正放四角锥网架屋盖的固有振动与竖向地震作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网架结构是一种较好的大跨度屋盖结构形式。它具有空间受力、节省钢材、空间刚度大、建筑高度小、便于工业化、定型化、建筑造型美观等优点,在国内外的人型体育馆、停机场、中型练习馆、展览馆、俱乐部、剧院、食堂以及工业厂房等工程的屋盖结构中以得到广泛应用。然而,随着地震等自然灾害的逐年频繁发生,如何进行网架结构的抗震设计仍是为人们所关心的重要问题。
     本文主要研究平板型周边支承正放四角锥网架的固有振动规律和竖向地震作用。
     主要研究工作为:
     第1部分.本部分对有限元理论一般原理及有限元分析软件ANSYS的功能、典型分析问题的过程进行了简要的介绍。给出了确定网架有限元模型几何参数应遵循的一般原则,并依据《网架结构设计与施工规程》中网架内力计算算法编制了计算周边简支条件下正放四角锥网架内力和杆件截面F90程序,从而确定采用ANSYS进行网架计算所需的单元实常数。编制了生成正放四角锥网架节点、单元编号及约束信息的F90程序,实现了用命令流输入的方法生成正放四角锥网架的有限元模型,为后面研究网架自由振动规律及竖向地震响应奠定了基础。通过算例比较《规程》算法与ANSYS计算结果,表明本文采用ANSYS软件建立网架有限元模型的方法是正确的,同时也证明了《规程》网架内力算法在精度方面是比较高的。
     第2部分.给出了网架固有振动频率的拟夹层板法算法和ANSYS模态分析算法。阐述了模态分析的实现过程,并对模态分析所采用的子空间迭代法原理进行了简要的介绍。通过对拟夹层板法和ANSYS模态分析的比较,表明了拟夹层板法作为一种简化的计算方法,其精度是比较高的,同时也证明了采用ANSYS软件进行网架自振特性研究的可靠性,在此基础上采用ANSYS模态分析对网架固有振动特性进行了研究。通过对44种网架自由振动频率的分析,得出了网架自由振动的一般规律,确定了网架自由振动频率的影响因素。
     第3部分.本部分主要对正放四角锥网架结构的竖向地震作用进行了研究。介绍了网架在地震作用下的几种计算方法,对水平地震反应谱的确定及如何利用水平地震反应谱确定竖向地震反应谱进行了阐述,并对竖向地震反应谱的数值进行了转换,这也是利用ANSYS软件进行竖向地震反应谱分析的关键。该部分还简要的阐述了利用ANSYS软件进行谱分析的步骤,并结合具体实例给出了利用ANSYS软什进行谱分析的命令流语句。在此基础上本文对Ⅱ类场地上的正放四角锥网架进行的地震作用分析,得出了正放四角锥网架的竖向地震内力分布规律。
     第4部分.在前面工作的基础上,通过对15种正放四角锥网架竖向地震内力系数的研究,找出最大竖向地震内力系数与第一阶竖向振型频率的内在联系,从而建立了计算正放四角锥网架竖向地震内力的实用计算方法,并进行了验证。本文研究为《抗震规范》、《网架结构设计与施工规程》的修订提供理论依据。
Space grid is a sort of preferable roof type for long span buildings. It has many advantages, for example forces are transferred in a 3D manner, save steel material, large rigidity, small building highness, industrialized, beauty sculpt ect. There are tremendous buildings adopt space grid structure as roof domestic and abroad, including big gymnasium, airdrome, middle training house, exhibition hall, club , showplace, dinning hall and industry workshop. However, how to perform seismic design of space grids is still an important problem concerned, because disaster as earthquake happen very frequently in recent years.
    The rule of free vibration and vertical seismic action of pyrimid space grid(PSG) roof structures are studied in this paper.
    Part 1. Finite element theory, functions of ANSYS software and typical analysis process are introduce in this part. Principals of how to ensure geometry parameter of space grids finite element model are given and F90 program to calculate member force and chord section is developed according <> (SGDC code) so as to determine the real constant ANSYS needed. To create finite element model of PSGs, program to create node, element number and restriction information is compiled also. Comparison between <> method and ANSYS is carried out, and results show that the method to create PSG finite element model by ANSYS is correct and the simplified method given by <> to calculate chord force is of high accuracy in precision.
    Part 2. Equivalent sandwich plate and ANSYS modal analysis are used in the calculation of free vibration. The process of modal analysis and the subspace alternate theory are introduced. Comparison results show that as a simplified method equivalent sandwich plate method is accurate in precision. It also proved the study of free vibration property of space grids adopt ANSYS software is reliable. The dynamic property of PSG is studied through free vibration analysis. Through free vibration frequencies analysis of 44 PSGs, the general rule of PSGs is achieved and influence factors for PSGs are determined.
    Part 3. Vertical seismic action of PSG is studied in this part and calculation method of seismic action are introduced. The method of how to determine vertical seismic spectrum by horizontal seismic spectrum is introduced also in this part. Vertical seismic spectrum curve values are transformed so that it can be adopted by ANSYS spectrum analysis. The procedures of spectrum analysis are given. Through the seismic action analysis of PSGs on II ground, we achieve the distribution rule of seismic internal force coefficients. Part 4 . The inherent relationship between vertical seismic internal force coefficient max and the first vertical frequency is found by researching seismic
    
    
    internal force coefficients of 15 kinds of PSGs, then practical calculation methods for pyramid space grids is determined, and testifying is also carried out.
引文
1.张文福,张百龙.网架结构设计.哈尔滨:哈尔滨工业大学出版社,1994
    2. Shen Shizhao, The development of spatial structures in China(Invited Report), IASS Asia-Pacific Conference on Shell and Spatial Spatial Structures, Beijing, 1996
    3. Richard Bradshaw, David Campbell, Mousa Gargari, Amir Mirmiran, and Patrick Tripeny. Special Structures: Past, Present, and Future. JOURNAL OF STRUCTURAL ENGINEERING. Vol. 128, No. 6, June 1, 2002, 691~708
    4.刘锡良.十年来中国网架结构的发展.第六届空间结构学术会议论文集.北京:地震出版社,1992.42~55
    5.沈世钊.大跨空间结构的发展—同顾与展望.土木工程学报,1998,31(3)
    6. Dong Shilin, Xia Hengxi. Development and Application of the Composite Space Truss in China. Space Structures 4 , Vol. 2, Edited by G.A.R. Parke and C.M. Howard,Thomas Telford, London, 1993
    7.蓝天.空间钢结构的应用与发展.建筑结构学报,2001,22(4):2~7
    8.刘锡良.十年来中国网架结构的发展.第六届空间结构学术会议论文集.北京:地震出版社,1992.42~55
    9. Makowski Z. S. Space Structure-A Review of Development in Last Decade, Space Structure IV, London, 1993
    10. Makowski Z. S. The Application of Grid, Truss, Space Frame and Curved Space Structures in Architecture. Proceedings of the 1st International Conference on Lightweight Structures in Architecture, 1986
    11. Anne Teughels, Guido De Roeck. Continuum Models for Beam-And Platelink Lattice Structures. Fourth International Colloquium on Computation of Shell & Spatial Structures. 2000, June5-7
    12. Noor, A.K., "Continuum Modeling of Repetitive Lattice Structure" ,Applied Mechanics Review, Vol.41,No. 7,1998, pp. 285-296
    13. Lee, U, "Spectral Element Approach for the Homogeneous Continuum Representation of a Periodic Lattice Structure" ,International Journal of Space Structure, Vol. 12, No. 1997, pp.1-8
    14.邹浩,吴甘棠.网架结构在冶金建筑中应用的发展.空间结构,1996,第3期:34~40
    15.戎嘉隆.桁、网架结构在浮船坞上的应用研究.广东造船,1997,第4期:22~25
    16.赵建军,李志民.空间网架结构在西柏坡电厂锅炉顶盖中的应用.河北电力技术,1996,第1期,36~40
    17.楼国山,吴建林,姚永.网架在造船工业工程中的应用综述.建筑结构学报,1999,20(6):56~76
    18.黄晓滨.平面网架选型设计的探讨.山西建筑,29(2):6~7
    19.吴江.矩形平面大跨度网架的选型.四川建筑科学研究,28(1):21~23
    20.李荣福.平板网架结构选型的探讨.山西建筑,28(10):8~9
    21.董石麟,夏亨熹.正交正放类网架结构的拟板(夹层板)分析法(上、下).建筑结构学报,1982,第2、3期
    22.董石麟,赵阳.三向类网架结构的拟夹层板法分析.建筑结构学报,1998,19(3):2~10
    23.姚谏,董石麟.钢网架和钢网壳结构中杆件截面的简捷设计法.空间结构,19973(1):3-14
    24. Makowski Z. S. Analysis, Design and Construction of Double-Layer Grids. Applied Science Publishers, 1981
    26.刘开国.网架极限承载力的简捷分析.空间结构,2000,6(3):11~15
    26.丁万尊,陈庆云.正交正放类网架结构动力响应的拟夹层板分析法.建筑结构学报,1997,18(1):18~26
    
    
    27.胥传喜,丁晓唐,倪军,张光富.竖向承重网架墙体的稳定计算.河海大学学报,1998,26(4):59~64
    28.王勖成,邵敏.有限单元法基本原理和数值方法,清华大学出版社
    29. Zienkiewicz O. C. The Finite Element Method in Engineering Science. McGraw-Hill, 1977
    30.《网架结构设计与施工规程》(JGJ7-91).北京:中国建筑工业出版社,1994
    31.刘涛,杨凤鹏.精通ANSYS,清华大学出版社,2002,9
    32.魏明钟.钢结构,武汉工业大学出版社
    33.张文福,刘文洋,刘迎春.网架结构拟夹层板法的有限元验证.计算力学学报
    34.尹越,程万海,韩庆华,纪刚.波浪形网架结构的动力特性研究.建筑结构学报,2001,22(2):80~83
    35. Zhang Yigang. Optimum Aseismic Design with Finite Element Method for Double Layer Grid Truss. Proceedings of the International Conference on Finite Element Mothod. Science Press, 1982
    36.敖立新.高层建筑顶部塔形网架结构的自振特性及地震反应分析.铁道建筑,2001,9:2~4
    37.陈波.几何非线性对空间网架结构自振特性的影响.甘肃工业大学学报,1995,21(1):64~68
    38.赵雷.正交正放网架结构固有频率及屈曲分析的样条Galerkin法.计算结构力学及其应用,1995,12(1):60~68
    39.张文福,陈军,姜中,孟宪德.周边简支正交正放类网架结构固有振动的拟夹层板分析法.大庆石油学院学报,1999,23(2):71~74
    40.罗尧治,陈向阳,董石麟.组合网架的竖向地震响应分析,2000,33(5):29~34
    41. Yigang Zhang,Tian Lan. Analysis of Space Frames under Vertical Earthquake Load. Final Report of 12th Congress of IABSE,1984
    42.丁万尊,陈庆云.网架结构的竖向地震响应分析.空间结构,1995,1(3):42~52
    43.李海旺.三层网架模型的动力试验研究.太原工业大学学报,1997,28:1~5
    44.陈扬骥,赵源,丁文其.空间网架结构竖向抗震性能的简化计算.同济大学学报,1994,22(2):172~177
    45.刘京红,杜守军,刘晓华,许增明,李永林.四角锥体系三层网架的动力分析.河北农业大学学报,2002,25(2):94~98
    46.倪军,胥传喜.空间网架结构的振动控制研究.世界地震工程,1998,14(3):49~53
    47.沈祖炎,陈杨骥.网架与网壳.同济大学出版社,1997
    48.李国强,李杰,苏小卒,建筑结构抗震设计.中国建筑工业出版社,2002
    49.蓝天,张毅刚.大跨度屋盖结构抗震设计.中国建筑工业出版设,2000
    50.中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001).北京:中国建筑工业出版社,2001
    51.《网壳结构技术规程》(JGJ61-2003),中国建筑工业出版社,2003,6