孔隙地层中粘性时变注浆浆液流动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国经济快速发展,大量电站、矿井、公路、铁路等重大项目相继建设,其中大部分工程都会涉及穿越富水地层。富水区防渗加固工程由于地层地质结构较为松散、外水压力较大,易突涌水,施工难度很大,风险极高,成为众多工程建设中的控制性工程。富水区一旦发生突涌水事故,将会造成严重的伤亡事故和巨大的经济损失,而且施救难度非常大,甚至还会给运营留下安全隐患。此外地层中的地下水若长期大量排出,不但排水能耗大幅攀升,还将引起众多地质生态灾害。良好的防渗治水加固处理,既可预防突涌水灾害发生,保障施工和运营安全,也可大幅降低抽水能耗,保护地下水资源和当地生态环境。所以,本课题对高压富水区孔隙地层防渗加固工程具有重要的理论和工程应用意义。
     本文结合高压富水区孔隙地层防渗加固工程难点和纳米新材料研究成果,分析了粘性浆液流动模型,研究了浆液的流变特性及其影响因素,制备了纳米复合注浆浆液,并对纳米复合浆液和速凝纳米复合浆液流变性和结石强度进行理论分析和实验研究,得到了不同纳米颗粒含量浆液和速凝纳米浆液粘度随时间变化规律和不同时段结石强度变化规律。
     分析了注浆过程中应力场和渗流场的耦合作用,在浆液压力的作用下,多孔介质骨架发生了形变,孔隙率的改变使得流体的渗流通道发生了改变,渗流通道的改变引起了渗透率的变化,从而使得渗流场和应力场之间形成耦合。建立粘性时变性浆液注浆过程的流固耦合数学模型,引入粘性、孔隙率、渗透率的动态参数模型,对粘性时变性浆液注浆过程中的流固耦合物理特性及其对浆液扩散半径的影响进行分析。发现浆液扩散半径可通过分析流速、孔隙率应变率变化初步确定。同时还进行单孔分段注浆验证试验,然后对开挖后结石直径进行现场测量和土工实验。计算结果比传统Maag公式更接近实验结果,说明了注浆过程中考虑耦合的必要性和该数学模型在孔隙地层注浆分析中的合理性。
     针对高压富水区孔隙地层实际工程地质条件,提出纳米复合注浆浆液与排水式注浆工艺相结合的施工方案。建立适合孔隙地层注浆过程的流固耦合数学模型,对粘性时变性浆液的排水式注浆和单孔注浆扩散进行数值模拟,并分析了两种注浆方式对注浆扩散半径的影响。参考数值计算结果,在西南某煤矿工程中设计排水式注浆防渗治水施工方案,然后进行钻心取样和压水实验。测量结果表明,采用该技术方案后注浆孔周围的外水压力大幅降低,注浆结石强度和防渗能力都有了大幅提高,提高了注浆效率,降低了注浆能耗,为高压富水区孔隙地层防渗加固施工提供了新思路,对预防突涌水灾害发生,降低泥石流、滑坡等灾害发生概率和降低能耗实现节能减排,保护宝贵的地下水资源均有重要意义。
With big economic growth in China, major infrastructure construction projects have to deal with the stratum with abundant water. Because the loose geological structure and the high external water pressure, anti-seepage projects are often companied with great difficulty and high risks, which makes it the controlling part of projects. Once water gushing burst happened, serious casualties and huge economic losses will be caused, while the rescue is very hard, and the hidden security risks might be left for later operation. In addition, if the underground water kept draining for a long time, it will not only consume energy for pumping, but also incite geological and ecological disasters. For above reasons, the research on anti-seepage treatment in high pressure and rich water area is endowed theoretical and pragmatic significance.
     In this dissertation, the difficulties of anti-seepage treatment in high pressure and rich water area, as well as the characteristics of Nano-materials are taken into consideration for analyzing the viscous flow models of grout, the rheological properties of grout and its influence factors. Based on the analysis of the experiments concerning Nano-composite grout, rapid solidification Nano-composite grout, and the strength of consolidation, it concluded that the rheological properties of grout and the strength of consolidation changed with time and the percent of Nano materials.
     Stress field and seepage field coupling are analyzed in the process of grouting. It generated that the grouting pressure leads to porous skeleton changed, and the changes of porosity lead to the change of permeability, in this case, the coupling of stress field and seepage field should be considered during grouting. The principle of effective stress for porous medium is applied to analysis the fluid-structure coupling in the process of grouting, meanwhile, the coupling physical variables, dynamic models of porosity, permeability and viscosity are introduced. The diffusion radius thus can be defined by the foundational porosity and grout velocity. The single-hole sub-grouting verification is experimented for the diameter measurements and geotechnical tests on the on-site excavation stone. It shows that the calculation results are approaching more to the experiment results than to the traditional Maag formula. Therefore, the necessity of coupling consideration and the rationality of the application of fluid-structure coupling model to seepage field are verified.
     The construction program that combined the Nano-composite grout of controllable solidification and the grouting technology of filtering water is proposed, under the consideration about the geological conditions of high pressure and rich water area. The coupling mathematical model of grouting in porous medium is established, and the diffusion radius defined by the porosity and grout velocity is analyzed. The distribution of holes is designed according to the diffusion radius of grout in the sample coal mine engineering project in southwest China. Then, the permeability and the strength test were designed to verify grout effect. The final result shows that the permeability and the strength are greatly improved; the efficiency is also enhanced, while the energy consumption of grouting is reduced. This dissertation provides a new thinking for the anti-seepage treatment in high pressure and rich water area. It will be useful to prevent the gushing water disaster, to reduce the energy consumption, and to protect the under-ground water resources.
引文
[1]朱建业,陈祖安,各类工程建筑的工程地质问题[J].水文地质工程地质.1993, 20(1).12-19
    [2]何修仁.注浆加固与堵水[M].沈阳:东北土学院出版社,1990
    [3]彭振斌.注浆工程设计计算与施工[M].武汉:中国地质大学出版社,1997
    [4]程良奎,张作媚.杨志银.岩土加固实用技术[M].北京:地震出版社,1994
    [5]吴理云.注浆理论基础[M]二沈阳:东北工学院出版社,1981
    [6]Glossop.R..The invention and development of injection processes[J] Geotechnique (London) 5(1950): 91-101
    [7]Kutzner C. .Grouting of Rock and Soil. Balkema[M],Rotterdam 1996
    [8]Houlsby .A.C. .Construction and design of cement grouting -A guide to grouting in rock formation[J] .John Wiley&Sons Inc.,NY, 1990
    [9] E.Nonveiller,顾柏林译.灌浆的理论与实践[M].沈阳:东北工学院出版社,1991 [l0]E.Nonveiller.Grouting Theory and Pratice[J].New York USA,Elsevier Science Publishers B.V, 1989, 1-7
    [11]杜嘉鸿.化学灌浆在岩土加固和防渗堵漏工程中的应用及其发展趋向[[J].1991年全国灌浆技术学术讨论会论文集,1991
    [12]李治国.六甲洞隧道病害整治注浆加固技术[CJ].西部探矿工程.1999,11 (5)
    [13]张景秀.坝基防渗与灌浆技术[M].北京:水利电力出版社,1992
    [14]程晓,吴秋蓉.注浆技术在市政地下工程中的应用[J].地下工程与隧道,1991 (1)
    [15]杜嘉鸿等.地下建筑注浆工程手册[M].北京:科学出版社,1992 [ 16]王国明,靳毅斌.斜井淹井水下注浆技术[[J].注浆堵水加固技术及应用-中国注浆技术43年论文集[M],北京:煤炭工业出版社,1998
    [17]黄树勋.我院注浆技术研究的26年[J].长沙矿山研究院季刊,1987 (4)
    [18]滕杰.注浆锚索在中央泵房的应用[J].注浆堵水加固技术及应用-中国注浆技术43年论文集[M],北京:煤炭工业出版社,1998
    [19]王新杰,王元湘.注浆技术在我国地铁工程中的应用田.国际岩土锚固与灌浆新进展,北京:中国建筑工业出版社,1996
    [20]张川,苏坚深,高岗荣.煤矿工作面注浆技术的发展[[J].注浆堵水加固技术及应用-中国注浆技术43年论文集[M],北京:煤炭工业出版社,1998 [21 ]王洪恩.堤坝地基劈裂灌浆防渗技术的研究[[J].水利工程管理技术,1987 (3)
    [22]刘斌.地下工程特殊施工[M].北京:冶金工业出版社,1994
    [23]李长洪,高永涛,任伍儿.双泵双液注浆堵水加固工艺在松散岩体中的应用[J] .中国地质灾害与防治学报,1994 (4)
    [24]高永涛,孙金海,李长洪.含高承压水黄土层中注浆堵水的理论与实践[J].有色金属(季刊),1997 (2)
    [25]程鉴基.灌浆技术在软土地基处理中的综合应用[J].岩土工程学报,1994 16 (5):8993
    [26]Baker W H二以压密灌浆加固己建土石坝坝基[J],现代灌浆技术译文集[M]北京:水利电力出版社,1991, 117-126
    [27]Ih-shalom. M.,S.A. Greenberg. The Rheology of Fresh Portland Cement Pasters[J]. Proceedings of 4th International Symposium Chemistry Cement,721
    [28]吴超寰.清江隔河岩工程灌浆水泥的质量检测与控制[J].长江科学院院报,1994,11(2):27-33
    [29]Deandrade R. M..New techniques for the determination of the hydraulic properties offracture rock masses[J],Froc. of 6th Int. Cong. On Rock Mechanics.Montreal,1987
    [30]任卓群等.劈裂灌浆技术用于均质土坝病害整治[J].四川水利,1992,13 (4):40-42
    [31]万姜林.大瑶山隧道堵水及加固的注浆技术[J].锚固与注浆工程实录选.北京:中国利学技术出版社,1995
    [32]王星华等.粘土固化浆液在广州地铁杨体区间含水沙层注浆堵水固沙开挖应用研究[J].成都:西南交通大学科研研究报告,1997
    [33]柳载舟,呈崇博.龙羊峡水电站不良地基的化学灌浆[J].19841988年中国水力发电年鉴,学术书刊出版社,1990
    [34]卢什尼科娃,吴理云译.注浆工程中最佳注浆压力状态的选择[J].国外金属矿采矿,1986 (5)
    [35]杨晓东.水泥浆材灌入能力研究[J].水利水电科学研究院科学研究论文集第27集,1985
    [36]金德镰.GIN灌浆法介绍[J].湖南水利,1995 (6): 5-10
    [37]G.隆巴迪.灌浆强度的选择[J].水利水电快报,1997, 18 (2): 1-6
    [38]李保平.GIN灌浆理论的意义及主要灌浆参数的确定[J].西部探矿工程,2002,76(3):10-11
    [39]郝永真.小浪底工程4号洞GIN法灌浆施工[J].西北水电,2000 (2): 31-33
    [40]刘锋.GIN法在小浪底帷幕灌浆第六子标工程中的应用[J].探矿工程,2003增刊:136-139
    [41]于兰芳.白石水库GIN帷幕灌浆技术分析[J].水利水电技术,2000 ( 5 ) : 22-24
    [42]张志良.对GIN灌浆法的看法[J].水利水电工程设计,1997 (1): 50-53
    [43]林栋材.GIN灌浆法在百色水利枢纽帷幕灌浆试验中的应用[J].广西水利水电,2000 (4): 8-10
    [44]杜晓刚.灌浆强度值(GIN)法灌浆试验研究[J].郑州工业大学学报,1997, 18 (2):47-53
    [45]《煤炭科研参考资料组编》.国外注浆技术概况[J].1972
    [46]《大坝化学灌浆技术经验汇编》小组编.《大坝化学灌浆技术经验汇编》[M].北京:水利电力出版社,1977
    [47]葛家良.注浆技术的现状与发展趋向综述[J].首届全国岩石锚固与灌浆技术学术讨论会,北京,1995
    [48]Yonekura R...Recent chemical grouting engineering for underground construction .Proc.Of the International Symposium on Anchoring and Grouting Techniques. Dec., Guangzhou, 1994, 97-113
    [49]白俊平.GIN法灌浆技术试验研究[D].太原理工大学硕士学位论文,2003
    [50]孙钊.大坝岩石基础灌浆施工[M].北京:水利电力出版社,1987
    [51]梁仁友.国内外工程灌浆的发展概况[J] .勘察科学技术,1987 (1)
    [52]葛家良.注浆技术的现状与发展趋势[J].矿业世界,1995 (1)
    [53]吴兆兴.欧美注浆近况[J].隧道工程,1983 (3)
    [54]Shimoda .M. and Ohmori.H. .Ultra fine grouting material. Proc. Conf.on Grouting inGeotech. Engrg .[J] .ASCE,New Orleans, La.,1982: 77-91
    [55]Nose.M.郭玉花译.日本大坝灌浆新技术[[J].现代灌浆技术译文集.北京:水力电力出版社,1991
    [56]N.Matsumoto..Development of Grouting Material for Cement Powder Grouting. Proceedings of IS-TOKYO 96/the Second International Conference on Ground Improvement Geosystems, 1996: 59-64
    [57]Hakansson.Rheological properties of microfine cement grouts.Tunnelling andUndergrounding space Technology, 1992,7 (4):59-64
    [58]Association Francaise des Travaus en Souervain.Recommendations on, grouting for underground works .Tunnelling and Undergrounding space Technology, 1991,6 (4):383-481
    [59]高文生,《建筑业10项新技术》(2010版)之地基基础和地下空间工程技术[J] .施工技术. 2011,5(1):5-14.
    [60]黎伟.水溶性聚氨酯在田湖水库裂缝处理中的运用[J].广东科技. 2007,11:141-142
    [61]邹晓燕.浅谈化学灌浆施工应用[J].西部探矿工程. 2006, 12: 27+29.
    [62]郭莉.大坝坝基化学灌浆补强处理[J].中国西部科技. 2009,07: 44-46.
    [63]刘嘉材.裂缝灌浆扩散半径研究[J].中国水利水电科学院科学研究论文集(第8期).北京:水利出版社,1982: 186-195
    [64]石云兴,肖绪文,单彩杰,《建筑业10项新技术》(2010版)之混凝土技术[J].施工技术. 2011,5(1):15-18.
    [65]潘家铮,包银鸿.中国坝土灌浆的成就[J].国际岩土锚固与灌浆新进展.北京:中国建筑工业出版社,1996
    [66]盖相森.煤矿化学灌浆技术新进展[J].科技资讯. 2009,26: 27-28.
    [67]杨米加.注浆理论的研究现状及发展方向[J].岩石力学与工程学报,2001 20 (6):839-841
    [68]张千军,王飞,李晓辉.水泥-化学复合灌浆技术在回龙抽水蓄能电站的应用[J].内江科技. 2010, 01: 111+129.
    [69]高大水,陈湘凤,林文亮.三峡工程化学灌浆技术的应用[J].水力发电. 2007,01: 42-44
    [70] Terzaghi K.Theoretical Soil Mechanies.New York:John Wiley and Sons,1943.
    [71] Biot M A. Consolidation settlement under a rectangular load distribution. Journal of Applied Physics,1941,12(5):426-430.
    [72] Biot M A. Clingan F M.Consolidation settlement of a soil with an impervious top surface. Journal of Applied Physics,1941,12(7):578-581.
    [73] Biot M A, Willis D G. General solutions of the equations of elasticity and consolidation for a porous material. Journal of Applied Mechanics, Trans. ASME,1956,18:91-96.
    [74] Biot M A, Willis D G. The elastic coefficients of the theory of consolidation. Journal of Applied Mechanics,Trans.ASME,1957,24:594-601.
    [75] Verruijt A. Elastic storage of aquifers. De Wiest R J M. Flow Through Porous Media, chapter8.New York:Academic Press,1969:331-376.
    [76] Savage W Z, Braddock W A.A model for hydrostatic consolidation of Pierre shale. Int J Rock Mech Min Sci Geomech Abstr,1991:28(5):345-354.
    [77]武文华,李锡夔.饱和多孔介质中水力-力学-传质耦合过程的混合有限元法[J]岩土力学力学学报.2009.30(5):1477-1482.
    [78]周雷,张洪武.非饱和土化学-塑性耦合本构行为的数值模拟[J],岩土力学2009,30(7): 2133-2140.
    [79]董平川,郎兆新等.油井开采过程中油层变形的流固耦合分析. [J]地质力学学报.2006(2):6-10.
    [80]徐曾和,徐小荷.饱和多孔介质孔隙和骨架变形的有效应力定理[C]中国力学学会学术大会论文集北京:2005中国力学学会
    [81]袁士义,冉启全,胡永乐,韩东考虑裂缝变形的低渗透双重介质油藏数值模拟研究[J]自然科学进展2005,15(1):77-83
    [82]黎水泉,徐秉业.双重孔隙介质流固耦合理论模型.水动力学研究展.2001.16(4):460-466.
    [83]黎水泉,徐秉业.裂缝性油藏流固藕合渗流.计算力学学报.2001.18(2):133-137.
    [84]刘晓丽.水岩耦合过程及其多尺度行为的理论与应用研究[D].北京:清华大学工学博士学位论文,2009
    [85]田杰岩体渗流的流固耦合问题及其工程应用[D]北京:中国科学院研究生院(渗流流体力学研究所)硕士学位论文, 2005
    [86] Xing J T, P rice W G. A mixed finite element method for the dynamic analysis of coupled fluid-solid interaction problems. Proc. R.Soc. Lond. A 433 1991 : 331-344
    [87] Xing J T, Price W G, Du Q H. Mixed finite element substructure subdomain methods for the dynamical analysis of coupled fluid-solid interaction problems. Trans. R. Soc. Lond. A 354 (1995) : 259—295
    [88]赵琳,胡江峰,刘振侠流-固耦合计算的应用研究[J],沈阳航空工业学院学报2006 23(4):55-56.
    [89] Paidoussis M P, Namachchivaya N S. eds. Stability and Control of Pipes Conveying Fluid-Proceedings, ASME Winter Annual Meeting, Nov. 1992, Anaheim, CA., ASME, New York (1992) .
    [90] Raffle, J. and D. Greenwood. Relation between the rheological characteristics of grouts and their capacity to penetrate soils[C]. Proc. 5th Int. Conf. SMFE, Lausanne, Switzerland. Balkema, Rotterdam, 1961,2: 789-794.
    [91]Ish-Shalom, M. and Greenburg, S. The rheology of fresh Porland cement pastes[C]. Proc. 4th 1nt. Symp. Chem. of Cement. Nat. Bur. Std. US monograph, 1962, 2(42).
    [92]杨晓东,刘嘉材.水泥浆材灌入能力研究[M].北京:水利电力出版社,1987:184-191.
    [93]马晓辉,谢尧生.水灰比对岩体可灌性的影响[[J].华东电力,1994(4): 26-29.
    [94]陈金祥,陈明样.高压下水泥灌浆材料的性能研究[[J].武汉理工大学学报,2004, 26(6): 11-14.
    [95]Arvind V Shroff, Dhananjay L. Shah. Grouting Technology in Tunnelling and Dam Construction [M].Second Edirion.A.A.BALKEMA/ROTTERDAM/BROOKFIELD,1999
    [96] Carom C.. The development of grouts for the injection of fine sands. In: Grouts and Drilling Muds in Engineering Practice. Symp. Brit. Nat. Soc. Soil Mech.&Found. Engg. Butterworths, London, 1963:136-141
    [97]扈竹芳.非碱性水玻璃灌浆材料室内试验研究报告[R].北京:水电部基建公司科研所, 1985.
    [98]中科院广州化学研究所.铬木质素化学灌浆浆液的性能与应用[A].大坝化学灌浆技术经验选编[C].北京:水利电力出版社, 1997:187-199.
    [99]王冲,蒲心诚,刘芳,等.纳米颗粒材料在水泥基材料中应用的可行性研究[J].新型建筑材料,2003 ( 2) : 22- 23.
    [100]黄琼念,覃峰,马福荣,等.剑麻纤维水泥混凝土复合材料性能试验的研究[J].广西人学学报:自然科学版,2008,33(1):27- 30.
    [101]范基骏,汤俊艳,从立庆,等.合成纳米粉体ZrO2对水泥强度性能的影响[J].建筑材料学报,2004, 7(4) : 462-467.
    [102]徐迅,卢忠远.纳米二氧化硅对硅酸盐水泥水化硬化的影响[J].硅酸盐学报2007,35(4): 478-484.
    [103]叶青.纳米SiO2与硅灰的火山灰活性比较[J].混凝土,2001 ( 3 ) : 11-22.
    [104]唐明,巴恒静,李颖.纳米级SiO2与硅灰对水泥基材料的复合改性效应研究[J].硅酸盐学报,2003, 31 (5):523-527.
    [105]张景秀,坝基防渗与灌浆技术[M],北京:水利电力出版社,1992
    [106]邓英尔,刘慈群,黄润秋,王允诚.高等渗流理论与方法[M].北京:科学出版社,2004
    [107]Braja M. Das. Principles of Geotechnical Engineering[M],Boston: PWS publishers,1985
    [108]钱家欢.土力学(第二版) [M] .南京:河海大学出版社,1995.
    [109]徐献芝,李培超,李传亮.多孔介质有效应力原理研究[J].力学与实践,2001,23(4):42-45.
    [110] BIOT M A. Willis D G. The elastic coefficients of the theory of consolidation [J]. ASME J. Appl Mech.,1957,24:594-601.
    [111] LI Pei-chao, KONG Xiang-yan, LU De-tang. Mathematical modeling of flow in saturated porous media on account of fluid-structure coupling effect [J], Journal of Hydrodynamics (Ser.A),2003, 18(04):419-426.