龙眼汁香气物质及其在加工和贮藏过程中的变化规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
龙眼是风味独特、营养价值高的典型热带亚热带水果之一,随着栽种面积的扩大,龙眼的深加工就显得尤为迫切,其中加工龙眼果汁是其产业可持续发展的途径之一。众所周知,明确果汁香气成分及其在加工中的变化规律是加工高品质果汁的关键。为此,本文在建立龙眼汁挥发性物质提取方法的基础上,通过分析不同品种龙眼汁的挥发性物质,运用气相色谱嗅觉测量法(GC-Olfactometry,GC-O)分析其香气活性成分,明确其主要香气成分,并通过电子鼻分析其整体风味。同时,探讨龙眼汁在p-D-葡萄糖苷酶水解及不同加工单元操作和贮藏过程中主要香气成分的变化,明确主要香气成分之间的转化关系。主要研究结果如下:
     1.龙眼汁挥发性物质不同提取方法的比较及其固相微萃取方法的建立。比较了同时蒸馏提取(SDE)、溶剂萃取(SE)、静态顶空萃取(SHS)和固相微萃取(SPME)4种方法对龙眼汁挥发性物质的提取效果,确定SPME作为提取龙眼汁挥发性成分的有效方法。
     2.不同品种龙眼的挥发性物质和理化特性分析。测定了8个品种龙眼汁的挥发性物质,共检测出59种芳香物质,其中储良43种,石硖30种,草菇28种、赤叶28种、大果1号21种、青山接种32种、双孖木31种和水眼25种,共同检出的有7种。检测出的芳香物质主要是萜烯类、醇类、酯类化合物。运用主成分分析法发现反式-罗勒烯、D-柠檬烯、γ-松油烯和乙醇4种主要物质是其主要挥发性成分;同时,对其理化特性进行分析,结果表明,不同品种龙眼的理化特性差异较大。
     对不同采收期的理化特性和挥发性物质比较分析,采收期120d龙眼的单果质量、可溶性固形物含量、出汁率、果糖、葡萄糖、总糖和总酸含量最高。不同采收期龙眼的果汁中检出挥发性物质共有28种。从主要的4种挥发性物质变化规律来看,采收期120d龙眼的乙醇含量显著增大(P<0.05),柠檬烯和γ-松油烯在不同采收期的含量差异均不显著,采收期110d龙眼的反式-罗勒烯含量显著增大(P<0.05),且采收期110d和120d龙眼的反式-罗勒烯含量差异不显著。综合比较,采收期120d龙眼果实的品质更好,更适合加工果汁。
     3.不同品种龙眼的香气活性成分分析。利用GC-O技术对龙眼汁的挥发性物质进行鉴定,确定了8种龙眼汁中共同存在的香气活性成分为乙醇、α-蒎烯、β-月桂烯、D-柠檬烯、反式-罗勒烯、γ-松油烯、里那醇、2种未知化合物。进一步确证了反式-罗勒烯、D-柠檬烯、γ-松油烯和乙醇4种主要的挥发性物质是龙眼中的香气活性物质。风味轮廓分析发现8种龙眼汁的主要香气都属于龙眼/热带水果味、果香/甜香、花香和药草/青味。通过比较8个品种龙眼的香气物质和理化特性,提出龙眼储良比较适合果汁加工
     4.龙眼汁的整体香气分析。采用电子鼻对龙眼汁的整体香气进行分析,结果表明,电子鼻可以鉴别龙眼汁的整体香气,有效区分不同品种的龙眼汁,不同采收期的龙眼汁,并判定果汁饮料中龙眼汁的具体浓度,具有良好的灵敏度和重复性。
     5.龙眼汁中键合态香气物质分析。采用Amberlite XAD-2树脂吸附和p-D-葡萄糖苷酶水解的方法对龙眼汁中键合态香气组分进行分析,发现水解后其香气物质主要为苯甲酸、苯乙醇、蘑菇醇、诺卜醇、β-里那醇和(E)-里那醇氧化物等6种物质,其中,苯甲酸的含量高达43.956μg/100mL。由此结果表明,龙眼汁中有一部分香气物质是以键合态形式存在的,酶解可使之释放出来以增强香气。同时,对龙眼汁中键合态香气组分的糖基结构进行了分析,结果表明,其糖基主要由鼠李糖、甘露糖和葡萄糖构成。
     6.不同加工单元操作对龙眼汁香气物质的影响。通过分析龙眼汁加工过程中灭酶、粗滤、壳聚糖澄清、离心、硅藻土精滤和UHT杀菌等各个加工操作单元中香气物质后表明,加工过程中共检测出29种挥发性物质,其中鲜汁中检测出28种,灭酶汁23种,粗滤汁22种,澄清汁22种,离心汁22种,精滤汁21种,UHT汁16种,主要的挥发性物质是萜烯类化合物,发现反式-罗勒烯含量在灭酶和UHT加工操作单元中显著降低(P<0.05),而D-柠檬烯和γ-松油烯含量显著增加(P<0.05)。由此提出反式-罗勒烯分别转化为D-柠檬烯和γ-松油烯的两条途径:
     途径一:反式-罗勒烯转化为D-柠檬烯
     途径二:反式-罗勒烯转化为γ-松油烯
     分别比较了高压脉冲电场杀菌和普通热杀菌操作单元对龙眼汁香气物质和理化特性的影响。结果显示,高压脉冲电场杀菌操作单元对龙眼汁中酿酒酵母的杀菌作用较明显,对大肠杆菌的杀菌效果不是很明显,普通热杀菌对两种菌的杀菌效果都很明显。高压脉冲电场杀菌操作单元对龙眼汁的理化特性没有显著影响,而普通热杀菌会使龙眼汁的褐变度显著增大,使酒石酸、丁二酸、苹果酸、Vc和总酸含量显著下降。龙眼汁在两种不同的杀菌方式中共检测出47种挥发性物质,其中,鲜汁47种,高压脉冲电场杀菌汁45种,普通热杀菌汁44种。经过普通热杀菌龙眼汁中的主要挥发性物质含量有较为明显的下降,而高压脉冲电场对挥发性物质含量的影响较小。结果表明,与普通热杀菌相比,高压脉冲电场杀菌能有效减少龙眼汁的褐变和减少龙眼汁中有机酸和挥发性物质的散失。
     7.龙眼汁在贮藏过程中其香气物质和和理化特性的变化分析。分析经UHT灭菌处理龙眼汁在4℃、25℃和37℃条件下不同贮藏时间的香气物质和理化特性的变化,结果表明,反式-罗勒烯、D-柠檬烯和γ-松油烯的含量都有不同程度的降低,乙醇含量增加;随着贮藏温度的升高和贮藏时间的增加,龙眼汁褐变度增加,可溶性固形物含量和pH值比较稳定,果糖、葡萄糖、蔗糖和总糖含量差异不显著,有机酸含量降低,Vc在贮藏一段时间后检测不出。结果表明,龙眼汁适合低温短时贮藏。
Longan (Dimocarpus longan Lour.) is one of subtropical or tropical fruits with special flavor, high nutritional and commercial value. With the enlargement of Longan's field, its deep processing is more and more concerned. The important way of its sustainable development is to produce Longan juice, and it is the key point of processing high quality juice that Longan juice's aroma components and its change in the processing are determined and controlled. Therefore, in the current study, on the base of establishing the extraction method for Longan juice's volatile components, the active aroma of Longan juice was captured and evaluated by GC-Olfactometry (GC-O) through the analysis for different varieties of Longan juice. Meanwhile, change of its major aroma components duringβ-D-glucosidase hydrolysis processing and storage period were concerned as well as main aroma components'transforming relationship. The major results are as follows:
     1. Establishment for extracting method of Longan juice's volatile components. Method of different extracting method including SDE, SE, SHS and SPME were compared to study their extracting effects on volatile components, SPME was determined as the most effective one.
     2. Analysis of volatile components and physicochemical properties in different varieties of Longan juice. Aroma components in eight Longan cultivars were determined and a total of 59 compounds were detected, of which 43 compounds were present in Chuliang,30 in Shixia,28 in Caogu,28 in Chiye,21 in Daguo No.l,32 in Qinshanjiezhong,31 in Shuangmamu and 25 in Shuiyan.7 volatile components were in all Longan varieties. The aroma was comprised of terpenes, alcohols and esters. With the principal component analysis, it was found that the major volatile components were trans-ocimene、D-limonene、γ-terpinene and ethyl alcohol. Meanwhile, the study on their physicochemical properties showed that there was significant difference in eight longan varieties.
     Analysis of volatile components and physicochemical properties in different harvest periods of Longan juice. The weight, soluble solids content, juice yield and the content of fructose, glucose, total sugars and total acid were highest in the Longan juice which picked 120 days after full blossom.28 aroma components in different harvest periods of Longan were detected. From the variation of the 4 major volatile components, it can be seen that the content of ethanol had significant increase (p<0.05) in the Longan juice which picked 120 days after full blossom, the content of D-limonene andγ-terpinene had unremarkable differences in different harvest periods. The content of trans-ocimene significantly (p<0.05) increased in the Longan juice which picked 110 days after full blossom, while unremarkable differences in the Longan juice which picked 110 days and 120 days after full blossom. The results showed that Longan juice was better at the picking period of 120 days after full blossom.
     3. Analysis of active aroma of different varieties of Longan. Method of GC-O was used to determine volatile components of Longan juice. The co-existing volatile components were detected in eight kind of longan juice including ethanol,α-pinene、β-myrcene、D-limonene、trans-ocimene、γ-terpinene、linalool and two unknown components.Results further proved that trans-ocimene、D-limonene、γ-terpinene and ethanol were the most important active aroma compounds in Longan juice. The flavor profile analysis showed that eight Longan juice's main aroma belonged to the smell of Longan/tropical fruit、fruit/sweet、flower and herbal/grass. With the comparison of aroma and physicochemical properties of these Longan juice, Chuliang was choosed to be the suitable species for juice processing.
     4. The overall analysis of aroma compounds in Longan juice. Application of electronic nose was used in analysis of Longan juice and result showed that electronic nose had great effect on identification and concentration of a variety of Longan juice, it can also determine Longan juice's specific concentration because of its excellent sensitivity and repeatability.
     5. Analysis of bonding aroma components in Longan juice. The bonding aroma components were isolated by adsorption of Amberlite XAD-2 resin and enzymatic hydrolysis ofβ-D-glucosidase. Six kind of bonding aroma components were detected, including benzoic acid, phenylethyl alcohol, 1-octen-3-ol, nopol, linalool and (E)-linalool oxide respectively. The content of benzoic acid reached to 43.956μg/100mL. The results showed that there were relatively a amount of bonding aroma components in Longan juice, which could be released to enhance flavor through enzymatic hydrolysis. Meanwhile, it was found that glycosyl was comprised of rhamnose, mannose and glucose.
     6. The effect of Longan juice's aroma components in different processing units. Changes of Longan juice's aroma components after killing enzyme, rough filtration, chitosan clarification, centrifugal, diatomite essential filtration and UHT sterilization were studied. There wre 29 volatile components detected during prosessing that 28 were for fresh juice,23,22,22,22,21,16 were respectively for juice treated by killing enzyme, rough filtration, chitosan clarification, centrifugal, diatomite essential filtration and UHT sterilization. Terpene was the most significant substance, meanwhile the content of trans-ocimene sharply decreased in killing enzyme and UHT sterilization units, but the content of D-limonene andγ-terpinene remarkably increased. Two paths for being transformed into D-limonene andγ-terpinene from trans-ocimene were as follows:
     Route 1:trans-ocimene was transformed into D-limonene
     Route 2:trans-ocimene was transformed intoγ-terpinene
     Analysis of volatile components and physicochemical properties in High Pulsed Electric Field (HPEF) and ordinary thermal sterilization processing units.the result showed that HPEF had obvious bactericidal effect on Saccharomyces cerevisiae but unobvious bactericidal effect on Escherichia coli, while the ordinary thermal sterilization had obvious bactericidal effect on both of them. The study on their physicochemical properties showed that there was unremarkable differences in the HPEF processing unit. However, browning index was significantly increased (p<0.05) and the content of tartaric acid, butanedioic acid, malic acid, Vc and total acid were significantly decreased (p<0.05) in the ordinary thermal sterilization processing unit.47 aroma components were detected in the fresh Longan juice while 45 were detected in the HPEF juice and 44 in the ordinary thermal sterilization juice. The content of major aroma components had significantly decreased in the ordinary thermal sterilization juice but unremarkable differences in the HPEF juice. The results showed that Longan juice was better in the HPEF processing unit.
     7. Through the analysis of aroma and physicochemical index change of Longan juice treated with UHT on three different temperature storage conditions (4℃、25℃and 37℃), the result showed that the content of trans-ocimene, D-limonene and y-terpinene all declined in different degree, while the content of ethyl alcohol increased. Browning index was directly proportional to storage time and temperature. Soluble solids content and pH valve were more stable. The content of fructose, glucose, sucrose and total sugars had unremarkable differences. The content of organic acid decreased, and vitamin C was little detected after several weeks storage. The results showed that Longan juice was better at low temperature in short time.
引文
1. 白雪莲,章华伟.葡萄酒香气与其呈香物质的研究进展.山西食品工业,2005,2:26-30
    2. 蔡长河,张爱玉,易文红等.龙眼酒加工工艺研究.广东农业科学,2001,6:44-45
    3. 蔡长河,唐小浪,张爱玉等.龙眼果肉的食疗价值及其开发应用前景.食品科学,2002,23(8):328-330
    4.蔡长河,张爱玉,袁沛元等.HACCP在荔枝干、龙眼干加工生产中的应用.食品科学,2003,24(8):73-74
    5.蔡长河,张爱玉,袁沛元等.荔枝干、龙眼干安全食品的加工.中国南方果树,2004,33(2):34-35
    6.常世敏,李海芹.龙眼采后贮藏保鲜技术研究进展.广西热带农业,2005,1:15-17
    7.陈兴煌,王道平.龙眼干制新工艺的研究.中国畜产与食品,1999,6(2):70-71
    8.范刚,乔宇,姚晓琳等.柑橘加工制品中香气物质的研究进展.中国农业科学,2009,42(12):4324-4332
    9. 范远景、郑志、王军辉等.金属氧化膜传感器在食品风味和质量中的应用研究.食品科学,2004,25(10):226-229
    10.高蓓.龙眼汁的香气成分及其在果汁加工中变化的研究.[硕士学位论文].武汉: 华中农业大学图书馆,2008
    11.古小玲.中国龙眼加工产品概况.世界热带农业信息,2008,6:23-26
    12.郝菊芳.荔枝汁加工中营养和典型香气成分的变化研究.[硕士学位论文].武汉:华中农业大学图书馆,2008
    13.洪启征,盛慧云,谢知坚.龙眼贮藏保鲜研究第二报.福建农业科技,1984,3:50-51
    14.洪荣,金幼菊.日本芳香心理学研究进展.世界林业研究,2001,14(3):60-65
    15.胡桂仙,Gomez A H,王俊等.电子鼻无损检测柑橘成熟度的实验研究.食品与 发酵工业,2005,31(8):57-61
    16.胡志群,李建光,王惠聪.不同龙眼品种果实品质和糖酸组分分析.果树学报,2006,23(4):568-571
    17.黄明宇.龙眼肉酒.酿酒科技,1994,66(6):56
    18.李记明.中国野生葡萄主要酿酒品质性状及遗传研究.[博士学位论文].陕西杨凌:西北农业大学图书馆,1997
    19.李明.我国龙眼贮藏保鲜与加工利用现状.热带作物科技,1998,2:28-31
    20.李升峰,刘学铭,吴继军等.龙眼果肉的研究与开发.福建果树,2004,2:12-15
    21.李维新,林晓姿,何志刚.复合纯菌酿造龙眼果酒及其工艺优化.酿酒科技,2007,7:112-117
    22.梁立坚.酶法液化制取龙眼汁的研究.广西轻工业,2007,23(3):20-21
    23.凌雪萍,李清彪,孙道华等.龙眼多糖提取工艺的研究.厦门大学学报,2007,46(3):369-371
    24.刘畅.内源因子对龙眼汁非酶褐变影响研究.[硕士学位论文].武汉:华中农业大学图书馆,2008
    25.刘亚琼,朱运平,乔支红.食品风味物质分离技术研究进展.食品研究与开发,2006,27(6):181-183
    26.刘玉英.我国的龙眼.中国土特产,2000,2:25
    27.陆海峰,赵进,李琳等.超声波提取龙眼叶总黄酮及其鉴别.微量元素与健康研究,2007,24(4):48-49
    28.卢美英,郭蔚,潘介春等.世界荔枝龙眼生产贸易分析及应对措施.世界农业,2004,8:23-26
    29.马斯H..芳香物质研究手册.北京:中国轻工业出版社,1989
    30.毛友安,刘巍,董道竹等.用HPLC-模式识别技术表征云南烤烟烟叶的颜色相似性.化学研究与应用,2007,19(8):896-900
    31.纳智.菠萝蜜中香气成分分析.热带亚热带植物学报,2004,12(6):538-540
    32.潘一山,蔡晓东,孙立南等.龙眼采后生理及贮藏保鲜.果树科学,1996,13(1):19-22
    33.乔宇.柑橘汁香气活性化合物的鉴定及其在加工和储藏中的变化.[博士学位论 文].武汉:华中农业大学图书馆,2008
    34.乔宇,范刚,潘思轶等.巴氏灭菌和辐照处理锦橙汁在贮藏过程中香气成分的变化.湖北农业科学,2009,48(11):2816-2819
    35.屈乐轶,马永昆,李祥波.基于GC-MS和嗅闻联用的不同品种黑莓果酒香气成分分析.中国酿造,2009,6:146-149
    36.施清.龙眼采后生理特性及保鲜技术研究.福建果树,1990,2:1-4
    37.史志存,李建平.电子鼻及其在白酒识别中的应用.仪表技术与传感器,2000,1:34-37
    38.宋永,张军,李冲伟.食品挥发性风味物质的提取方法.中国调味品,2008,33(6) : 77-78
    39.苏玉润.龙眼滋补酒的调制.福建果树,2002,1:26-27
    40.孙爱东,葛毅强,张欣等.水果制品增强技术研究进展.食品与发酵工业,1999,25(1):44-45
    41.孙爱东,葛毅强,阎红等.甜橙键合态芳香组分的酶(酸)解解离方法研究.食品工业与发酵,2000,27(3):33-36
    42.孙爱东,葛毅强,倪元颖等.不同来源的增香酶酶解橙汁(皮)中键合态主要芳香物质的效果分析.食品工业与发酵,2001,27(11):1-4
    43.唐德强,王玲.龙眼果皮黄色素提取工艺及稳定性的研究.粮油加工与食品机械,2003,10:108-110
    44.涂正顺,李华,王华等.猕猴桃果实采后香气成分的变化.园艺学报,2001,28(6) : 512-516
    45.宛晓春,汤坚,丁霄霖等.山楂中游离态和键合态风味化合物.食品与发酵工业,1997,24(1):20-26
    46.王昊阳,郭寅龙,张正行等.自动化静态顶空-气相色谱-质谱对天然香精中挥发性化学成分的快速分析.分析测试学报,2004,23(1):9-13
    47.王华夫,游小青.茶叶中p-葡萄糖苷酶活性的测定.中国茶叶,1996,3:16-17
    48.王俊,胡桂仙,于勇等.电子鼻与电子舌在食品检测中的应用研究进展.农业工程学报,2004,20(2):292-295
    49.王伟江.天然活性单萜-柠檬烯的研究进展.中国食品添加剂,2005,1:33-37
    50.魏长宾,刘胜辉,臧小平等.果实香气成分及其形成研究进展.热带农业科学,2009,29(3):59-64
    51.魏文玉,张志军.龙眼开发与利用.保鲜与加工,2003,3(2):15
    52.温靖,徐玉娟,肖更生等.不同品种龙眼果实加工特性比较研究.食品科学,2010,31(1): 71-75
    53.文良娟,滕建文,于兰等.龙眼果汁饮料的研制.食品科技,2002,9:55-56
    54.武飞,南风.龙眼:养血安神.医疗与保健,1997,8:33
    55.吴岗,郑成.高压脉冲电场灭菌机理.食品科学,1998,19(4):7-9
    56.吴继红.苹果汁加工中典型芳香成分的形态、变化及增香调控的研究.[博士学位论文].北京:中国农业大学图书馆,2004
    57.解万翠,汤坚,罗昌荣等.糖苷类香料前驱体研究进展.香料香精化妆品,2004,4:25-30
    58.徐迟默[译].泰国龙眼生产.世界热带农业信息,2007,4:20
    59.徐莺,倪光远,陈清婵等.气相色谱—嗅觉测量法鉴定蒌蒿中的香气化合物.园艺学报,2009,36(11):1676-1680
    60.徐玉娟,张惠娜,张友胜等.复合龙眼汁运动饮料的研制.食品科技,2007,32(3): 178-180
    61.姚荣清,肖更生,陈卫东等.龙眼酒酿造工艺研究.酿酒,2003,30(3):82-83
    62.叶雪英.龙眼干果热风分段烘干工艺.广西热带农业,2006,6:20-21
    63.殷红,葛长荣.食品冷杀菌技术.保鲜与加工,2005,5(1):40-41
    64.郁惠蕾,许建和,林国强.糖苷水解酶在糖苷合成中的应用概况.有机化学,2006,26(8):1052-1058
    65.余炼,滕建文,左俊等.广西百色地区不同品种芒果香气成分分析.现代食品科技,2008,24(3):276-280
    66.曾亚森,周瑞强,蔡业彬.我国龙眼采后保鲜与加工发展趋势.保鲜与加工2004,4(3):2-4
    67.曾文献.如何制作龙眼干.福建农业,1994,8:16
    68.张弛.柑橘汁加工中关键单元操作对香气成分影响的研究.[硕士学位论文].武汉:华中农业大学图书馆,2007.
    69.张晓萌.桃果实成熟过程中香气成分形成及其生理机制研究.[浙江大学硕士论文].浙江:浙江大学图书馆,2005
    70.张正竹,宛晓春,夏涛.天然高香液体茶的加工技术.食品与发酵工业,2004,30(11):106-109
    71.郑孝华,翁雪香,邓春晖.中华猕猴桃果实香气成分的气象色谱/质谱分析.分析化学,2004,32(6):834
    72.朱方志.龙眼综合加工技术.农村新技术,2007,8:35-38
    73.朱虹,陈玉芬,李雪萍等.顶空固相微萃取气质联用分析香蕉的香气成分.园艺学报,2007,34(2):485-488
    74.朱先约,宗永立,李炎强等.电子鼻技术及其在烟草行业中的应用.中国烟草学报,2008,14(4):66-70
    75.邹小波,赵杰文.电子鼻在饮料识别中的应用研究.农业工程学报,2002,18(3):146-149
    76. Arena E, Guarrera N, Campisi S, et al. Comparison of odour active compounds detected by gas-chromatography-olfactometry between hand-squeezed juices from different orange varieties. Food Chem,2006,98(1):59-63
    77. Aswapati 0 W, Srikok D, Putsiri S. Storage of lychee and logan at ambient temperature using hot benomyl treatment and film wrap. In:Chiang Mai Univ., Thailand. Proc National Seminar Appropriate Post-Harvest Technol. Chiang Mai, Thailang,1987:205-211
    78. Ayhan Z, Heom H W, Zhang Q H, et al. Flavor, color, and vitamin C retention of pulsed electric field processed orange juice in different packaging materials. J Agric Food Chem,2001,49(2):669-674
    79. Bazemore R, Goodner K, Rouseff R. Volatiles from unpasteurized and excessively heated orange juice analyzed with solid phase microextraction and GC-Olfactometry. J Food Sci,1999,64(5):800-803
    80. Berlinet C, Guichard E, Fournier N, et al. Effect of pulp reduction and pasteurization on the release of aroma compounds in industrial orange juice. J Food Sci,2007, 72(8):535-543
    81. Boulanger R, Crouzet J. Free and bound flavour components of Amazonian fruits: 3-glycosidically bound components of cupuacu. Food Chem,2000,70(4):463-470
    82. Capone S, Epifani M, Quaranta F, et al. Monitoring of rancidity of milk By means of an electronic nose and adynamic PCAanalysis. Sens Actuators B:Chem,2001, 78(1/3):174-179
    83. Chang C Y, Chang C H, Yu T H, et al. The effect of drying treatment on the flavor and quality of Longan fruit. Developments Food Sci,1998,40,353-367
    84. Chyau C C, Ko P T, Chang C H, et al. Free and glycosidically bound aroma compounds in lychee (Litchi chinensis Sonn.). Food Chem,2003,80(3):387-392
    85. Dixon J, Hewett E W. Factors affecting apple Aroma/flavor volatile concentration:a review. New Zealand J Crop Horticulture Sci,2000,28(3):155-173
    86. Francis MJO, Allcock C. Geraniol β-D-glucoside:occurrence and synthesis in rose flowers. Phytochemistry,1969,8:1339-1347
    87. Gardner J W, Bartlett P N. A Brief history of electronic noses. Sens Actuators B: Chem,1994,18(1/3):210-211
    88. Gardner J W, Bartlet P N. Electronic nose:principles and applications. Meas Sci Technol,2000,11 (7):4-10
    89. Gil M, Cabellos J M, Arroyo T, et al. Characterization of the volatile fraction of young wines from Denomination of Origin "Vinous de Madrid" (Spain). Anal Chem Acta,2006,563(1/2):145-153
    90. Goms M R A. Effect of high-press treatment on the activity of some polyphenoloxidases. Food Chem,1996,56(1):1-51
    91. Gomez A H, Wang J, Hu G, et al. Electronic nose technique potential monitoring mandarin maturity. Sens Actuators B,2006,113(1):347-353
    92. Gomez A H, Wang J, Hu G, et al. Discrimination of storage shelf-life for mandarin by electronic nose technique. LWT,2007,40(4):681-689
    93. Guadarrama A, Fernandez J A, Iniguez M. Array of conducting polymer sensors for the characterization of wines. Anal Chim Acta,2000,411:193-200
    94. Guillot S, Peytavi L, Bureau S, et al. Aroma characterization of various apricot varieties using Headspace-solid phase microextraction combined with gas chromatography-mass spectrometry and gas chromatography-olfactometry. Food Chem,2006,96(1):147-155
    95. Guth H. Quantitation and sensory studies of character impact odorants of different white wine varieties. J Agric Food Chem,1997,45(8):3027-3032
    96. Hakala M A, Lapvetelainen A T, Kallio H P. Volatile Compounds of Selected Strawberry Varieties Analyzed by Purge-and-Trap Headspace GC-MS. J Agric Food Chem,2002,50(5):1133-1142
    97. Haleva-Toledo E, Naim M, Zehavi U, et al. Formation of a-terpineol in citrus juices, model and buffer solutions. J Food Sci,1999,64:838-841
    98. Hatanaka A. The biogeneration of green odour by green leaves. Phytochemistry, 1993,34(5):1201-1218
    99. Hayata Y, Sakamoto T, Maneerat C, et al. Evaluation of aroma compounds contributing to muskmelon flavor ln Porapak Q extracts by aroma extract dilution analysis. J Agric Food Chem,2003,51 (11):3415-3418
    100.Jia H, Okamoto G. Distribution of volatile compounds in peach fruit. J Jpn Soc Horti Sci,2001,70(2):223-225
    101.Jordan M J, Goodner K L, Laencina J. Deaeration and pasteurization effects on the orange juice aromatic fraction. LWT,2003,36(4):391-396
    102.Klieber A, Bangato N, Barrett R, et al. Effect of post-ripening nitrogen atmosphere storage on banana shelf life, visual appearance and aroma. Postharvest Biol Technol, 2002,25(1):15-24
    103.Lambert Y, Demazeau G, Largeteau A, et al. Changes in aromatic volatile composition of strawberry after high pressure treatment. Food Chem,1999,67(1): 7-16
    104.Lickens S T, Nikerson G B. Detection of certain HOP oil constituents in brewing Products. Am Soc Brew Chem,1964,5:5-13
    105.Lin H T, Chen S J, Chen J Q, et al. Current situation and advances in postharvest storage and transportation technologies of longan fruit. Acta Horticulturae,2001, 558:343-351
    106.Lin J M, Rouseff R L, Barros S, et al. Aroma composition changes in early season grapefruit juice produced from thermal concentration. J Agric Food Chem,2002, 50(4):813-819
    107.Manas P, Barsotti L, Claude C J. Microbial inaction by PEF in a batch treatment chamber effects of some electrical parameters and food constituents. Innov Food Sci Emerg,2001,2:239-249
    108.Marsili R. Measuring volatiles and limonene oxidation products in orange juice by capillary GC. LC-GC,1986,4:358-362
    109.Mateo J J, Jimenez M. Monoterpenes in grape juice and wines. J Chromatogr A, 2000,881(1/2):557-567
    110.Matsui K, Shibata Y, Tateba H, et al. Changes of lipoxygenase and fatty acid hydroperoxide lyase activities in bell pepper fruits during maturation. Biosci-Biotechnol-Biochem,1997,61(1):199-201
    111.Miklosy E, Polos V. Yeasts with beta-D-glucosidase activity:properties and application in winemaking processes. Acta-Alimentaria,1995,24:167-179
    112.Milo C, Grosch W. Detection of odor defects in boiled cod and trout by gas chromatography-olfactometry of headspace samples. J Agric Food Chem,1995, 43(2):459-462
    113.Moncrieff R W. An instrument for measuring and classifying odours. J Appl Phys, 1961,16:742-749
    114.Moshonas M G, Shaw P E. Changes in composition of volatile components in aseptically packaged orange juice during storage. J Agric Food Chem,1989,37(1): 157-161
    115.Moshonas M G, Shaw P E. Quantitative Determination of 46 Volatile Constituents in Fresh, Unpasteurized Orange Juices Using Dynamic Headspace Gas Chromatography. J Agric Food Chem,1994,42(7):1525-1528
    116.Natale C D, Davide FAM, D'Amico A, et al. An electronic nose for the recognition of the vineyard of a red wine. Sens Actuators B:Chem,1996,33(1/3):83-88
    117.Natale C D, Panolesse R, Macagnano A, et al. Application of a combined artifical olfaction and taste system to the quantification of relevant compounds in the red wine. Sens Actuators B:Chem,2000,69(3):342-347
    118.OHare T J, Prasad A. Longan storage in conjunction with metabisulphite pads. North Queensland Horticultural News,1991:55-56
    119.Pellati F, Benvenuti S, Yoshizaki F, et al. Headspase solid-phase microextraction-gas chromatography-mass spectrometry analysis of the volatile compounds of Evodia species fruits. J chromatogr A,2005,1087(1/2):265-273
    120.Peres C, Begnaud F, Berdague J L. Fast Characterization of Camembert cheeses by static headspace-mass spectrometry. Sens Actuators B:Chemical,2002,87(3): 491-497
    121.Perez A G, Rios J J, Sanz C, et al. Aroma components and free amino acids in strawberry variety Chandler during ripening, J Agric Food Chem,1992,40(11): 2232-223
    122.Perez-Lopez A, Saura D, Lorente J, et al. Limonene, linalool, a-terpineol, and terpinen-4-ol as quality control parameters in mandarin juice processing. Eur Food Res Technol,2006,222:281-285
    123.Plutowska B, Wardencki W. Application of gas chromatography-olfactometry (GC-O) in analysis and quality assessment of alcoholic beverages-A review. Food Chem,2008,107(1):449-463
    124.Polydera A C, Stoforos N G, Taoukis P S. Quality degradation kinetics of pasteurised and high pressure processed fresh Navel orange juice:Nutritional parameters and shelf life. Innov Food Sci Emerg,2005,6(1):61-69
    125.Rega B, Fournier N, Guichard E. Solid Phase Microextraction (SPME) of Orange Juice Flavor:Odor Representativeness by Direct Gas Chromatography Olfactometry (D-GC-O). J Agric Food Chem,2003,51(4):7092-7099
    126.Roberto R M, Garcia N P, Hevia A G, et al. Application of purge and trap extraction and gas chromatography for determination of minor esters in cider. J Chromatogr A, 2005,1069 (2):245-251
    127.Ruth SM van. Methods for gas chromatography-olfactometry:a review. Biomol eng, 2001,17(4/5):121-128
    128.Sarry J E, Gunata Z. Plant and microbial glycoside hydrolases:Volatile release from glycosidic aroma precursors. Food Chem,2004,87(4):509-521
    129.Schieberle P. Recent developments in methods for analysis of volatile flavor compounds and their precursors, in Characterization of Foods:Emerging Methods, ed. by Goankar A. Elsevier, Amsterdam,1995, pp:403-431
    130.Schweizer-Berberich P M, Vaihinger S, Gopel W. Characterization of food freshness with sensor arrays. Sens Actuators B:Chem,1994,18(1/3):282-290
    131.Shalit M, Katzir N, Tadmor Y, et al. Acetyl-CoA:alcohol acetyltransferase activity and aroma formation in ripening melon fruits. J Agric Food Chem,2001,49(2): 794-799
    132.Song J, Gardner B D, Holland J F, et al. Rapid Analysis of Volatile Flavor Compounds in Apple Fruit Using SPME and GC/Time-of-Flight Mass Spectrometry. J Agric Food Chem,1997,45(5),1801-1807
    133.Steffen A, Pawliszyn J. Analysis of Flavor Volatiles Using Headspace Solid-Phase Microextraction. J Agric Food Chem,1996,44(8):2187-2193
    134.Takeoka G R, Buttery R G, Flath R A. Volatile constituents of Asian pear (Pyrus serotina). J Agric Food Chem,1992,40(10):1925-1929
    135.Tandon K S, Baldwin E A, Shewfelt R L. Aroma perception of individual volatile compounds in fresh tomatoes as affected by the medium of evaluation. Postharvest biol technol,2000,20(3):261-268
    136.T(?)nder D, Petersen M A, Poll L, et al. Discrimination between freshly made and tored reconstituted orange juice using GC Odour Profiling and aroma values. Food Chem,1998,61(1/2):223-229
    137.Visai C, Vanoli M. Volatile compound production during growth and ripening of peaches and nectarines. Scientia Horticulturae,1997,70(1):15-24.
    138.Wilkes J G, Conte E D, Kim Y H, et al. Sample preparation for the analysis of flavors and off-flavors in foods. J Chromatogr A,2000,880(1/2):3-33
    139.Wong K C, Wong S N, Loi H K, et al. Volatile Constituents from the Fruits of Four Edible Sapindaceae:Rambutan (Nephelium lappaceum L.), Pulasan (N. ramboutan-ake (Labill.) Leenh..), Longan (Dimocarpus longan Lour.), and Mata Kucing (D. longan ssp. malesianus Leenh.). Flavour Frag J,1996,11:223-229
    140.Yeom H W, Streaker C B, Zhang Q H, et al. Effects of pulsed electric fields on the quality of orange juice and comparison with heat pasteurization. J Agric Food Chem, 2000,48(10):4597-4605.
    141.Zhang Z M, Li G K. A preliminary study of plant aroma profile characteristics by combination sampling method coupled with GC-MS. Microchem,2007,86(1): 29-36.
    142.Zhang Z M, Zeng D, Li G K. Study of the volatile profile characteristics of longan during storage by a combination sampling method coupled with GC-MS. J Sci Food Agric,2008,88:1035-1042
    143.Zhang Y, Gao B, Zhang M W, et al. Headspace solid-phase microextraction-gas chromatography-mass spectrometry analysis of the volatile components of longan (Dimocarpus longan Lour.). Eur. Food Res. Technol.,2009,229:457-465.