]Hammerlindl,D.J.Movement,Forces and stress Associated with combination Tubing Strings Sealed in Packers[J].J.Pet.Teeh.,1977,29(1):195-208.
    [7]Hammerlindl D.J Basic fluid and pressure force on oil well tubular[J] JPT,1980, 32(3):153-159.
    [8]Hammerlindl,D.J.Paeker-to-Tubing Forces for Intermediate Packers[J].JPT,1980,2(2): 515-527.
    [9]Mitchell, R.F.New concept for Helical Buckling [J].SPE Drill.Eng. Sept.,1988:303-310.
    [10]He, X.Kyllingstad, A.Helical Buckling and Lock up conditions for coiledTubing in Curved Wells [J].SPE25370,1993.
    [11]Wu Jiang.矿场用简化水平井阻力和扭矩的计算方法[J].杜志文,刘选德译.国外钻井技术,1993,8(6):21-27
    [12]J B Salies,J.J Azar,J.R.Sorem.Experimental and Mathematical Modeling of Helical Buckling of Pipe in Horizontal Wellbores.ASME,Drilling Technology,PD Vol.65,1995: 79-89.
    [13]Wu J,Hans C.Drag and torque calculations for horizontal wells simplified for field use. Oil and Gas,1991:49-53.
    [14]Mitchell,R.F.Comprehensive Analysis of Buckling with Friction[J].SPE Drilling& Completion,1996,11(3):178-184.
    [15]曾宪平.油管柱的受力与变形[J].石油钻采工艺,1981,3(3):39-54.
    [16]张宁生.常用流体压力对管柱的作用[J].石油钻采工艺,1982,4(5):73-84.
    [17]窦益华.加权残值法分析钻柱的受力与变形[J].西南石油学院学报,1986,26(3):65-71.
    [18]龚伟安.液压下的管柱弯曲问题[J].石油钻采工艺,1988,10(3).
    [19]金国梁,陈琳.下部抽油杆柱的失稳弯曲及滚轮接箍扶正器的合理配置[J].石油学报,1990,11(2):55-57.
    [20]郑永刚.管柱在井内弯曲失稳的研究[J].钻采工艺,1992,(1):69-71.
    [21]冯建华等.双封隔器复合管柱受力分析方法及应用[J].石油钻采工艺,1993,15(2): 54-62.
    [22]李子丰,马兴瑞,黄文虎.水平管中受压扭细长圆杆(管)的几何非线性弯曲[J].力学与实践,1994,16(3):16-18.
    [23]彭勇,王启玮.水平井段BHA稳定性分析[J].石油钻采工艺,1994,16(1):1-4.
    [24]高国华等.考虑摩擦时水平井钻柱的稳定性分析[J]..西南石油学院学报,1995,10(3):31-34.
    [25]高国华等.管柱在垂直井眼中的屈曲分析[J].西南石油学院学报,1996,11(1):33-35.
    [26]高国华,李琪,李淑芳.弯曲井眼中受压管柱的屈曲分析[J].应用力学学报,1996,13(1):116-120.
    [27]高国华,李琪,李淑芳.管柱在水平井眼中的屈曲分析[J].石油学报,1996,7(3):124-130.
    [28]刘凤梧,徐秉业,高德利.受横向约束的细长无重管柱在压扭组合作用下的后屈曲分析[J].工程力学,1998,15(4):19-24.
    [29]刘凤梧,徐秉业,高德利.水平圆管中受压扭作用管柱屈曲后的解析解[J].力学学报,1999,31(2):238-241.
    [30]高德利,高宝奎.水平井段管柱屈曲与摩阻分析[J].石油大学学报,2000,24(2):2-3.
    [31]高国华,张福祥.水平井眼中管柱的屈曲和分叉[J].石油学报,2001,22(1):96-99.
    [32]陈勇,练章华,易浩.套管钻井中套管屈曲变形的有限元分析[J].2006,34(9):23-24.
    [33]董蓬勃,窦益华.封隔器管柱屈曲变形及约束载荷分析[J].2007,36(10):14-17.
    [34]Johancsik CA.Torque and drag in directional wells-prediction and measurement [A]. SPE 11380,1984.
    [35]N,B.Moore etc.Reduction of Drill Srting Torque and Casnig Wear in Extended Reach wells Using Non-Rotating Drill Pipe Protectors SPE35666.
    [36]Brett J.F,Beckett A.D,Holt C.A,Smith D.L.Uses and Limitations of Drill string Tension And Torque Models for Monitoring Hole Conditions[A].SPE Drilling Engineering,1989,9.
    [37]Wojtanowicz,Andrew K,Louisiana State U,el al.Minimum-Casing Design for Vertical and Directional Wells[J] Journal of Petroleum Technology,1987,39(10):1269-1282.
    [38]Sheppard MC,et al.Designing well path to reduce drag and torque,SPE15463,1986.
    [39]Maidla E E,Wojtanowica AK. Field comparison of 2-D and 3-D methods for the borehole friction evaluation in directional wells. SPE 16663, Sep.1987:27-30.
    [40]Mitchell,R.F.New concepts for helical buckling, SPEDE,sep,1988,303-310.
    [41]Ho H-S.An improved modeling program for computing the torque and drag in directional and deep wells[A].SPE 18047,1998,10.
    [42]Ruddy K.E.,Hill D.,Christensen E.,et al.Analysis of Buoyancy-Assisted Casings and Liners in Mega-Reach Wells[A].SPE/IADC Drilling Conference,1992:309-316.
    [43]Hood J.L,Mueller M.D.,Mims M.G.,et al.The Uses of Buoyancy in Completing High-Drag Horizontal Wellbores[A].SPE Asia-Pacific Conference,1991:757-764.
    [44]J Wu,H C Juvkam-Wold.Study of Helical Buckling of Pipes in Horizontal Wells SPE25503.
    [45]Xiao Jun He, Sangesland S, Halsey GW.An integrated three-dimensional wellstring analysis program.SPE22316,June,1991:17-20.
    [46]D.N.Rocheleua and DaernigD.W, Effect of Darg Forces on Bit Weihgt in Hihgt Curvature well Bores TrnasASME,J.Enegry Resources Technology(1992)114.
    [47]张建群,孙学增,赵俊平.定向井中摩擦阻力模式及应用的初步研究[J].大庆石油学院学报,1989,13(4):23-28.
    [48]韩志勇.井眼内钻柱摩阻的三维和两维模型的研究[J].石油大学学报(自然科学版),1993,17(增):44-49.
    [49]韩志勇.组合载荷下套管柱强度设计的三向应力圆理论[J]石油钻探技术,2002,30(4):1-5.
    [50]闫铁,张建群,孙学增等.大庆水平井摩阻力分析[J].大庆石油学院学报,1995,19(2):1-4.
    [51]王建军,张绍槐等.水平井钻柱接触摩擦阻力解析分析[J].石油机械,1995,23(4):44-46.
    [52]三牧敏太郎等.定向井中的摩阻与扭矩解析计算分析[J].国外油田工程,2001,]7(10):18-25.
    [53]马善洲,韩志勇.水平井钻柱摩阻力和摩阻力矩的计算[J].石油大学学报,1996,20(6):24-28.
    [54]眭满仓,孟坤六,杜镰.水平井管柱下入摩阻分析及应用[J].石油机械,1999,27(2):6-8.
    [55]黄涛,许哗等.侧钻水平井钻柱摩阻力分析[J].石油钻采工艺,2000,22(1):27-30.
    [56]张文华,胡国清等.钻进扭矩与摩阻分析及减扭措施[J].钻井与完井,2001,29(3):22-23.
    [57]祖峰.定向井钻柱摩阻预测与应用[J].石油钻采工艺,2001,23(6):9-11.
    [58]贺志刚,建红等.大位移井摩阻扭矩力学模型[J].天然气工业,2001,21(5):52-54.
    [59]廖华林,丁岗.大位移井套管柱摩阻模型的建立及其应用[J].石油大学学报(自然科学版),2002,26(1):29-31.
    [60]沈献良,曹庆和,王爱宽等.定向井套管入井摩阻分析[J].断块油气田2003,10(2):73-75.
    [61]付建红,龚龙祥,胡顺渠等.基于ANSYS的水平井下套管磨阻分析计算[J].石油钻采工艺2007,29(4):32-35.
    [62]崔之健,孟鹏,葛海江等.基于侧钻水平井完井管柱的摩阻分析[J].石油矿场机械 2008,37(9)52-55.
    [63]李娟,唐世忠,李文娟等.埕海一区大位移水平井摩阻扭矩研究与应用[J].石油钻采工艺2009,31(3):22-25.
    [64]于长录,金有海.水平井完井管柱摩阻预测模型建立与下入性分析[J].石油机械,2009,37(9):134-136.
    [65]韩志勇.钻柱强度计算新方法[J].1998,22(3):40-42.
    [66]何源远.水平井套管柱强度设计方法[J].石油钻探技术,1992,20(1):7-11.
    [67]何世明,刘崇建等.套管柱强度设计计算[J].西南石油学院学报,1997,19(1):53-59.
    [68]肖芳淳.套管柱设计的一种新方法[J].石油钻采工艺,1992,22(1):7-12.
    [69]张恒.小井眼管柱动力学研究[D].西南石油学院工程硕士学位论文,2005.
    [70]冷继先.井下管柱屈曲行为的理论与实验研究.西南石油学院博士学位论文,2003.
    [71]杨立君.支撑剂对流模型研究及水平井分级压裂设计模拟软件研制[D].西南石油学院硕士学位论文,2005.
    [72]黄云.注水工艺管柱力学行为研究[D]。西南石油学院硕士学位论文,2005.
    [73]邓燕.大位移井水力压裂裂缝起裂机理研究及应用[D].西南石油学院硕士学位论文,2003.
    [74]李锦红.大位移井测试管柱力学分析及软件开发.天津大学硕士学位论文,2005.
    [75]龚龙祥.大位移井套管柱强度设计研究.西南石油大学硕士学位论文,2007.
    [76]马德成.水平井压裂管柱力学分析.大庆石油学院工硕士学位论文,2009.
    [77]李钦道,谢光平,张娟.不能移动封隔器管柱变形受力分析[J].钻采工艺,2002,25(2):53-57.
    [78]Dawson R,etc.Drill pipe buckling in inchined holes.J.PT,1984-10.
    [79]Yu-the chen,etc.Tlbing and casing buckling in horizontal wells.J.P.T,1990-2.
    [80]Woods HB,Lubinski A.Practical charts for solving problems on hole deviation. D.P.PAPI,56,1954.
    [81]Dellinger T B,etc.Preventing buckling in dnill strength.U.S.Patent No.4384483,1983.
    [82]Newman K R,etc.Safely exceeding the critical buckling load in highly deviated holes. SPE 9229,1989.
    [83]眭满仓,孟坤六,张琦.水平井管柱空间受力分析及迭代计算[J].石油机械,1999,27(9):5-7.
    [84]Brett J F.Use of the engineering simulator for drilling for evalu-ating and designing drilling rigs.SPE/IADC13480.
    [85]Noerage J A,Norge E,White J P. Drilling time predictions from statistical analysis.SPE /IADC16164.
    [86]Thorogood J L.Amathematics model for analysis drilling perfor-mance and estimating well times.SPE16524/1.
    [87]Brannigan JC.The characterization of drilling operations and heir representation in relational databases.SPE 4429.
    [88]Rampersad P,Hareland G,Parintra T.Drilling optimization of oil or gas field.SPE26949.
    [89]曲占庆,董长银,张琪.影响高压注气管柱变形的主要因素及计算方法[J].石油钻采工艺,2000,22(1):54-57.
    [90]Ramey H J.Wellbore Heat Transmission.SPE,1962:427-433
    [91]高国华,李琪,李淑芳.弯曲井眼中受压管柱的屈曲分析[J].应用力学学报,1996,13(1):116-120.
    [92]高国华,李天太,李琪,狄勤丰.杆柱在水平井眼中的正弦屈曲[J].西安石油学院学报,1994,9(2):37-39.
    [93]Chen. Y.etc. An Analysis of Tubing and Cusing Buckling in Horizontal Wells.JPT, 1990,Feb:140-142.
    [94]Dawson. R.etc.Driupipe Buckling in Indined Holes.JPT,1984:1734-1738.
    [95]赵达壮,张允真等.水平井井眼轨迹及套管初弯曲的计算[J].石油钻采工艺,1994,16(3),5-11.
    [96]张系斌,张传立.液压状态下管柱弯曲中和点分析[J].江汉石油学院学报,1995,17(1):80-82.
    [97]费祥历,刘奋,马铭福.高等数学[M].石油大学出版社,2000,8.
    [98]Coins WC.Better understanding proverts tubing buckling problem,part1.World oil,1980, 190(1):101.
    [99]高宝奎,高德利,王平.水平井管柱屈曲研究中的争议[J].石油钻采工艺,1997,19(3):20-24.
    [100]栾庆德,刘巨保,张学鸿,韩道权.水平井中测井管柱的力分析机理[J].石油学报,1998,19(1):111-113.
    [101]吕英民,陈海亮,仇伟德.材料力学[M].石油大学出版社,1994,12.
    [102]邓学峰.水平井完井管柱受力分析与摩阻预测方法.中国石油大学硕士学位论文,2009.
    [103]王德新,于润桥.套管柱在水平井弯曲段的可下入性[J].石油钻探技术,1997,25(1),12-13.
    [104]周守为,张钧.大位移井钻井技术及其在渤海油田的应用[M].北京:石油工业出版社,2002:3.
    [105]杨桂通.弹塑性力学引论[M].清华大学出版社,2004,2.
    [106]赵金洲,张桂林.钻井工程技术手册[S].中国石化出版社,2006,8.
    [107]张慧萍.定向井管柱摩阻与强度分析计算.中国石油大学工程硕士学位论文,2008.
    [108]王艳红.水平井完井管柱可下入性分析研究.中国石油大学硕士学位论文,2008.
    [109]陈红伟,郝振宪,何汉坤等.水平井设计应用与展望[J].钻采工艺,2004(5):8-11.
    [110]缪明富,方娅.水平井技术发展状况[J].钻采工艺,1994,17(3):1-7.
    [111]陈雅溪.国外水平钻井应用及技术现状[J].钻采工艺,2001,24(5),9-11.
    [112]范慕辉,焦永树,于文英.三维井孔轴线的几何描述与套管摩阻的数值模拟[J].工程力学,2005,22(2),195-199.
    [113]罗英俊,万仁溥.采油技术手册(上下册)[S].石油工业出版社,2005,3.
    [114]叶先磊,史亚杰.ANSYS工程分析软件应用实例[M].清华大学出版社,2003,9.
    [115]练章华,林铁军,刘健,乐彬,陈举芬.水平井完井管柱力学—数学模型建立[J].天然气工业,2006,26(7):61-64.
    [116]署恒木,全兴华.工程有限单元法基础[M].东营:石油大学出版社,1998:55-56.
    [117]丁鹏,闻相祯.高压注水管柱受力分析[J].石油钻探技术,2005,33(6):48-50.
    [118]齐月魁,徐学军,李洪俊等.BPX3X1;大位移井套管摩阻预测[J].石油钻采工艺,1994,1(1):12-13.
    [119]许福东,张晓东,吕苗荣,邓建明.大位移井完井管柱摩阻计算模型与仿真器[J].石油矿场机械,2001,30:21-34.
    [120]StefanMiska,Weiyong Qiu,Cunha J C.An Improved Analysis of Axial Force Along Coiled Tubing in Include/Horizontal Wellbores[C].SPE37056,1987.
    [121]黄禹忠,何红梅.川西地区压裂施工过程中管柱摩阻计算[J].特种油气藏,2005,12(6):72-73.
    [122]刘巨保,张学鸿,朱振锐,季海波.水平井分流压裂管柱设计与力学分析[J].天然气工业,1998,18(2):46-48.
    [123]刘巨保,栾绍信,张学鸿.水平井压裂管柱受力变形分析的间隙元法[J].石油学报,1994,1(1):136-140.
    [124]Brett JF etal.Uses and limitations of drillstring tension and torque models for monitoring hole conditions.SPE Drilling Engineering.Sep1989.
    [125]朱振锐,王凤山,张学鸿.水平井压裂管柱受力变形分析[J].大庆石油地质与开发,1996,3(15):60-62.
    [126]Zhang Xue hong,Liu Jubao.Mechanical Analysis of Drilling Using the Contact Element Methord[J].Predeeding of the onternational Conference on Strucrural Engineering and Computation,BeiJing,1990,4.
    [127]张汝青.非线性有限元分析[M].重庆大学出版社,1990.
    [128]覃成锦.油气井套管柱载荷分析及优化设计研究[D].清华大学工学博士学位论文,2000.
    [129]张雪鸿,董振刚,张雄等.探井水平井整体钻柱摩阻力分析的间隙元法[J].石油学报,2002,23(5):106-109.
    [130]白家祉,苏义脑.井斜控制理论与实践[M].北京:石油工业出版社,1990:1-19.
    [131]Jogi PN,et al.Predicting the build/drop tendency of rotary drilling assemblies[C].SPE 14768,1988:177-186
    [132]帅健.弯曲井眼中下部钻具组合的有限元分析[J].石油学报,1990,6(4):95-105.
    [133]刘延强.井壁变形和摩阻力对底部钻具组合的影响[J].石油大学学报(自然科学版),1991,(1):32-41.
    [134]张学鸿.整体钻柱力学接触有限元分析[J].石油学报,1992,13(3):102-108.
    [135]张学鸿,李艳,董振刚.侧钻水平井射孔管柱力学与强度分析[J].大庆石油学院学报,2000,24(2):57-59.
    [136]苏义脑.求定向井井底真实钻压值的理论分析和初步计算[J].石油钻采工艺,1991,13(2):31-42.
    [137]向绪金,胡广正,戴恩汉等.射孔对套管强度的影响研究[J].汉江石油学院学报,2002,24(2):86-87.
    [138]李旭,窦益华.压缩式封隔器胶筒变形阶段力学分析[J].石油矿场机械,2007,36(10):14-17.
    [139]Schuh FJ.The critical buckling force and stress for pipe inclined curved boreholes, SPE/IADC21942,1991.
    [140]董平川,牛彦良,李莉,沈晓英.螺旋布孔射孔对套管强度的影响[J].大庆石油地质与开发,2007,2(26):91-93.
    [141]王志信,蔡景瑞.射孔对套管的损害及改进措施[J].测井技术,1984,8(5):33-37.
    [142]宗幼芄.油层射孔段套管抗挤能力的实验研究[J].石油学报,1988,9(4):84-96.
    [143]王伯军,张士诚,张劲等.均匀载荷作用下高密射孔参数对套管应力分布的影响[J].钻采工艺,2007,30(2):96-99.
    [144]吕永国,胡永全,赵金洲,袁东.压裂过程中近井筒效应分析[J].西部探矿工程,2006,123:98-99.
    [145]张保平,方竞.水力压裂中的近井筒效应[J].岩石力学与工程学报,2004,23(14).
    [146]李海涛,王永清.压裂施工井的射孔优化设计方法[J].天然气工业,1998,18(2).
    [147]刘作鹏·,王海文,闫相祯.应用弹塑性力学相关理论分析套管射孔后剩余强度[J].石油钻探技术,2007,35(2):32-34.
    [148]黄志文,李志平,岑芳.压裂泵入流体在射孔孔眼处的压力损失计算[J].新疆石油天然气,2006,1(2):55-57.
    [149]冯晓九,宋天舒,李宏亮.多射孔对套管-水泥环结构强度的影响[J].黑龙江科技学院学报,2006,16(5):324-327.
    [150]黄世军,程林松,赵凤兰等.射孔完井水平井近井地带流动模型研究[J].油气井测试,2007,16(3):12-15.
    [151]于洪金.套管损坏的力学计算与判定[D].大庆石油学院(博士论文),2008.
    [152]于桂杰,杨宾华,付雷等.筛管孔眼附近的应力集中问题及孔眼分布[J].机械强度,2009,31(6):957-961.