NaCl胁迫下三种胡颓子属植物部分生理特性、叶片显微结构及蛋白质特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙枣(Elaeagnus angustifolia L.)是新疆的一种重要的经济树种,具有抗旱、耐盐的优良特性,本文选取尖果沙枣(Elaeagnus oxycarpa Schlecht)、大果沙枣(Elaeagnus moorcroftii Wall ex Schlecht)、东方沙枣(Elaeagnus angustifolia var orien talis(L.)Kuntze)的一年生幼苗为试材,设对照和五个处理,NaCl处理浓度为50,100,200,300,350mmol/L,NaCl胁迫处理10天,20天,30天后分别取其根、茎、叶,系统研究NaCl胁迫对尖果沙枣、大果沙枣和东方沙枣生长、体内水分、叶片显微结构以及叶片中POD谱带和蛋白质的变化情况,初步探讨了三种沙枣抗盐性的鉴定方法及评价其抗盐性。主要结论如下:
     1)盐胁迫10、20、30天时,尖果沙枣、大果沙枣和东方沙枣各器官及总体生物量均随盐浓度增加呈下降趋势,鲜、干重根冠比均变化幅度不大,且鲜重根冠比大于干重的,三种沙枣叶片水势有所下降,叶片相对含水量和叶片肉质化程度的变化幅度不大,尤其是在高盐条件下(﹥200mmol/LNaCl),它们仍能保持较低的水势,促进根部吸水向上运输,保持叶片内较高的含水量,使植物维持其生命活动。
     2)随着胁迫时间的延长及程度的增加,尖果沙枣和东方沙枣叶片中Chl总含量、Car的含量、Chla+Chlb的值有一定幅度的增加,而大果沙枣的稍有下降,三者叶片中Chla/Chlb的值变化不大,Na+含量在三者叶片中均有大幅度增加,另外,在盐胁迫30天时,对照、200mmol/L、350mmol/LNaCl的叶片显微结构比较中,三者叶肉细胞的受害程度增加,细胞间隙变大,液泡变小,但叶绿体结构完整,基粒片层清晰。
     3)在盐胁迫30天时,尖果沙枣和大果沙枣POD谱带的条数均为4条,但各处理间谱带的表达量不同,三种沙枣各处理叶片中可溶性蛋白质含量均呈增加趋势,蛋白质谱带数量上变化不大,其中尖果沙枣各处理叶片中蛋白条带数量无增减变化,大果沙枣在300、350mmol/LNaCl浓度时条带增加,东方沙枣在200、300、350mmol/LNaCl浓度时有条带增加,这些新增条带是否为盐胁迫诱导的新增条带,将有待于进一步研究。
     4)综合分析表明:尖果沙枣和东方沙枣的抗盐能力高于大果沙枣。各抗盐性鉴定指标对抗盐能力的贡献不同,其中鲜重、干重、根冠比、叶片有机物质干重、叶片干物质积累率、叶片相对含水量、叶片水势、叶片肉质化程度、Chl总含量、Car的含量、Chla+Chlb的值、Chla/Chlb的值、叶绿体的超显微结构可作为评价沙枣的抗盐性的可靠指标,叶片中POD谱图和蛋白质电泳谱图可为更好地鉴定沙枣的抗盐能力。
Elaeagnus angustifolia L. is one kind of important economical tree in Xinjiang Uygur Autonomous Region, It has the strong compatibility to the salt and the drought, One-year-olds seedling of E. oxycarpa Schlecht. , E. mooceroftii Wall.ex Schlecht, Elaeagnus angustifolia var orien talis(L.)Kuntze were used in this experiment as materials. The NaCl concentration is 50, 100, 200, 300 and 350mmol/L respectively, salt treated about 10, 20, 30 days in potted mulberry under the rainproof awning, to study systemically the changes of the growth, the water content, the electron microscopic structure of leafs, the POD band and protein change situation. And discussed the research measures of salt-tolerant characters and evaluate salt-tolerant ability of Elaeagnus angustifolia L..Main results as follows:
     (1) After salt treated about 10, 20, 30 days, with the increasing of the concentration of NaCl, the different organs and whole biomass weight declined, and wet Root-Crown ratio was more than dry Root-Crown ratio, their had different salt-tolerant ability, water potential of leafs decreased, leaf relative water content and succulence index of leafs had changed slightly in E. oxycarpa Schlecht., E.mooceroftii Wall.ex Schlecht, Elaeagnus angustifolia var orien talis(L.) Kuntze, Especially at the strong salt concentration(﹥200mmol/LNaCl), They still could maintain the low water potential, promoted root absorbing water upward transportation, maintains high water potential in leafs, thus causes the plant to carry on the vital activity.
     (2) Along with the increasing time and degree of salt stress, leaf chlorophyll content, car content and chlorophyll a+b value increased in E. oxycarpa Schlecht. and Elaeagnus angustifolia var orien talis(L.)Kuntze, and decreased in E. mooceroftii Wall.ex Schlecht, chlorophyll a+b value had changed slightly in third. Na+ content had great degree increased. Moreover, in the comparison, 200mmol/L, 350mmol/LNaCl leaf microstructure comparison, three mesophyll cells suffered the degree to increase, the intercellular space filled out, the vacuole changed small, but the chloroplast structure is complete, the grana lamella is clear.
     (3) When salt stress 30 days, the POD band is 4 in E. oxycarpa Schlecht. and E. mooceroftii Wall.ex Schlecht, but the band color depth is different at each treatment, The protein content of leafs increased, and the quantity changed slightly, protein band was no change in the E. oxycarpa Schlecht., when 300, 350mmol/LNaCl concentration the protein band number increased in E. mooceroftii Wall.ex Schlecht, when 200, 300, 350mmol/L NaCl concentration the protein band number increased Elaeagnus angustifolia var orien talis(L.)Kuntze, whether these additional banding for the salty stress inducted, it will wait for further studies.
     (4) The results show: Salt-resistance ability of E.oxycarpa Schlecht. and Elaeagnus angustifolia var orien talis(L.)Kuntze are higher than E. mooceroftii Wall.ex Schlecht.. and they have the different salt-resistance mechanism,different indexes have different contributions to salt-resistance of them.plant wet height, plant dry height, Root-Crown ratio, the percentage of dry matter accumulation, organic content in leafs, water potential, leaf relative water content, succulence index of leafs, leaf chlorophyll content, car content and chlorophyll a+b value, chlorophyll a/b value, leaf microstructure, protein content can be used to appraise the capacity of salt-resistance of Elaeagnus angustifolia L. The POD band and protein band in leafs may for be able to appraise better the Elaeagnus angustifolia L. salt-resistance ability.
引文
[1] 中国荒漠化(土地退化)防治研究课题组.中国荒漠化(土地退化)防治研究[M].北京:中国环境科学出版社,1981
    [2]张建锋等. 世界盐碱地资源及其改良利用的基本措施[J].水土保持研究,2005, 第 12 卷第6 期:29-33.
    [3]Kovda V A. Loss of productive land due to salinazation[J].Ambio,1983,XII(2):91-93
    [4] 董光荣,吴波,慈龙骏,等.我国荒漠化现状成因与防治对策[J].中国沙漠,1999,19(4):318-321
    [5]罗廷彬等:新疆盐碱地生物改良的必要性与可行性[J]. 干旱区研究,2001,第 18 卷第 1期:46-48
    [6]赵思峰. 新疆盐碱地的综合治理研究[J].农机化研究,2006 年 9 月,第 9 期:34-37.
    [7]常红军,秦毓茜:植物的盐胁迫生理,安阳师范学院学报,2006 年
    [8]孙兰菊,岳国峰.植物耐盐机制的研究进展[J].海洋科学,2001,25(4):28~31.
    [9]李秀霞,齐曼·尤努斯等. Na2SO4胁迫对沙枣光合速率及其它生理指标的影响[J].新疆农业科学,2005,42(2):102~106.
    [10]齐曼·尤努斯, 李秀霞, 李阳, 高桥久. 盐胁迫对大果沙枣膜脂过氧化和保护酶活性的影响[J]. 干旱区研究,2005 年第 22 卷第 4 期:503-506.
    [11]齐曼·尤努斯等.NaCl、Na2SO4 胁迫对新疆大果沙枣种子萌发及生理特性的影响[J]. 新疆农业科学 2006,43(2):136-139.
    [12]H.-W.Koyro. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.)[J]. Environmental and Experimental Botany,2006,56,136-146.
    [13]Koyro,H.-W., Study of potential cash crop halophytes in a quick check system task. Veg.Sci. 2003,38,5-17
    [14]陈竹生,聂华堂,计玉等.柑橘种质的耐盐性鉴定[J].园艺学报,1992,19(4):289-295.
    [15]马翠兰,刘星辉,陈中海.果树对盐胁迫的反应及耐盐性鉴定的研究进展[J]. 福建农业大学学报 2000,29(2):161-166.
    [16]吴成龙等.NaCl 胁迫对菊芋幼苗生长及其离子吸收运输的影响[J]. 西北植物学报,2006,26(11):2289-2296.
    [17]陈景明等. 植物耐盐逆性的研究概况[J]. 安徽农业科学,2006,34(14):3277-3278.
    [18]ASISHKP,ANATHBD.Salt tolerance and salinity effects on plants areview[J].Ecotoxic-oloy and Environmenal Safety,2005,60:324-349.
    [19]Cramer GR, Lauchli A, Epstein E. Effects of NaCl and CaCl2 on ion activities in complex nutrient and root growth of cotton. Plant Physiol, 1986,81:792-797.
    [20]郭世荣主编. 无土栽培[M]. 中国农业出版社,2003,114:20-35.
    [21]王素平,郭世荣,李胡等. 盐胁迫对黄瓜幼苗根系生长和水分利用的影响[J]. 应用生态学报,2006,17(10):1883~1888
    [22] 袁琳,克热木.NaCl 胁迫对阿月浑子实生苗活性氧代谢与细胞膜稳定性的影响[J].植物生态学报,2005,29(6):985-991.
    [23] 毛桂莲,许 兴.NaCl 胁迫对枸杞叶绿素荧光特性和活性氧代谢的影响[J].干旱地区农业研究,2005,23(5):118-120.POD 活力除了在 Na2SO44g/kg 含盐量的土壤胁迫
    [24] 马丽清,韩振海,周二峰等.盐胁迫对珠美海棠和山定子膜保护酶系统的影响[J].果树学报,2006,23(4):495-499.
    [25]王宇超,王得祥,彭少兵等. 盐胁迫对木本滨藜植物细胞膜透性及生理特性的影响[J]. 干旱地区农业研究, 2007,25(4):225-229.
    [26]Mckay HM, Mason WL. Physiolcically indicators of tolerance to cold storage in Sitka spruce and Dougla-fir seedlings. Canadan Journal Forest Research, 1991(21):890-901.
    [27]谢承陶主编.盐渍土改良原理与作物抗性[M].北京:中国农业科技出版社,1993:245-247
    [28]邵红雨,孔广超,齐军仓等.植物耐盐生理生化特性的研究进展[J]. 安徽农学通报, 2006, 12 (9):51-53.
    [29]常红军,秦毓茜:植物的盐胁迫生理,安阳师范学院学报,2006 年
    [30]孙兰菊,岳国峰.植物耐盐机制的研究进展[J].海洋科学,2001,25(4):28~31.
    [31]刘志华,赵可夫. 盐胁迫对獐茅生长及 Na+对 K+含量的影响. 植物生理与分子生物学学报,2005,31(3):311-316.
    [32]FlowersTJ,MAHajibagheri.SalinHordeumvulgare:ioncon2centrationinrootcellsofcultivarsdifferinginsalttolerance1Plantand Soil,2001,(231):1-91.
    [33] 王宝山,邹琦,赵可夫. 液泡膜转运蛋白与植物耐盐性研究进展. 植物学通报,1996,17(1):17-26.
    [34] 王宝山,邹琦. NaCl 胁迫对高粱根、叶鞘和叶片液泡膜 ATP 酶和焦磷酸酶活性的影响. 植物生理学报,2000,26(3):181-188.
    [35] Niu X, Bressan RA, Hasegawa PM, Pardo JM. Ion homeostasis in NaCl stress environments. Plant Physiol, 1995,109:735-742.
    [36] Greenway H, Munns R Mechanism of salt tolerance in nonhalophytes. Annu Rev Plant Physiol,1980,31:149-190.
    [37]ASHRAFM, HARRISPJC. Potential biochemical indicators of salinity tolerance in plants [J]. Plant Science,2004,166:3-16.
    [38]MAATHUISFJM,AMTMANNA. K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios[J]. Annuals of Botany,1999,84:123-133.
    [39] 余叔文,汤章城.植物生理与分子生物学(第二版).科学出版社.1998,752-769.
    [40]Gaxiola RA, Rao R, Sherman A, et al.The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc. Natl. Acad. Sci. USA, 1999, 96: 1480-1485
    [41]张建秋等:双向电泳技术分析白刺盐胁迫蛋白的表达,吉林农业大学学报,2004年第26卷第5期:512-514
    [42]赵可夫.植物抗盐生理[M].中国科学技术出版社,1993.
    [43]刘友良.植物耐盐性研究进展[J].植物生理学通讯,1987,(4):1~7.
    [44]辛华,张秀芬,初庆刚.山东滨海盐生植物叶结构的比较研究.西北植物学报,1998,18(4):584-589
    [45]陈沁,刘友良.谷胱甘肽对盐胁迫大麦叶片活性氧清除系统的保护作用[J].作物学报,2000,26(3):365~371.
    [46] 董 发 才 , 苗 琛 . 小 麦 根 系 过 氧 化 氢 酶 积 累 与 耐 盐 性 的 关 系 [J]. 武 汉 植 物 学 研究,2002,20(4):293~298.
    [47]王建华,刘鸿先.SOD 在植物逆境及衰老中的作用[J].植物生理学通讯,1980,1:1~7.
    [48]王俊刚,陈国仓.水分胁迫对 2 种生态型芦苇的可溶性蛋白含量、SOD、POD、CAT 活性的影响[J].西北植物学报,2002,22(3):561~565.
    [49]曾洪学、王俊.盐害生理与植物抗盐性[J]. 生物学通报,2005年第40卷第9期:1-3
    [50]Kocsuy G, Galiba G,Suka J. Invitro system to study and drought tolerance of wheat[J].Acta.Horticulture,1991, 2(89):235~236.
    [51]夏富才,姜贵全,陆静梅. 盐生植物抗盐结构机理研究进展[J]. 2002, 23(2):67-69.
    [52]Romeroaranda R, Soria T, Cuartero J. Tomato plant-water uptake and plant-water relation ships under saline growth conditions.Plant Sci,2001,160:265~272.
    [53]Mitsuya S, Takeoka Y, Miyake H. Effects of sodium chloride on foliar ultrastructure of sweet potato plantlets grown under light and dark conditions in vitro.[J]. Plant Physiol, 2000,157:661~667.
    [54]马焕成,蒋东明.木本植物抗盐性研究进展.西南林学院学报,1998,18(1):52~59
    [55]Kiyosue T, Shinozaki K, Yamaguchi-Shibozaki K. Cloning of cDNAs for genes that are early- responsive to dehydration stress in Arabidopsis thaliana. Plant Mol Biol, 1994, 25(5): 791- 798.
    [56]Shinozaki K, Yamauchi-Shibozaki K,et al. Molecular responses to water stress in Arabidopsis thaliana. Plant Res,1998,111(3):345-351.
    [57]刘岩,彭学贤,谢友菊. 植物抗渗透胁迫基因工程研究进展[J ]1 生物工程进展, 1997 , 17 (2) : 31-36。
    [58]陈德明.盐渍环境中的植物耐盐性极其影响因素[J].土壤学进展,1994.22(5):22~29.
    [59] Sing N K,Handa A K,Hasegawa PM, et al . Proteins associate with adaptation of cultured tobacco cells to NaCl [ J ] 1PlantPhysiol ,1985 , 79 : 126-137。
    [60]SchlumbergerM,GicquelC,LumbrosoJ,etal.Malignantpheochromocytoma:clinicalbiological,histologicandtherapeuticdatainaseriesof20patientswithdistantmetastases[J].JEndocrinolInvest,1992,15:643-649.
    [61]NakataT,kubotaY,SasagawaI,etal.Remarkablysuppressedmanganesesuperoxidedismutaseactivityinmalignantpheochromocytoma[J],JUrol,1995,153:1787-1794.
    [62]赵可夫.植物抗盐生理[M].中国科学技术出版社,1993.
    [63]刘友良.植物耐盐性研究进展[J].植物生理学通讯,1987,(4):1~7.
    [64]周晓馥,王兴智.植物耐盐相关基因:SOS 基因家族研究进展[J].遗传 2002, 24(2): 190-192.
    [65]余梅,张峰.功能基因组学在寻找植物耐盐基因方面的研究进展[J].生物学通报, 2002, 37 (2): 11-12.
    [66]杨青川等.植物耐盐遗传性及分子标记研究进展[J].中国草地, 2002, 24(2): 59 – 62 .
    [67]杨明峰,韩宁,陈敏,王宝山.植物盐胁迫响应基因表达的器官组织特异性[J].植物生理学通讯,2002(38)4:394~398.
    [68] Foolad MR, Jones RA. Mapping salt-tolerance genes in tomato using trait-based marker analysis. Theor Appl Genet,1993,87:184~192
    [69]Shinozaki K,Yamaguchi-Shinozaki K.Gene expression and signal transduction in water-stress response. Plant Physiol,1997,115:327~334 [70 ]Kasuga M,Liu Q,Miura S,et al.Improving plant drought, salt and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol,1999,17(3):287~291
    [71]应天玉,刘国生,姜中珠. 植物耐盐的分子机理. 东北林业大学学报,2003 年第 31 卷第 1期:31-33.
    [72]周建明.新疆的沙枣资源[J] .生物学杂志. 1991,(3):19-20.
    [73]常兆丰,屠振栋. 沙枣资源开发利用研究综述[J]. 甘肃林业科技,1994,(2):38-40
    [74]孙秀殿等.沙漠之宝—沙枣[J].特种经济动植物,2000 年第 4 期:31-33
    [75]黄俊华,买买提江,杨昌友,王朝锋.沙枣(ElaeagnusangustifoliaL1)研究现状与展望[J].中国野生植物资源,2005 年 6 月,第三期:26-30
    [76] 黄俊华,买买提江,杨昌友,王朝锋. 沙枣(ElaeagnusangustifoliaL1)研究现状与展望[J]. 中国野生植物资源,2005 第 24 卷第 3 期:26-29.
    [77]张洁明,孙景宽,刘宝玉等. 盐胁迫对荆条、白蜡、沙枣种子萌发的影响[J]. 植物研究, 2006,26(5):555-559
    [78]常兆丰,屠振栋.沙枣资源开发利用[J].甘肃林业科技,1994,2:38-40.
    [79]邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000.
    [80]赵氏杰.植物组织中丙二醛测定方法的改进[J].植物生理学通讯.1994,30(3):207-210.
    [81]西北农业大学,基础生物化学实验指导[M].西安: 陕西科学技术出版社, 1986.
    [82]高俊凤主编.植物生理学实验技术[M].兴界图书出版:2000,1:93~95.
    [83]Southey JM,Jooste JH.Physiological response of Vitis vinifera(cv. Chenin blanc) grafted onto different root stocks on a relatively saline soil[J].south Afr J Enol Vitic,1992,13:10~12.
    [84]离子色谱仪(Methohm 792 型)使用说明书:样品的测定.
    [85]李合生,赵世杰.植物生理生化实验原理和技术[M].武汉:华中农业大学出版社,2000,167~169.
    [86] Godfrey W N, John C O, Erwin B. Sorghum and Salinity: I. Response of Growth, Water Relations, and Ion Accumulation to NaCl Salinity[J], CropSci, 2004, 44: 797-805.
    [87]裘丽珍,黄有军,黄坚钦,夏国华,龚宁. 不同耐盐性植物在盐胁迫下的生长与生理特性比较研究[J]. 浙江大学学报(农业与生命科学版) 2006,32(4):420~427.
    [88]刘遵春,刘用生.盐胁迫对果树生理生化的影响及耐盐性指标的研究进展[J]. 安徽农业科学, 2006 年第 34 期第 14 卷:3273-3274.
    [89]廖光瑶.SPAC 的水势热力学系统[J].四川林业科技,1999,12(1):47-52.
    [90] 山东农学院 , 西北农学院 . 植物生理学实验指导 [M]. 济南 : 山东科学技术出版社,1982.121-128.
    [91]Raschke K, Stomatal action[J]. Ann. Rev. PlantPhysiol,1975,26:307-340.
    [92]KeYQ, Pan TG. Effects of salt stress on the ultrastructure of chloroplast and the activities of some protective enzymes in leaves of sweet potato [J]. Acta Phytophysiol Sin1, 1999,25(3):229-233.
    [93]刘贞琦,刘振业,马达鹏,曾淑芬. 水稻叶绿素含量及其光合速率关系的研究[J].作物学报,1984,10(1):57-62
    [94]邵红雨,孔广超,齐军仓,任丽彤,王瑞清, 曹连莆. 植物耐盐生理生化特性的研究进展[J].安徽农学通报,2006,12(9):51-53.
    [95]Zhu J K. Genetic analysis of plant salt tolerance using Arabidopsis[J]. Plant Physiol, 2000, 124: 941-948.
    [96]Epstein M.Advances in salt tolerance[J]. Plant Soil, 1987, 99: 17-29.
    [97]LEIDI E O, Saiz J F. Is salinity tolerance related to Na accumulation in upland cotton seedlings[J]. PlantandSoil,1997,190:67-75.
    [98]辛承松,董合忠,唐薇,温四民.棉花盐害与耐盐性的生理和分子机理研究进展[J].棉花学报,2005,17(5):309~313.
    [99]孔令安,郭洪海,董晓霞.盐胁迫下杂交酸模超微结构的研究[J].草业学报,2000,9(2):53~57
    [100]刘爱峰,赵檀方,段友臣.盐胁迫对大麦叶片细胞超微结构影响的研究[J].大麦科学,2000,(3):20-22
    [101]沙伟,孟凡玲,冯昌军. 10 个苜蓿品种过氧化物同工酶(POD)分析[J]. 北方园艺2007(1):150~152.
    [102]Chaparo JX, Wemer DJ, Oc Malley D, et al. Targeted mapping and Linkage analysis of morpological, isozyme, and RAPD markers in peach[J]. Ther. Appl. Genet, 1994, 87: 805-815.
    [103]刘海学,王罡,季静,刘鹏,王玲. 16 个向日葵品种过氧化物酶同工酶分析[J]. 中国油料作物学报, 2007,29(2):64-67.
    [104]杨颖丽,徐世键,保颖,安黎哲. 盐胁迫对两种小麦叶片蛋白质的影响[J]. 兰州大学学报(自然科学版),2007,43(1):70-74.
    [105] 龚月华 , 高俊风等 . 干旱胁迫下植物质膜功能蛋白质研究现状 [J]. 西北植物学报,2002,22(3):682-692.
    [106]李伯良.功能蛋白质组学.生命化学[M],1998,18(6):1-4.
    [107]Neelam Misra,AjayK.Gupta. Effect of salt stress on proline metabolism in two high yielding genotypes of greengram. 2005,169:331-339.
    [108]张淑红,张恩平,司龙亭等. 盐胁迫对黄瓜幼苗渗透调节物质含量的影响. 中国蔬菜,2005(12):30~31.
    [109]赵可夫,范海.盐生植物及其对盐渍生境的适应生理[M].科学出版社,2005.
    [110]Subbarao G V et al. Sodium-a function plant nutrient. Critical Reviews in Plant Science,2003, 22(5):391-416.
    [111]Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Ann Bot, 2003,91(5):503-507.
    [112] 肖雯 , 贾恢先 , 蒲陆梅 . 几种盐生植物抗盐生理指标的研究 [J]. 西北植物学报2000,20(5):818-825.
    [113]孙兰菊,岳国锋,王金霞等.植物的耐盐性机理[J].海洋科学, 2001,25(4):28231.
    [114] Demming Adams B. Photoprotection and other responses of plants to high light stress[J]. Ann.Rev. Plant Physiol.Plant Mol.Biol.,1992,43:599-626
    [115]黄艺,季海波,姜学艳,李婷. 盐渍地刺槐体内Na+的积累和分布[J]. 农村生态环境, 2004, 20 (4) :1 - 5
    [116]王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物抗盐性的对策[J]. 植物学通报,1997 ,14 (增刊) :25 – 30.
    [117]Creenwa Y H , Munn S R. Mechanism of salt-tolerance in nonhalopnytes[J]. Annu Rev Plant Physiol ,1980 ,31 :141 - 190
    [118]Blumwald E ,Aharon GS. Sodium transport in plant cell[J]. Current Opinion in Cell Biology ,2000 ,12 (4) :431 – 434
    [119]商学芳, 董树亭, 郑世英, 王丽艳. 玉米种子萌发过程中Na+K+Ca2+含量变化与耐盐性的关系[J].作物学报, 2008, 34(2):333-336.
    [120]王振英,祁忠占,杨吉占等.低温胁迫下植物体内POD、SOD、ATPase同工酶的变化[J].南开大学学报(自然科学),1996,29(3):29~34.
    [121]雷泞菲,苏智先,陈劲松. 同工酶技术在植物研究中的应用[J].四川师范学院学报(自然科学版), 2000, 21(4):321~325
    [122]邹春静,盛晓峰,韩文卿,徐文铎.同工酶分析技术及其在植物研究中的应用[J]. 生态学杂志,2003,22(6):63~69.
    [123]何士敏,赫延龄. 石化空气污染树木叶片内过氧化物酶同工酶的变化[J].齐齐哈尔滨师范学院学报(自然科学版),1992,12(1):40-42.
    [124]杜金友,陈晓阳,李伟等.干旱胁迫诱导下植物基因的表达与调控[J].生物技术通报, 2004 (2): 10-14
    [125]姜慧芳,任小平.干旱胁迫对花生叶片SOD活性和蛋白质的影响[J].作物学报,2004,30 (2): 169-174
    [126]王玉玲,陈清西. 植物生殖发育及环境胁迫相关特异蛋白质的研究进展[J]. 中国农业科技导报, 2006,8(2):32-35.
    [127]郭艳茹,詹亚光. 植物耐盐性生理生化指标的综合评价[J].黑龙江农业科学,2006, (1): 66~70
    [128]Rengasamy, P., Chittleborough, D., Helyar, K.,.Root-zone salinity and plant-based solutions for dry land salinity. PlantandSoil. 2003,257:249-260.
    [129]Marschner,H., MineralNutritionofHigherPlants,1995,2nded. Aca-demic Press, London, 889 pp.
    [130]Munns,R..Comparative physiology of salt and water stress.Plant Cell Environ.2002, 25, 239-250
    [131]Vicente,O., Boscaiu, M., Naranjo, M.A.,Estrelles, E.,Belles, J.M.,So-riano,P., Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). J. AridEnviron. 2004,58,463-481.
    [132] Munns R. Comparative physiology of salt and water stress[J].Plant Cell Environ .2002 ,25 (2):239-250.