新疆三种盐生植物种子萌发对主要生态因子响应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以盐角草(Salicornia europaea)鞑靼滨藜(Atriplex tatarica)小白藜(Chenopodium iljinii)为研究材料,对生长在新疆盐漠环境中的这三种盐生植物种子的萌发生态学进行了研究。同时,也研究了不同温度、盐分、水分胁迫等主要因子对三种盐生植物种子萌发的影响及萌发恢复情况。为当地的植被分布,植被格局研究以及荒漠地区植被自然更新、受损生态系统的恢复提供资料。
     三种盐生植物的种子在5-35℃的范围内均能萌发,最适宜萌发温度分别为30℃,25℃和25℃。低温和过高的温度都抑制了种子的萌发。三种盐生植物的种子萌发对NaCl盐度胁迫有相似的响应,即低浓度胁迫下种子的萌发受到的抑制较轻,种子萌发率随盐度的升高而逐渐降低,直至种子萌发被完全抑制。盐角草种子对盐生环境的适应能力最强,在1.0mol/L时仍然有少量萌发。低浓度下NaCl溶液刺激了小白藜种子的萌发,在0.1mol/L下其萌发率高达85%明显高于蒸馏水对照中的萌发率。水分胁迫对三种盐生植物的种子的抑制作用随着渗透压的增大而升高,而且萌发率低于同等渗透压下NaCl溶液中的萌发率。三种盐生植物的种子转入蒸馏水中后,均大量萌发。萌发恢复率随溶液浓度和渗透势的增加而增加。鞑靼滨藜种子的耐旱性最强,其次分别为盐角草和小白藜。三种盐生植物的种子均能在较低土壤含水量(1%)中萌发。盐角草和鞑靼滨藜种子萌发的适宜土壤含水量范围要宽于小白藜种子;并且这两个种子萌发的适宜土壤含水量均为4%~16%;而小白藜种子萌发相对适宜的土壤含水量为3%~8%,盐角草和鞑靼滨藜在相同土壤含水量下的萌发率均高于小白藜。
     这三种植物的种子对盐渍化环境有良好的生态适应机制,而且种子的萌发能够忍受一定的干旱胁迫,但是盐逆境和干旱逆境总体上仍然抑制种子的萌发。被逆境抑制的种子会选择合适的季节和环境待胁迫减轻后,恢复活力继续萌发。种子对不同温度、盐度和干旱水平的萌发策略反映了植物在种子萌发阶段对其环境形成的一种适应。正是这种适应性使盐生植物的种子能够选择适当的时机进行萌发,进而顺利完成生活史的萌发策略,使这三种盐生植物的种群得以在新疆的盐渍荒漠环境中不断繁衍生息。这三种盐生植物所表现出的对环境的适应性及萌发策略,为新疆广袤的干旱盐渍地区的盐生植物的引种驯化、增加荒漠系统植被覆盖度提供理论依据,对受损生态系统的恢复、盐碱土地的改良以及盐生资源植物的开发利用起到指导性的作用,因而具有重要的实际意义。
In this paper, seed germination ecology of three halophytes Salicornia europaea, Atriplex tatarica and Chenopodium iljinii was studied by using the seeds of the three species collected from saline desert in North Xinjiang, including the effects of temperature stress, salt stress and water stress on seed germination and germination recovery after seeds were transferred to distilled water.
     The seeds of all the three species could germinate under the temperature of 5-35℃. The results indicated that the optimal temperatures for seed germination of Salicornia europaea, Atriplex tatarica and Chenopodium iljinii are 30℃,25℃and 25℃respectively. Both lower temperature and higher temperature repress the germination of the three species. The responses of the seeds to NaCl concentration among the three species were very similar. Lower concentrations of NaCl less inhibit seed germination and when the salinity above a certain concentration, seed germination decreased with the increase of salinity. In the end, germination was completely inhibited. However, the salinities of inhibit germination were different among the three species. The seed of Salicornia europaea has the highest adaptability to salty environment, even a few seeds germinated under the 1.0 mol/L NaCl. The seed of Chenopodium iljinii was stimulated by NaCl in 0.1 mol/L, under such salt concentration the germination rate was 85%, higher than distilled water control. The inhibiting effect of water stress by soaking the seeds in PEG-6000 solution increased with osmotic potential, whereas the germination was lower than in NaCl solution at the same osmotic potential. After the stresses were relieved by transferring the seeds of the three species to distilled water, the seeds still germinated greatly. All the three species seeds have higher germination recovery percentage, which increases with concentration and osmotic potential of NaCl and PEG solutions. Atriplex tatarica was the most tolerant to drought, then followed Salicornia europaea and Chenopodium iljinii.
     The results showed that the seeds of the species are with well adapted mechanism to the saline environment and as well the seed germinations are tolerant to certain drought stress, however, the salt and drought stresses repress the seed germination in general. The depressed seeds by the adverse conditions would recover to germination once the stresses relieved during the proper season and suitable environment. The three species were very salt tolerant. The ability of seeds when the salt stress was decreased is one of the special adaptive strategies for them to inhabit the salt desert environment. This adaptive strategy help the populations of three species successfully survive and reproduce in the salt desert of Xinjiang.
引文
[1] 张建锋, 乔勇进, 焦 明, 等. 盐碱地改良利用研究进展[J]. 山东林业科技, 1997, 3: 5-8.
    [2] 毛建华, 陆文龙. 发展盐土农业促进农业产业结构调整[J] . 天津农业科学, 2000, 6(3): 49-51
    [3] 赵可夫, 张万钧, 范海, 等. 改良和开发利用盐渍化土壤的生物学措施[J]. 土壤通报, 2001, 32:115-119
    [4] 李培夫. 盐碱地的生物改良与抗盐植物的开发利用[J]. 盐碱地利用, 1999, 3: 38-40
    [5] 赵可夫, 李法曾. 中国盐生植物[M], 北京: 科学出版社, 1999, 11- 113.
    [6] 唐建 作物耐盐机制的研究: [J] 盐碱地利用. 1988(1): 51-53
    [7] 潘瑞炽. 植物生理学。第四版. 北京: 高等教育出版社. 2001, 306-308
    [8] 波捷科夫-梅伯 A., 盐渍环境中的植物, 科学出版社,北京,1980, 11-25
    [9] Bewley J. Derek, Black MMICHAEL. Seeds: Physiology of development and germination. Plenum Press, New York and London. 1986, 110-114, 115. 119
    [10] Heydeker, W. Seed Ecology. London, Butterworth Group. 1973, 577
    [11] Bradford K. J. Water relations in seed germination [A]. In: kigel J. Galili G, ed. Seed development and germination [C]. New York: Marcel Dekker. Inc. 1995, 351-396
    [12] Manohar, M. S.& Heydecker, W. Water requirements for seed germination. Reports of the University of Nottingham School of Agriculture. 1964, 55-62
    [13] Matthews, S. Outlook on Agriculture, 1985, 14 (2): 89-94
    [14] Parrish D. C, Leopold A. C. On the mechanism of ageing in soybean seeds. Plant physiology. 1978, 61: 365-368
    [15] Basajavarajappa B. S, Shety H. S, Prakash H. S. Membrane deterioration and other biochemical changes, associated with accelerated ageing of maize seeds. Seed Science and Technology, Zurich. 1991, 2: 279-286
    [16] Bray C. M, Dasgupta J. Ribonucleic acid synthesis and loss of viability in pea seed. Planta 1976, 132: 103-108
    [17] Skadsen, R. W. and Cherry, J. H. Quantitative changes in in vitro and in vivo protein synthesis in ageing and rejuvenated soybean cotyledons. Plant physiology. 1982, 71: 861-868
    [18] Cheah, K. S. E.&Osborne, D. DNA lessions occur with loss of viability in embryos of ageing rye seed. Nature. 1978, 272: 593-599
    [19] Vazquez, E., Montiel, F.& Vazquez-Ramos, J. M. DNA ligase activity in deteriorated maize axes during germination: a model relating defects in DNA metabolism in seeds to loss of germinability. Seed Science Research. 1991,1: 269-273
    [20] Vazquez-Ramos J. M, Lopez S., Vazquez E., Murillo E. DNA integrity and DNA polymerase activity in deteriorated maize embryo axes. Journal of Plant Physiology. 1988, 133: 600-604
    [21] Byrd H. W., Delouche T. C. Deterioration of soybean seed in storage. Proceedings of the Association of Official Seed Analysts. 1971, 61: 41-57
    [22] McDonald M. B. Jr., Nelson C. J. Physiology of seed deterioration. No. 10. CSSA Special Publication, USA. 1986
    [23] Abdullah W. D., Powell A. A., Matthews S. Prediction of the storage potential of long bean (Vigna sesquipedalis L. Fruhw) seed in the tropics. Seed Science&Technology. 1992, 20: 141-147
    [24] Kalpana R., Madhava Rao K. V. On the ageing mechanism in pigeon pea(Cajanus cajan(L.)Millsp.) seeds. Seed Science&Technology, Zurich. 1995, 23: 1-9
    [25] 刘学忠,刘金.植物种子采集手册. 北京: 科学普及出版社. 1988
    [26] 叶常丰,戴心维.种子学. 第 1 版. 北京: 中国农业出版社. 1994
    [27] 赵春建. 喜树种芽的 CPT 和 HCPT 同期峰值最佳工艺条件研究. 东北林业大学硕士学位论文. 2003
    [28] 郑青松,刘玲,刘友良等. 盐分和水分胁迫对芦荟幼苗渗透调节和渗调物质积累的影响. 植物生理与分子生物学学报. 2003, 29 (6): 585-588
    [29] 李容千,王建波主编. 植物逆境细胞及生理学. 武汉: 武汉大学出版社. 2002
    [30] 王斌,蔡兴旺. 静电场处理对茄子种发芽的影响. 韶关学院学报. 2002,23 (3 ) : 36-38
    [31] 王广印,周秀梅,张建伟等. 不同黄瓜品种种子萌发期的耐盐性研究. 植物遗传资源学报. 2004, 5 (3): 299-303
    [32] 陈玲,宋松权,钱春梅等. 番茄种子萌发的交叉耐性研究. 中山大学学报(自然科学版). 2000, 39 (2) (增刊): 112-118
    [33] 代莉,谢双喜,杨荣和. 水分胁迫对日本柳杉种子萌芽的影响. 贵州林业科技. 2003,31 (4): 15-19
    [34] 张建锋,李吉跃. 盐分胁迫下盐肤木种子发芽试验. 东北林业大学学报. 2003, 31 (3): 79-80
    [35] Munns TW Liszewski MK, Freeman SK. Naturally occurring masked antibodies in murine sera recognize a component of the mitotic spindle apparatus.Biochem Biophys Res Commun. 1986, 136(1): 145-150
    [36] 张国英,谈建中. 盐胁迫对桑树种子发芽及幼苗生理生化特性的影响蚕业科学,2004, 30 (2): 191-194
    [37] 任兴安,王益善,扬波等. 超声对水稻生长. 发育及增产效果的试验研究. 应用声学. 1993,12(1): 31-33.
    [38] 张运涛,李智勇. 园艺作物环境胁迫的正效应. 世界农业. 1994, (8 ) : 25-27
    [39] Awang Y. B 著. 张运涛译. 盐份对草毒浆果品质的影响. 河北果树. 1994, (2 ) 44-46
    [40] 张建锋,李秀芬,宋玉民等. 盐分胁迫对林木种子发芽率的影响研究. 中国生态农业学报. 2004, 12 (3 ): 27-28
    [41] 戴蒲英. 盐胁迫对主要造林树种种子活力及苗生理特性的影响. 广西科学. 1998, 5 (1): 62-65,70
    [42] 梁云媚,李燕,多立安等. 不同盐分胁迫对苜蓿种子萌发的影响[J]. 草业科学. 1998, 15(6): 21-25
    [43] 马翠兰,刘星辉. 盐胁迫对柏、福橘种子萌发和幼苗生长的影响. 福建农林大学学报. 2003,32(3): 320-324
    [44] 段德玉,刘小京,冯凤莲等. 不同盐分胁迫对盐地碱蓬种子萌发的效应. 土壤肥料科学. 2003 19 (6 ) : 168-172
    [45] Galston A. W, Sawhney R. K. Polyamines in plant physiology. Plant Physiol. 1990, 94(2): 406-410
    [46] 刘瑛心主编. 中国沙漠植物志. 第一卷. 北京: 科学出版社. 1985, 3-35.
    [47] 牟新待,龙瑞军,任云宇等. 几种牧草苗期耐盐性的研究. 中国草业科学,1987, 4(1): 31-35.
    [48] 王虹,邓彦斌. 新疆 10 种旱生,盐生植物的解剖学研究. 新疆大学学报(自然科学版),1998, 15(4): 67-73.
    [49] 吴征镒. 中国植被. 北京: 科学出版社. 1980, 13-82.
    [50] 武之新,纪剑勇,陈志德. 几种牧草耐盐性的研究初报. 草业科学,1989, 6(5): 43-47
    [51] 夏富才,姜贵全等. 盐生植物抗盐结构机理研究进展. 通化师范学院学报,2002, 23 (2): 67-69.
    [52] 肖雯. 五种盐生植物营养器官显微结构观察. 甘肃农业大学学报,2002, 37(4): 421-427.
    [53] 阎顺国,沈禹颖. 生态因了对碱茅种了萌发期耐盐性影响的数量分析. 植物生态学报,1996, 20(5): 414-422.
    [54] 余祥威等. 低温层积对日本五针松种子萌发及生理生化效应的初步研究. 种子,1987, 6: 16-17.
    [55] 张立运,海鹰. 《新疆植被及其利用》专著中未曾记载的植物群落类型. 干旱区地理,2002, 25(1): 84-89.
    [56] 张勇,薛林贵,高天鹏,晋玲,安黎哲. 荒漠植物种子萌发研究进展. 中国沙漠,2005, 25(1):106-112.
    [57] 赵成义,宋郁东,下玉潮,蒋平安. 三工河流域荒漠绿洲植被动态及其成因分析. 应用生态学报2004,15 (2): 249-254.
    [58] 赵可夫,冯立田,范海. 盐生植物种子的体眠、休眠解除及萌发的特点. 植物学通报,1999, 16(6): 677- 685
    [59] 赵可夫,李法曾. 中国盐生植物. 北京: 科学出版社,1999, 1-17.
    [60] 赵丽娅,李锋瑞. 沙漠化过程土壤种子库特征的研究. 十旱区研究,2003, 20(4) 317-321.
    [61] 周翰儒. 5 种新疆盐生植物叶和同化枝解剖构造的观察. 安徽大学学报(自然科学版),1991, 15(4): 81-85
    [62] 周玲玲,冯元忠等. 新疆六种盐生柏物的解剖学研究. 石河子人学学报,2002, 6(3): 217-221.
    [63] 周三,赵可夫等. 泌盐盐生植物研究进展. 应用与环境生物学报,2001, 7(5): 496-501.
    [64] 洪法水,赵海泉. 聚二乙醇和聚乙烯醇对黄瓜种子活力和抗寒性的影响. 园艺学报. 1997, 24 (4): 395-396
    [65] 吕小红,傅家瑞. 聚乙二醇渗透处理提高花生种子活力和抗寒性. 中山大学学报(自然科学版) 1990, 29 (1 ): 63-70
    [66] Frett kk, et al. A comparison of priming agents for tomato and asparagus seeds. Hort, Sciece. 1991,26: 1158-1159
    [67] Pill, W. G. Low water potential and pre-sowing germination treatments to improve seed quality seed Quality. 1994, 319-359
    [68] 郑光华,徐本美,顾增辉.PEG 引发种子的效果. 植物学报. 1985 ( 3 ): 329-333
    [69] 施积炎,丁贵杰. 水分胁迫对不同种源马尾松种子发芽的影响. 山地农业生物学报. 2000, 19(5): 332-339
    [70] Ungar I A. Influences of salinity on seed germination in succulent halophytes. Ecology, 1962, 43: 763-764
    [71] Ungar I A. Atriplex patina var Hastata seed dimorphism. Rhodora, 1971.73: 548-551
    [72] Ungar I A. The effect of salinity and temperature on seed germination and growth of Hordeum jubatum. Can. j. Bot., 1974, 52: 1357-1362
    [73] Ungar I A. Halophyte seed germination. Bot Rev., 1978, 44: 233-264
    [74] Ungar I A. Germination ecology of halophytes. In: Sen D N, Rajpurolut K S., eds. Contributions to the Ecology of Halophytes. The Hague: Dr. W Jimk Publishers. 1982, 143-154
    [75] Ungar I A. Alleviation of seed dormancy in,Spergularia marina. Bot.Gaz., 1984, 145: 33-36
    [76] Ungar I A. Factors influencing seed gcnnination in Salicornia pacifzca、var. utahensis.Am. J. Bot., 1986, 73(8): 1163-1167
    [77] Ungar T A. Population ecology of halophyte seeds. Bot. Rev,1987, 53: 301-344.
    [78] Ungar I A. Ecophysiology of vascuclar halophytes. Boca Raton: CRC Press. 1991
    [79] Ungar I A. Seed germination and seed-bank ecology in halophytes. In: Kigel J. Gatili G, eds. Seed Development and Germinatinn. New York: Marcel Dekker. 1995, 599-628
    [80] Ungar I A. Seed banks and seed germination dynamics of halophytes. Wetlands Ecology andManagement. 2001, 9: 499-501.
    [81] Ungar IA, Binet P. Factors influencing seed dormancy in Spergularia media L. C. Presl. Aguat. Bot 1975, 1, 45-55.
    [82] Waisel Y, Ovadia S. Biological flora of Israel. Suaeda monica Forsk. Ex J.F.Gmel. Isr: J. Bot., 1972. 21: 42-52
    [83] Waisel Y Biologv of halophytes. New York: Academic Press. 1972.
    [84] Werner J E, Finkelstein R R. Arabidopsis mutants with reduced response to NaCl and osmotic stress. Physiol. Plant, 1995, 93: 659-666.
    [85] Wertis B, Ungar I A. Seed demography and seedling survival in a population of Atriplex triangularis Willd. Am. Midi. Nat., 1986, 116: 152-162.
    [86] Woodell S R J. Salinity and seed germination patterns in coastal plants. Vegetatio, 1985, 61: 223-229.
    [87] Young J A, Evans R A. Arrowleaf balsamroot and mules ear seed germination. J. Range Manage, 1979, 32: 71-74.
    [88] Younis A F, Hatata M A. Studies on the effects of certain salts on germination. ongrowth of root, and on metabolism. I. Effects of chlorides and sulphates of sodium, potassiwn, and magnesium on germination of wheat grains. Plant soil, 1971, 13: 183-200.
    [89] Zia S, Khan M A. Effect of light, salinity, and temperature on seed germination of Limonium stocksii. Can. J. Bot., 2004, 82:151-157
    [90] Khan M A, Gul B, Weber D J. Seed germination characteristics of Halogeton glomeratus. Can. J Rot., 2001, 79: 1189-1194
    [91] Khan M A, Gul B, Weber D J. Germination of dimorphic seeds of Suaeda moquinii under high salinity stress. Aust. J. Bot., 2001, 49: 185-192.
    [92] Khan M A, Gul B, Weber D J. Seed germination in the Great Basin halophyte Salsola iberica. Can. J. Bot., 2002, 80: 650-655.
    [93] Kulieva F B, ShamW a Z B, Strogonov B P. Effects of high concentration of NaCl on multiplication of cells of Crepis capillaries in vitro. Soviet Plant Physiology, 1975, 22. 107-110.
    [94] Leadem C L. Stratification of Abies amabilis seeds. Cart. J. For: Res., 1986, 16: 755-760
    [95] Leck M A. Wetland seed banks. In: Leck M A, Parker V T, Simpson R L., eds. Lcology of Soil Seed Banks. New York: Academic Press. 1989.
    [96] Leviitt J. Responses of plams to environmerat stress. New York: Academic Press. 1972.
    [97] Leviitt J. Reponses of plams to environmertal stress (2nd Edn). New York: Academic Press. 1980.
    [98] 李述刚. 中国科学院阜康荒漠生态系统观测试验站的目然条件和建站依据. 干旱区研究,1990, 7,增刊,3.
    [99] Khan M A. The Physiology and Biochemistry of Seed Development, Dormancy and Germinaion. New York State Agricultural Experiment Station, Cornell Univeristiy, Geneva, New York. U.S.A. 1982.
    [100] Khan M A, Ungar I A. The effect of salinity and temperature on the germination of polymorphic seeds and growth of Atriplex triantularis Willd. Am. J. Bot., 1984, 71: 481-489.
    [101] Khan M A, Weber D J. Factors influencing seed germination in Salicornia,pacifica var.zctahensis. Am. J. Bot., 1986, 73: 1163- 1167.
    [102] Khan M A, Ungar I A. Effect of thermoperiod on recovery of seed germination of halophytes from saline conditions. Am. J. Bot., 1997, 84: 279-283.
    [103] Khan M A.Ungar 1 A. Effects of light, salinity, and thermoperiod on the seed germination of halophytes. J Bot., 1997, 75(5): 835-841.
    [104] Khan M A. Ungar I A. Germination of salt tolerant shrub Suaeda fruticosa from Pakistani: salinity and temperahire responses. Seed Sci. leclz., 1998, 26: 657-667.
    [105] Khan M A, Ungar I A. Effect of salinity on the seed germination of Triglochin maritime under various temperature regimes. Great Basin Nat., 1999, 59: 144-150.
    [106] Khan M A, Gu B. Seed bank strategies of coastal popWations at the Arabian Sea coast. In : Mcarthur E D, Ostler W K, Wambolt C L., eds. Proceedings of the Symposium on Shrubland Ecotones.Ogden: USDA Forest Service, Rocky Mountain Research Station.1999, 227-230.
    [107] Khan M A, Gul B, Weber D J. Germination responses of Salicornia rubra to temperature and Salinity. J. Arid. Environ, 2000, 45: 207-214.
    [108] Khan M A, Ungar I A. Effect of germination promoting compounds on the release of primary and salt-enforced seed dormancy in the halophyteSporobolus arabicus Bioss. Seed Sci. Tech., 2001, 29: 299-306
    [109] Gutterman Seed germination in desert plants. Berlin: Springer-Verlag. 1993.