水分管理对水稻吸收As的影响及朝天委陵菜对矿冶区污染稻田的修复潜力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的发展及农业的现代化,我国土壤重金属污染日益严重,其中矿冶区周边稻田受重金属污染的风险性更高,这导致大量稻田流失荒废,受到污染的稻田不能种植水稻或大米重金属浓度严重超标,对人民生命安全造成严重危害。因此弄清冶炼厂附近稻田的污染程度,探讨污染土壤上旱稻最适淹水方式和水稻品种对重金属吸收性差异以及对矿冶区污染稻田的修复均具有极为重要意义。本文在前期调查基础上,定点采集了浙江杭州郊区某冶炼厂附近的高、低污染重金属稻田土壤,以旱稻(巴西陆稻)、水稻(中香1号)和朝天委陵菜(Potentilla supina)为供试材料,通过盆栽试验及水培试验研究了As/Cd污染土壤、不同淹水方式(旱作、淹水、间歇灌溉、前期间歇灌溉抽穗后旱作)下不同水稻品种(巴西陆稻、中香1号)地上部重金属吸收性以及朝天委陵菜对重金属耐性和修复能力。研究结果如下:
     1.在土壤As浓度为6.49 mg kg~(-1)时,外加As 15 mg kg~(-1)旱作处理对旱稻的生长影响显著,旱稻对As较敏感,表现为生长不良,叶片枯黄,株高低矮,且不抽穗;外加As与否,淹水处理对旱稻生物量和As吸收性影响不显著,但旱稻各部分的重金属浓度显著提高,表明了淹水条件下外源施As增大旱稻对Cu/Zn/Pb/Cd的吸收。
     2.间歇灌溉下巴西陆稻生物量较高且As的吸收量较低,这与淹水和前期间歇灌溉抽穗后旱作两种处理比较无显著差异,但重金属吸收量显著低于后两种处理。因此,间歇灌溉模式是旱稻最适宜的水分管理模式。
     3.巴西陆稻与中香1号在外加As的高污染重金属土壤上,以淹水处理长势优于旱作处理。水稻淹水、陆稻淹水和水稻旱作各处理糙米中的As浓度分别为0.51、0.33、0.16 mg kg~(-1),这表明陆稻和水稻均为As低积累品种。淹水处理下,除Pb外陆稻和水稻重金属积累性相似,均显著高于旱作处理。
     4.研究表明朝天委陵菜虽不符合超富集植物定义范围,但对重金属具有很高的吸收能力。该植物为喜湿植物,适合低洼潮湿土壤生长。因此,对矿冶区稻田具有潜在的修复能力。
With the development of industry and agriculture modernization, The soil pollution in China is being increased seriously by heavy metal, and the ricefield which surrounds metallurgy area and is polluted by heavy metal have higher risk. This leads to lose a mass of ricefield. Moreover, the polluted ricefield can not be used to plant rice, or the rice has high levels of heavy metal concentration, causing serious harm to people's life safety. Therefore finding out the ricefield pollution levels near smelter, researching the best flooded way of dry rice in pollution soil and the difference of heavy metal uptaking between two rice varieties, and remediating mine pollution fields all have important significance. On the basis of the survey, this study site-directly collected high and low heavy metals pollution soil in Hangzhou smelter suburb, Zhejiang province. Using dry rice (Baxi dry rice), paddy rice (Zhongxiang NO.1) and Potentilla supina as experimental plants, through the pot and hydroponics experiments, the heavy metals uptake of shoot of different rice varieties (Baxi dry rice, Zhongxiang NO. 1) was studied under arsenic and cadmium pollution soil and different flooded way(aerobic, flooded, intermit irrigation, prophase intermit irrigation aerobic after heading). Meantime, the tolerance to heavy metal and phytoremediation potential of Potentilla supina was explored. The results were as follows:
     1. In the soil arsenic concentration of 6.49 mg kg~(-1), after the addition of arsenic 15 mg kg~(-1), dry rice growth under the aerobic was inhibited significantly. The toxic symptoms such as the slow growth rate of plant with yellow leaves, low height and failure of heading at maturity were very serious. It was shown that dry rice under the aerobic had higher sensitiveness to arsenic. Under the flooded treatment, the dry rice biomass and arsenic uptake is not significant, but heavy metals uptake increased markedly than under the treatments without addition of arsenic. It was indicated that the exogenous arsenic increased the uptake of copper, zinc, lead and cadmium by dry rice under the flooded treatment.
     2. For Baxi dry rice, the biomass is greater and the arsenic uptake is lower under intermit irrigation, with non-significant difference compared with the flooded and prophase intermit irrigation aerobic after heading treatments. But the heavy metal uptake is significantly lower than the latter two treatments, so the intermit irrigation is the most suitable water management pattern of dry rice.
     3. The biomass of Baxi dry rice and Zhongxiang NO. 1 under the flooded treatment was higher than that under the aerobic treatment in arsenic high pollution soil. The arsenic concentrations of brown rice from paddy rice flooded, dry rice flooded and paddy rice aerobic were 0.51 0.33, 0.16 mg kg~(-1), respectively, it was showed that dry rice and paddy rice both are arsenic low accumulation varieties. The two varieties' adsorption ability of heavy metal in flooded treatment (except lead) was very similar, and the concentrations of heavy metal were significantly higher than that under the aerobic treatment.
     4. Although Potentilla supina wasn't in line with the criteria of hyperaccumulation plants, it had a strong ability of absorbing heavy metal. Because this species is a hygrophilous plant prefering to habitating wet and low humid soils, it has the potential function of remediating the rice paddies near the smelter.
引文
Adriano DC. Trace Elements in the Terrestrial Environment. Springer, 2002, New York.
    Azizur RM. Arsenic accumulation in rice (Oryza sativa L.): human exposure through food chain. Ecotoxicol Environ Safety, 2008, 69(2): 317-324.
    Baker AJM, Brooks RR, Pease AJ. Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L. (Caryophyllaceae) from Za?re. Plant and Soil, 1983, 73(3): 377-385.
    Baker AJM, Brooks RR. Terrestrial higher plants which hyperaccumulate metallic elements - a review of their distribution, Ecology and Phytochemistry. Biorecoyery, 1989, 1: 81-126.
    Beard HC, Lyerly LA. Separation of arsenic from antimony and bismuth by solvent extraction. Analytical Chemistry, 1991, 33: 178-1782.
    Charter RA, Tabatabai MA, Schafer JW. Arsenic, molybdenum, selenium, and tungsten contents of fertilizers and phosphate rocks. Communications in Soil Science and Plant Analysis, 1995, 26: 3051-3062.
    Chen HM, Zheng CR, Wang SQ, Tu C. Combined pollution and pollution index of heavy metals in red soil. Pedosphere, 2000, 10(2): l17-124.
    Chen HM, Zheng CR., Tu C, Zhu YQ. Heavy metal Pollution in soils in China: status and countermeasures. A Journal of the Human Environment 1999, 28: 130-134.
    Deuel LE, Swoboda AR. Arsenic solubility in a reduced environment. Soil Science Society of America Journal, 1972, 36: 276-278.
    Duxbury. Impact of arsenic on rice productivity and quality. New Phytologist, 2004, 163(1): 45- 49.
    EPA. 2000. Introduction to phytoremediation. EPA-600-R-99-107.
    Fordyce FM, Williams TM, Paijitpapapon Al. British Geol.Survey. Keyworth. 1995.
    Heikens A. Arsenic Contamination of Irrigation Water, Soil and Crops in Bangladesh: Risk Implications for Sustainable Agriculture and Food Safety in Asia. Food and Agricultural Organization of the United Nations, Regional Office for Asia and the Pacific. 2006.
    Jung MC. Heavy metal contamination of soils and waters in and around the Imche on Au-Ag mine, Korea.Applied Geochemistry, 2001, 16: 1369-1375.
    LI RY, Stroud JL, Ma JF, McGrath SP, Zhao FJ. Mitigation of Arsenic Accumulation in
    Rice with Water Management and Silicon Fertilization. Environmental Science & Technology, 2009, 43: 3778-3783.
    Liu JG, Li KQ, Xu JK, Liang JS, Lu XL, Yang JC, Zhu QS. Interaction of Cd and five mineral nutrients for uptake and accumulation in differentrice cultivars and genotypes. Field Crops Research, 2003, 83: 271-281.
    Manning A, Suarez DL. Modeling arsenic(III) adsorption and heterogeneous oxidation kinetics in soils. Soil Science Society of America Journal, 2000, 64: 128-137.
    McGrath SP, Sidoli CMD, Baker AJM, Reeves RD, The potential for the use of metal-accumulating plants for the in situ decontamination of metal-polluted soils. Eds HJP Eijsackers, 1993, In Integrated Soil and Sediment Research: A Basis for Proper Protection. Hamers. Dordrecht: Kluwer Academic Publishers.
    McLaughlin MJ, Parker DR, Clarke JM. Metals and micronutrients-food safety issues. Field Crops Research, 1999, 60, 143-163.
    Ng JC, Wang JP, Shraim AA. global health problem caused by arsenic from nat sources. Chemosphere, 2003, 52: 1353-1359.
    Nilgun G., Omar A, Gurdal T. Investigation of soil multi-element composition in Antalya, Turkey. Environment International, 2003, 29(5): 631-640.
    Sadler R, Olszowy H, Shaw G, Biltoft R, Connell D. Soil and water contamination by Arsenic from tannery waste. Water. Air Soil Pollution, 1994, 78: 189-198.
    Stokstad E. Bangladesh-Agricultural pumping linked to arsenic. Science, 2002, 298: 1535-1537.
    Stoltz E, Greger M. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany, 2002, 47: 271-280.
    Tokalioglus, Kartals, Elcil. Determ ination of heavy metals and their speciation in lake sediments by flame atomicabsorption spectrometry after a four-stage sequential extraction procedure. Analytica Chimica Acta, 2000, (413): 33-40.
    Tomohito A, Akira K, Koji B, Shinsuke M, Shingo M. Effects of water management on cadmium and arsenic and dimethylarsinic acid concentrations in Japanese rice. Environmental Science & Technology, 2009, 43: 9361-9367.
    Toshiyuki I, Naohiko K, Masaharu M. Practical phytoextraction in cadmium-polluted paddy fields using a high cadmium accumulating rice plant cultured by early drainage of irrigation water. Soil Science and Plant Nutrition, 2009, 55: 421- 427.
    Tyler G, Olsson, T. Concentration of 60 elements in the soil solution as related to the soil acidity. Soil Science, 2001, 52: 151-165.
    Wong SC, Li XD, Zhang G, Qi SH, Min YS. Heavy metals in agricultural soil of the Pearl River Delta, south China. Environmental Pollution, 2002, 119: 33- 44.
    Xie ZM, Huang CY. Control of arsenic toxicity in rice plants grown on an arsenic-polluted paddy soil. Communication in Soil Science Plant Analysis, 1998(29): 2471-2477.
    Xu XY, McGrath SP, Meharg AA, Zhao FJ. Growing Rice Aerobically Markedly Decreases Arsenic Accumulation. Environmental Science & Technology, 2008, 42 (15): 5574-5579.
    Xue PF, Liang H, Wang B. Chemical constituents from potentillamultifida L. Chinese Pharmaceutical Sciences, 2005, 14(2): 86-88.
    Zhang GP, Fukami M, Genotypic difference in the effects of cadmium of growth and nutrient composition in wheat. Journal of Plant Nutrition. 2000, 23: 1337-1350.
    Zurayk R, Sukkariyah B, Baalbaki R. Common hydrophytes as bioindicaters of nickel, chromium and cadmium pollution .Water, Air and Soil Pollution, 2001, 127: 373-388.
    蔡宇春,梁剑锋.用原子荧光法测定食品中总砷的经验介绍.分析测试技术与仪器, 2009, 15(3): 188-190.
    陈丙义,赵安芳.重金属污染土壤对农业生产的影响及其可持续利用的措施.平顶山工学院学报. 2003, 12(2): 31-33.
    陈丹艳,许仙菊,愈美香,张永春.不同水稻品种对砷的富集及迁移.江苏农业学报, 2009, 25(6): 1219-1223.
    陈晶中,陈杰,谢学俭,张学雷.土壤污染及其环境效应.土壤, 2003, 35 (4): 298-303.
    陈同斌,刘更另.砷对水稻生长发育的影响及其原因.中国农业科学, 1993, 26(6): 50-58.
    陈同斌,刘更另.土壤中砷的吸附和砷对水稻的毒害效应与值的关系.中国农业科学, 1993, 26: 63-68.
    陈同斌.土壤溶液中的砷及其与水稻生长效应的关系.生态学报, 1996, 16(2): 147-153. 程建平,曹凑贵,潘圣刚,袁伟玲,王建漳,郑传举.不同灌溉方式下水稻产量性状相关性及通径分析.灌溉排水学报, 2008, 27(1): 96-99.
    程旺大,姚海根,吴伟等.土壤-水稻体系中的重金属污染及其控制.中国农业科技导报, 2005, 7(4): 51-54.
    杜心,朱永官,刘文菊.汞、砷复合污染对水稻生长及吸收汞、砷的影响.生态毒理学报, 2006, 1(2): 160-164.
    杜心.汞砷复合污染及铁膜对水稻吸收汞的影响.吉林农业大学, 2004.
    段桂兰,王利红,陈玉.水稻砷污染健康风险与砷代谢机制的研究.农业环境科学学报, 2007, 26(2): 430-435.
    方宇,江桂斌.砷形态分析中的样品前处理.环境污染治理技术与设备, 2002, 3(2):46-52.
    葛才林,杨小勇,孙锦荷.重金属胁迫引起水稻和小麦幼苗DNA的损伤.植物生理与分子生物学报, 2002, 28(6): 419-424.
    国家质量监督检验检疫总局,国家标准化管理委员.稻谷(GB 1350-2009) 2009.
    郝秀珍,周东美.金属尾矿砂的改良和植被重建研究进展.土壤, 2005, 37 (1): 13-19.
    何冰,杨肖娥.铅污染土壤的修复技术.广东微量元素科学, 2001, 8(9): 12-17.
    黄凤球,纪雄辉,鲁艳红.不同工业废弃物对稻田土壤中铅、镉生物有效性及其形态的影响.农业环境科学学报, 2007, 26(4): 1316-1321.
    黄秋婵,黎晓峰,李耀燕.镉对水稻的毒害效应及耐性机制的研究进展.安徽农业学, 2007, 35(7): 1791-1794.
    江苏植物研究所.江苏植物志(下册).南京:江苏科技出版社, 1982 : 312-313.
    蒋彬,张慧萍.水稻精米中Pb、Cd、As含量基因型差异的研究.云南师范大学学报, 2002, 22(3): 37-40.
    蒋成爱,吴启堂,陈杖榴.土壤中砷污染研究进展.土壤, 2004, 36(3): 264-270.
    蒋家焕,卢礼斌.重金属污染对水稻生长发育和稻米品质影响研究现状.福建稻麦科技, 2002, 20(4): 35-37.
    康立娟,赵明宪,庄国臣.铜的单元及复合污染中水稻吸收累积规律的研究.农业环境科学学报, 2003, 22(4): 503-504.
    柯庆明,梁康迳,郑履端.福建省水稻稻米重金属污染的对应分析.应用生态学报, 2005, 16(10): 1918-1923.
    李达圣,安冬.砷中毒疾病机理研究进展.中国现代临床医学, 2005, 4(5): 27-30.
    李道林,程磊.砷在土壤中的形态分布与青菜的生物学效应.安徽农业大学学报, 2000, 27(2): 131-134.
    李汉卿,谢文焕,傅纯彦,李得知.环境污染与植物.哈尔滨:黑龙江科学技术出版社, 1998, 210-229.
    李花粉,张福锁,李春俭,毛达如.铁对不同品种水稻吸收镉的影响.应用生态学报, 1998, 9(1): 110-112.
    李华,骆永明,宋静.不同铜水平下海洲香薷的生理特性和铜积累研究.土壤, 2002, 34 (4): 225-228.
    李静,俞天明,周洁,谢正苗. Pb、Zn矿区及周边土壤Pb、Zn、Cd、Cu的污染健康风险评价.环境科学, 2008, 29(8): 2327-2330.
    李坤权,刘建国,陆小龙,杨建昌,张祖建,朱庆森.水稻不同品种对镉吸收及分配的差异.农业环境科学学报, 2003, 22(5): 529-532.
    李利英,邓瑞雪,刘普,段宏泉,尹卫平.委陵菜属植物的化学成分及药理作用研究进展.中国现代中药, 2008, 10(9): 3-29.
    李圣发,普红平,王宏镔.砷对植物光合作用影响的研究进展.土壤, 2008, 40(3): 360-366.
    李艺.有色多金属矿山砷污染对生态环境的影响及其治理分析.地球与环境, 2008, 36(3): 256-260.
    李玉浸主编.集约化农业的环境问题与对策.北京:中国农业科技出版社, 2001.
    李正文,张艳玲,潘根兴,李久海,黄筱敏,王吉方.不同水稻品种籽粒Cd、Cu和Se的含量差异及其人类膳食摄取风险.环境科学, 2003, 24(3): 112-115.
    李志博,骆永明,宋静.基于稻米摄入风险的稻田土壤镉临界值研究:个案研究.土壤学报, 2008, 45(1): 76-81.
    廖继佩,林先贵,曹志洪.内外生菌根真菌对重金属耐受性及机理.土壤, 2003, 35 (5): 370-377.
    廖晓勇,陈同斌,肖细元.污染水稻田中土壤含砷量的空间变异特征.地理研究, 2003, 22: 35-643.
    廖自基.微量元素的环境化学及生物效应.北京:中国环境科学出版社, 1992 : 72-75.
    刘恩玲,王亮,孙继,潘琇.土壤-番茄体系中Cd、Pb的累积特征研究.土壤通报, 2009, 40(1): 189-193.
    刘敏超,李花粉,夏立江,杨林书.根表铁锰氧化物胶膜对不同品种水稻吸镉的影响. 生态学报, 2001, 21: 598-602.
    刘文菊,朱永官,胡莹.来源于土壤和灌溉水的砷在水稻根表及其体内的富集特性.环境科学, 2008, (4): 862-867.
    刘小宁,马剑英,张慧文.植物修复技术在土壤重金属污染中应用的研究进展.中国沙漠, 2009, 29(5): 859-865.
    刘秀梅,聂俊华,王庆仁.植物修复重金属污染土壤的研究进展.甘肃农业大学学报, 2001, 36(3): 8-13.
    刘志彦,杨俊兴,陈桂珠.砷污染土壤对不同品种水稻生长的影响.生态环境2007, 16(6): 1700-1704.
    龙新宪,杨肖娥,倪吾钟.重金属污染土壤修复技术研究的现状与展望.应用生态学报, 2002, 13(6): 757-762.
    骆永明,查宏光,宋静,李华,大气污染的植物修复.土壤, 2002, 34(3): 113- 119.
    骆永明.金属污染土壤的植物修复.土壤, 1999, 31(5): 261-265.
    骆永明.土壤环境的生物地球化学过程、质量演变和风险管理研究展望.土壤学报, 2008, 45(5): 846-851.
    毛跟年,许牡丹,黄建文.环境中有毒有害物质与分析检测.北京:化学工业出版社, 2003, 143-146.
    孟紫强.生态毒理学原理与方法.北京:科学出版社. 2006: 215.
    闵运江,杜忠笔.安徽产委陵菜属四种可食用野菜的成分分析.中国林副特产, 2008, 95(4): 4-6.
    闵运江,刘文中,陈乃富.皖西大别山区野菜资源及其开发利用.中国林副特产, 2004, 70(3): 44-48.
    闵运江,张银萍,高琼,张晓雷,周守标.安徽产10种委陵菜植物总黄酮的提取工艺与含量研究.食品与发酵工业, 2008, 34(6): 176-179.
    闵运江,周守标,张银萍,高琼,张晓雷.委陵菜黄酮类化合物的提取与纯化工艺研究. 中国实验方剂学杂志, 2008, 14(5): 31-35.
    聂发辉.关于超富集植物的新理解.生态环境, 2005, 14(1): 136-138.
    钱啸虎,李书春,李秾.安徽植物志(第三卷).合肥:安徽科技出版社, 1988 : 742-751.
    邵汉池.砷对土壤环境的影响及其改良措施.上海农业科技, 2004, 3:25-26.
    沈丹锋,李建琴,戚钻锋.砷毒田对水稻的危害及其后续影响.上海农业科技, 2008, 1: 106-107.
    沈振国,陈怀满.土壤重金属污染修复的研究进展.农村生态环境, 2000, 16(2): 39-44.
    苏流坤袁焕祥.土壤中铜、砷对水稻生长发育影响的研究.土壤与环境, 1997, 6(3): 194-197.
    孙贵范.中国面临的砷污染和地方性砷中毒问题.环境与健康展望, 2003, 39-43.
    孙健,铁柏清,钱湛. Cd、Pb、Cu、Zn、As复合污染对杂交水稻苗联合生理毒性效应及临界值.土壤通报. 2006, 37(5): 981-985.
    孙瑞莲,周启星.高等植物重金属耐性与超积累特性及其分子机理研究.植物生态学报, 2005, 29(3): 497-504.
    孙歆,韦朝阳,王五一.土壤中砷的形态分析和生物有效性研究进展.地球科学进展, 2006, 21(6): 625-630.
    王凯荣,张格丽.农田土壤镉污染及其治理研究进展.作物研究, 2006, (4): 359-364.
    王明祥,谷永香,李翼斌.独山县砷冶炼厂废渣废水污染情况调查.黔南民族医专学报, 2006, 4(21): 222-223.
    王穗英,海新华.通过皮肤吸收的砷中毒病例观察.广东微量元素科学, 1996, 1: 34-36.
    王新,贾永锋.紫花苜蓿对土壤重金属富集及污染修复的潜力.土壤通报, 2009, 40(4): 932-935.
    魏树和,周启星,王新,张凯松,郭观林.一种新发现的镉超积累植物龙葵(Solanum nigrum L).科学通报, 2004, 49(24): 2568-2573.
    翁焕新,张宵宇,邹乐君.中国土壤中砷的自然存在状况及其成因分析.浙江大学学报(工学版), 2000, 34(1): 88-92.
    吴攀,刘丛强,杨元根,张国平.矿山环境中(重)金属的释放迁移地球化学及其环境效应.矿物学报, 2001, 21(2): 213-218.
    吴少杰,黑笑涵.测定植物样品重金属含量的火焰原子吸收法.实验科学与技术, 2009, 7(4): 25-26.
    肖美秀,梁义元,梁康迳.水稻重金属污染及其控制技术的研究进展.亚热带农业研究, 2005, 1(3): 40-43.
    徐加宽,严贞,袁玲花.稻米重金属污染的农艺治理途径及其研究进展.江苏农业科学, 2007(5): 220-225.
    薛培英.土壤-水稻体系中砷的迁移转化及其影响机制研究.保定:河北农业大学, 2008.
    杨建昌,王志琴,陈义芳,蔡一霞,刘立军,朱庆森.旱种水稻产量与米质的初步研究. 江苏农业研究, 2000, 21(3): 1-5.
    杨建昌,朱庆森,王志琴.土壤水分对水稻产量与生理特性的影响.作物学报, 1995, 21(1): 110-114.
    杨婧,胡莹,王新军,陈学萍,黄益宗,朱永官.两种通气组织不同的水稻品种根表铁膜的形成及砷吸收积累的差异.生态毒理学报, 2009, 4(5): 711-717.
    杨仁崔,汤圣祥,等译.水稻知识大全.福州:福建科学技术出版社, 2003, 101-210.
    姚春霞,尹雪斌,张长波.浙江富阳金属冶炼厂周围水田土壤-水稻系统中As、Se含量特征.土壤, 2006, 38(5): 534-538.
    衣纯真,傅桂平,张福锁.不同钾肥对水稻镉吸收和运移的影响.中国农业大学学报, 1996, 1(3): 65-70.
    曾路生,廖敏,黄昌勇.镉污染对水稻土微生物量、酶活性及水稻生理指标的影响.应用生态学报, 2005, (11): 23-26.
    张广莉,宋光煜,赵红霞.磷影响下根的根际效应及其对水稻生长的影响.重庆环境化学, 2000, 22(5): 66-68.
    张广莉.磷影响下根际无机砷的形态分布及其对水稻生长的影响.土壤学报, 2002, 39(1): 23-28.
    张金彪,黄维南.镉对植物的生理生态效应的研究进展.生态学报, 2000, 20(5): 514-523.
    张军营,郑楚光,刘晶.燃煤砷污染和抑制研究进展.煤炭转化, 2002, 25(2): 23-28.
    张勇,李鹏,李彩霞,韩多宏,林敏.委陵菜属药用植物.中兽医医药杂志, 2005, 2(2): 60-63.
    赵素莲,王玲芬,梁京辉.饮用水中砷的危害及除砷措施.现代预防医学, 2002, 29(5): 651-652.
    郑喜坤,鲁安怀,高翔.土壤中重金属污染现状与防治方法.土壤与环境, 2002, 11(1): 79-84.
    郑振华,周培疆,吴振斌.复合污染研究新进展.应用生态学报, 2001, 12(3): 469-473.
    周华芳,沈玉曼,范增华.燃煤砷污染对环境和人群健康影响途径的研究.环境污染与防治. 2007, 6(6): 1-6.
    周建华,王永锐.硅营养缓解水稻幼苗Cd、Cr毒害的生理研究.应用与环境生物学报, 1999, 5(1): 11-15.
    朱剑,时南平,王红娟,陆学华.稻米中砷汞铅镉重金属元素含量及分析.粮油仓储科技通讯, 2009, (1): 50-52.
    朱庆森,邱泽森,姜长建.水稻各生育期不同土壤水势对产量的影响.中国农业科学, 1994, 27(6): 15-22.
    朱云集,王晨阳,马元喜.砷胁迫对小麦根系生长及活性氧代谢的影响. 2000, 20(4): 707-710.