稀土离子掺杂12CaO·7Al_2O_3基电子俘获材料的制备及光存储特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子俘获材料在红外探测、红外上转换、探测计量、光计算、光信息处理、光存储、及X射线影像存储等领域都具有广阔的应用前景。
     本文以12CaO·7Al_2O_3(C12A7)为基质材料,采用化学共沉淀方法制备了C12A7:Eu~(2+)、C12A7:Eu~(2+),Dy~(3+)和C12A7:Eu~(2+),Nd~(3+)等电子俘获材料,并通过X射线衍射(XRD)、激发光谱、发射光谱、余辉衰减、光激励发光(PSL)和热释发光等测试手段系统研究了C12A7:Eu~(2+),Dy~(3+)和C12A7:Eu~(2+),Nd~(3+)的微结构和光学性质,探讨了电子俘获材料的光存储机制,并研究了C12A7:Eu~(2+),Dy~(3+)的X射线存储特性,得到了较清晰的X射线存储图像。
     C12A7:Eu~(2+),Dy~(3+)的测试结果表明,C12A7:Eu~(2+),Dy~(3+)的激发峰位置分别位于254nm和325nm,发射峰位于444nm,为Eu~(2+)的4f65d到4f7的发射,激发光谱和发射光谱均显示为宽峰线形。蓝色余辉时间较长,说明C12A7:Eu~(2+),Dy~(3+)中存在许多较浅陷阱。根据热释发光得到两个深陷阱的激活能分别为0.81eV和0.95eV。C12A7:Eu~(2+),Dy~(3+)样品经紫外光辐照后,用980nm或808nm红外光激励后有较强的光激励发光。
     研究比较了C12A7:Eu~(2+)和C12A7:Eu~(2+),Nd~(3+)的光学特性, C12A7:Eu~(2+)的激发光谱中可以明显地观察到两个归属于Eu~(2+)4f-5d激发峰,分别位为260nm和315nm,而C12A7:Eu~(2+),Nd~(3+)只有一个较强激发峰,位于315nm,260nm位置激发峰值很弱。紫外线照射后,可观察到蓝色长余辉发光现象。余辉衰减曲线由快过程和慢过程组成,余辉时间比C12A7:Eu~(2+),Dy~(3+)长,根据热释发光曲线得到C12A7:Eu~(2+),Nd~(3+)深陷阱的激活能是0.74eV,有较强的光激励发光(PSL)。
     根据材料的光学特性研究了稀土离子掺杂C12A7基电子俘获材料的陷阱特性和光存储机理,实验研究了C12A7:Eu~(2+),Dy~(3+)X射线存储特性,通过实验我们发现,C12A7:Eu~(2+),Dy~(3+)经在空气中1380℃烧结10小时处理后光学性质发生了显著变化,X射线影像存储效果较好,其激发光谱为250到470nm的宽带吸收,主要激发峰位置分别位于330,349、362、385nm等,发射光谱显示主要来自Eu~(2+)和Dy~(3+)的光发射,发射峰位440,480和572nm,分别归属为Eu~(2+)的5d→4f跃迁发射和Dy~(3+)的~4F_(9/2)→~6H_(15/2)和~4F_(9/2)→~6H_(13/2)的发射。在发射谱中没有观察到Eu~(2+)到Dy~(3+)的能量传递,说明空气中热处理下使掺入的Dy~(3+)从还原气氛处理条件下的陷阱中心转变成为了发光激活中心。经空气高温烧结样品的余辉时间变短,说明该样品中的浅陷阱数量减少。样品经紫外光辐照后,用980或808nm红外光激励后有较强的光激励发光。利用该样品我们得到了较为清晰的X射线存储图像,同时探讨了降低X射线辐照剂量和提高X射线影像空间分辨率的方法和途径。
     我们的研究结果表明C12A7材料是一种理想的稀土离子掺杂的基质材料,在应急照明、光信息存储及X射线影像存储等领域有着广阔的应用前景。
Electron trapping materials have wide application prospects in many fields, such asinfrared detection, infrared upconvertion imaging, optical storage, detectionmeasurement, optical computing, optical information processing and X ray storageimaging, etc.
     In this dissertation, rare earth ions doped12CaO·7Al_2O_3(C12A7) electron trappingmaterials, like C12A7:Eu~(2+),C12A7:Eu~(2+),Dy~(3+)and C12A7:Eu~(2+), Nd~(3+)were prepared bychemical coprecipitation method.X ray diffraction (XRD), excitation and emissionspectra, afterglow decaying measurent,optical stimulated luminescence (PSL) andthermoluminescence (TL) techniques were used to characterize their microstructuresand optical properties. The optical storage mechanisms of these electron trappingmaterials were discussed and the X-ray storage characteristics of C12A7:Eu~(2+),Dy~(3+)were studied. The clear X-ray storage graph was obtained.
     The experimental results showed that C12A7:Eu~(2+),Dy~(3+)exhibited similar two broadexcitation peaks, respectively, located at254and325nm and the same wide emissionpeak at444nm, which is attributed to Eu~(2+)emission between4f65d1to4f7. After325nm UV irradiation, when stimulated with980or808nm infrared light, the long lastingafterglow with blue emission was obtained.By using TL, we can observe the shallow(0.81eV) and deep traps (0.95eV) in C12A7:Eu~(2+),Dy~(3+).
     Comparing the excitation spectrum of C12A7:Eu~(2+)with that of C12A7:Eu~(2+),Nd~(3+),two intense peaks of C12A7:Eu~(2+), respectively, at260and315nm can be observed, butthere is only one strong peak located at315nm and a weaker peak at260nm inC12A7:Eu~(2+),Nd~(3+)can be seen. The above results indicated that the Nd~(3+)dopping mighthave caused the change in the crystal field and the symmetry of Eu~(2+)in C12A7. Afterultraviolet radiation, a blue luminescence phenomenon of long afterglow can be seen inthe dark environment. The afterglow decay curve was composed of a fast-and a slowprocess and the afterglow decay time was longer than that of C12A7:Eu~(2+),Dy~(3+). Theactivation energy of deep traps in C12A7:Eu~(2+),Nd~(3+)was ascertained to be0.74eV byTL curve.
     By using PL, PSL and TL, the trap characteristics and optical storage mechanismof rare earth ions doped C12A7electron trapping materials trap were studied. Especially,X-ray storage characteristics of C12A7:Eu~(2+),Dy~(3+)samples was discussed in details. When we burnt them at1380℃for10hours, their optical properties exhibited obviouschanges and excellent X-ray storage imaging was achieved.Their excitation spectrashowed s broadband excitation peaks in the range from250to470nm, located at349,362,385nm etc. For the emission spectra of the air treated samples, the emission peakswere detected at480and572nm, respectively, belonged to the transitions of~4F_(9/2)→~6H_(15/2)and~4F_(9/2)→~6H_(13/2)of Dy~(3+)under UV excitation. No energy transfer fromEu~(2+)to Dy~(3+)was observed.These results indicated that the heat-treatment in air havecaused the transformation of doped Dy~(3+)in C12A7from the traps into activatin centers.The afterglow of the air treated samples became short suggesting that the amount ofdeep traps decreased. After irradiated by UV, these samples exhibited strongphoto-stimulable luminescence when stimulated with980or808nm infrared light. Wehave obtained the clearer X-ray storage images of the air treated sample than that of thereduced sample. We also tried to find new ways to reduce the X-ray irradiation dose andto improve the X-ray imaging space resolution.
     Our research showed that C12A7material is a kind of ideal matrix materials dopedwith rare earth ions, which has a wide application prospect in the field of emergencylighting, optical information storage and X-ray storage image etc.
引文
[1] Lindmayer J.A new erasable optical memory [J].Solid State Technol,1988,31(8):135-138.
    [2]金国藩,张培坤.超高密度光存储技术的现状和今后的发展[J].中国计量学院学报,2001,13(2):6-12.
    [3]孙力,王永生,董金凤等.电子俘获光存储材料的研究进展[J].激光与红外,2001,Vo1.31,No.5:262-265.
    [4]田君,尹敬群,王晓非.稀土电子俘获光存储材料研究进展[J].信息记录材,2005,Vol.6, No.4:16-20.
    [5]王欣姿,王永生,孙力等.电子俘获光存储材料的最新研究进展[J].光电子技术与信息,2005,18(2):6-10.
    [6] G.B.Gorin, K.E.Gyunsburg, N.P. Zvezdova, et al. X-ray sensitive storagephosphors with the optically stable luminescent centres [J]. Nuclear Instrumentsand Methods in Physics Research A,2000,448:196-199.
    [7] Mothudi B.M., Ntwaeaborwa, O.M. et al. Photoluminescence andphosphorescence properties of MAl2O4:Eu2+,Dy3+(M=Ca, Ba, Sr) phosphorsprepared at an initiating combustion temperature of500oC [J]. Physica B,2009,404:4440–4444.
    [8] Yamamoto H.Matsuzawa. Mechanism of long phosphorescence ofSrA12O4:Eu2+,Dy3+and CaA12O4:Eu,Nd [J]. J.Lumin.,1997,72-74:287-289.
    [9] Liu Rushi, Liu Yuhuan and Nitin C.Bagkar Enhanced luminescence ofSrSi2O2N2:Eu2+phosphors by codoping with Ce3+,Mn2+,and Dy3+ions [J].APPLIED PHYSICS LETTERS,2007,91:061119.
    [10] Aitasalo Tuomas, et al. Mechanisms of persistent luminescence in Eu2+,RE3+doped alkaline earth aluminates [J]. Journal of Luminescence,2001,94–95:59–63.
    [11] Chang Chengkang, Xu Jie et al. Luminescence of long-lastingCaAl2O4:Eu2+,Nd3+phosphor by co-precipitation method [J]. MaterialsChemistry and Physics,2006,98:509–513.
    [12] Jacqueline A.Johnson and Stefan Schweizer.A Glass-Ceramic Plate forMammography [J]. J. Am. Ceram. Soc.,2007,90[3]:693–698.
    [13] A.Edgar, J.M.Spaeth, S.Schweizer, et al. Photostimulated Luminescence in aRare Earth-Doped Fluorobromozirconate Glass-Ceramic [J]. Appl.Phys.Lett.,1999,75[16]:2386.
    [14] Aguine de Career I.Rodands A. Thermoluminescence of KCl:Eu2+underllltmviolet imdiation at different temperatures [J]. Radiation Measurements,1998,29(2):203-208.
    [15] M.Hashima, M.Koshimizu, K.Asai. Photo-stimulated luminescence of KCl:Euunder X-ray and ion irradiation [J]. Radiation Physics and Chemistry.2009,781038-1041.
    [16] S.Nagarajan, R.Sudarkodi.Luminescence in KCl:Eu2+,Tl+X-ray storagephosphors[J]. Journal of Alloys and Compounds,2009,468:558-562.
    [17] Schweizer,S.,Corradi, G., Edgar,et al.EPR of Eu2+in BaBr2crystals andfluorobromozirconate glass ceramics [J]. J.Phys.Condens.Matter,2001,13:2331-2338.
    [18] Schweizer,S.,Hobbs, L.W.,Secu, M.,S et al.. Photostimulated luminescence inEu-doped fluorochlorozirconate glass ceramics [J]. Appl.Phys.Lett.,2003,83(3):449-451.
    [19] J.Qiu, Y.Shimizugawa, K.,Hirao.Photostimulated luminescence of CeS dopedalkali borate glasses [J]. Appl.Phys.Lett.,1997,71:43-45.
    [20] J.Qiu, Y.Shimizugawa, N.Sugimoto.et a1.Photostimulated luminescence in borateglasses doped with Eu2+and Sm3+ions[J]. J.Non-Cryst.Solids.,1997,222:290-295.
    [21]潘华强,黄丽清,童慧敏等.电子俘获材料CaS:Eu,Sm光谱特性研究[J].光子学报,2007, Vol.36No.11:2083-2086.
    [22]孟宪国,周济.铈掺杂对BaFBr:Eu2+光激励发光性能的影响[J].中国稀土学报,2011, V01.29No.1:63-67.
    [23] Wenhui Fan,Xun Hou,Li Du et al.Electron trapping materials for use in apicosecond infrared streak camera [J].Rev.Sci. Instrum.,1999,Vol.70,No.12,4482-4486.
    [24]王运波,刘秉琦,王金玉等.利用电子俘获材料研制复合型短波红外探测器[J].光学技术,2009,Vol.35No.4:483-488.
    [25]李健雄,余华,李殉等.电子俘获材料的研究现状及在红外检测方面的应用[J].中国光学,2011Vo1.4,No.2:93-102.
    [26] Bo Liu, Linjie, Kong, Chaoshu Shi. White-light long-lasting phosphorSr2MgSi2O7:Dy3+[J]. Journal of Luminescence,2007,122-123:121-124.
    [27] Xiaoming Teng, Weidong Zhuang,Yunsheng Hu et al.Effect of flux on theproperties of CaAl2O4:Eu2+,Nd3+long afterglow phosphor[J].Journal of Alloysand Compounds,2008,458:446–449.
    [28] Xiaoyuan Sun, Jiahua Zhang, Xia Zhang et al.Long lasting yellowphosphorescence and photostimulated luminescence in Sr3SiO5:Eu2+andSr3SiO5:Eu2+,Dy3+phosphors [J]. J.Phys.D:Appl. Phys.,2008,41:195414,1-4.
    [29] Hidehito Nanto,Yoshiaki Hira,Mitsuo Ikeda,et al.A novel image storage sensorusing photostimulated luminescence in SrS:EuS,m phosphor forelectromagnetic waves such as X-raysU,V-rays and visible ligh [J]. Sensorsand Actuators,1996, A53:223-226.
    [30] Vasyl G. Kravets. Using electron trapping materials for optical emory [J].OpticalMaterials,2001,16:369-375.
    [31] Jiang Weiwei, Xu Zheng, Zhang Xiyan.Spectral characteristics of optical storagematerial CaSrS:Eu,Sm [J]. Materials Letters,2007,61:1042–1045.
    [32] J.Zimmermann, S.Hesse, and H.von Seggern.Influence of Li-codoping on theradiation hardness of CsBr:Eu2+[J].J.Appl.Phys.,2007,101:113711-1-113711-7.
    [33]李慧.Eu2+,Dy3+共掺杂12CaO·7Al2O3粉体的制备及其结构和光学性质研究[D].学位论文,东北师范大学,2010.
    [34] WANG Dan,LIU Yuxue, XU Changshan et al. Local microstructure andphotoluminescence of Er-doped12CaO·7Al2O3powder,JOURNAL OF RAREEARTHS,Vol.26,No.3,Jun.2008,433
    [35] L.L.Xue, Y.X.Liu, C.S. Xu et al. Characterization and Optical Transition inTb-Doped12CaO·Al2O3Powders [J]. Journal of Nanoscience andNanotechnology,2010, Vol.10:2125–2130.
    [36]金家俊. Gd3+-Yb3+-Er3+掺杂12CaO·7Al2O3荧光粉上转换发光与能量传递机制的研究[D].学位论文,东北师范大学,2011.
    [37] X.L.Liu, Y.X.Liu, D.T.Yan et al. Luminescence and Energy TransferCharacteristics of Ce3+and Tb3+Codoped Nanoporous12CaO·7Al2O3Phosphors [J]. Journal of Nanoscience and Nanotechnology,2011,Vol.11:9953-9957.
    [38] Xiuling Liu, Yuxue Liu, Duanting Yan et al. Single-phased white-emitting12CaO7Al2O3:Ce3+, Dy3+phosphors with suitable electrical conductivity forfield emission displays [J]. Mater. Chem.,2012,22:6839-16843.
    [39] Hancheng Zhu, Yuxue Liu, Yuanting Yan et al. White Luminescence of Dy3+Ions Doped12CaO·7Al2O3Nanopowders Under UV Light Excitation [J]. Janosci. Nanotechnol,2011,Vol.11, No.11:9958-9963.
    [40]郭宇,刘玉学*,闫小磊等.双波长Pr3+掺杂12CaO·7Al2O3的光存储特性[J].发光学报,2011,Vol.132, No14,313-317.
    [41] X.L.Yan, Y.X.Liu, D.T.Yan et al., The Effects of Mn2+Doping on theLuminescence Properties of12CaO·7Al2O3:Eu2+Nanocrystal Phosphor[J].J.Nanosci.Nanotechnol.2011,Vol.11,No.11.9964-9969.
    [42] G.Chen, J.Johnson, J.Woodford, et al. Insights into Phase Formation inFluorochlorozirconate Glass-Ceramic Storage Phosphors [J]. Appl.Phys.Lett.,2006,88,191915.
    [43] S.Schweizer. Physics and Current Understanding of X-Ray Storage Phosphors [J].Phys.Stat.Solidi (a),2001,187[2]:335–33.
    [44] G. Chen, J.Johnson, R.Weber, et al. Fluorozirconate-Based Nano Glass-Ceramicsfor High Resolution Medical X-Ray Imaging [J]. J.Non-Cryst.Solids,2006,352,610-614.
    [45] M.H.Kostova, M.Batentschuk, F.Goetz-Neunhoeffer, et al. Biotemplating ofBaFBr:Eu2+for X-ray storage phosphor applications [J]. Materials Chemistryand Physics,2010,123(1):166-171.
    [46] G.A.Appleby, J.Zimmermann, S. Hesse, et al.Sensitization of the photostimulablex-ray storage-phosphor CsBr:Eu2+following room-temperature hydration[J].J.Appl. Phys.2009,105:073511-1-073511-5.
    [47] M.-Z.Su,W.Zhao,W.Chen,et al.X-ray storage phosphors, their properties andmechanism[J].Journal of Alloys and Compounds,1995,225:539-543.
    [48] A.Jestin Lenus,M.T.Jose,Mohammad Yousuf, et al. Charge compensationmechanism in X-ray image intensifying phosphor BaFBr:Eu [J]. Radiat.Meas.,2001,33:397-401.
    [49]孙力,电子俘获材料中陷阱的特性研究[D],[博士毕业论文],北京交通大学,2006.
    [50]孟宪国.BaFX:Eu2(+X=Cl,Br)的光存储机理及一些应用问题的研究[D],[博士毕业论文],北京交通大学,2008
    [51]王永生.一种新型的X射线影像存储和读出屏[J].北方交通大学学报,1996,Vol.20,No.2:253-256.
    [52] MacFarlane,D.R., Newman, et al. In situ generation of Eu2+in glass-formingmelts [J]. J.Non-Cryst.Solids,1999.256,257,53–58.
    [53] Schweizer,S.,Corradi,G.,Edgar,et al.EPR of Eu2+in BaBr2crystals andfluorobromozirconate glass ceramics [J]. J.Phys.:Condens.Matter,2001.13:2331–2338.
    [54] Schweizer, S., Hobbs, L.W.,Secu, M.,S et al. Photostimulated luminescence inEu-doped Fluorochlorozirconate glass ceramics [J].Appl.Phys.Lett.2003,83(3):449-451.
    [55] Secu,M.,Kalchgruber,R.,Schweizer,S.,Spaeth,et al.Photostimulated luminescencein BaX2:Eu2+(X=Br;Cl) X-ray storage phospors [J].Radiation Efects&Defectsin Solids,2002,157(6–12):957–962.
    [56] M.Thoms,H.von Seggern,and A.Winnackel,Optical and thermal properties ofelectron-and hole-trapping sites in the x-ray storage phosphor Rbl:X(X=Ti+,In+,Pb2+,Eu2+)[J]. J.Appl.Phys.1994,76(3):1800-1808.
    [57] M.Hashima, M.Koshimizu, K.Asai. Photo-stimulated luminescence of KCl:Euunder X-ray and ion irradiation [J]. Radiation Physics and hemistry,2009,78:1038-1041.
    [58] M.H.Kostova, M.Batentschuk, F.Goetz-Neunhoeffer, et al. Biotemplating ofBaFBr:Eu2+for X-ray storage phosphor applications [J]. Materials Chemistryand Physics,2010,123:166.
    [59] S.Nagarajan, R.Sudarkodi. Luminescence in KCl:Eu2+,Tl+X-ray storagephosphors [J]. Journal of Alloys and Compounds,2009,468:558–562.
    [60] Xianmin Zhang, Chunyan Cao, Chenghua Zhang, Photoluminescence and energystorage traps in CaTiO3:Pr3+[J]. Materials Research Bulletin,2010,45:1832-1836.
    [61] G.B.Gorin, K.E.Gyunsburg, N.P.Zvezdova, X-ray-sensitive storage phosphorswith the optically stable luminescent centres [J]. Nuclear Instruments andMethods in Physics Research A,2000,448:196-199.
    [62] Th.Pawlik and J.-M.Spaeth.Investigation of the X-ray storage phosphorsCs2NaYF6:Pr3+or Ce3+[J].J.Appl.Phys.,1997,82(9):4236-4240.
    [63] G.Corradi, M.Secu, S.Schweizer, et al. Photoluminescence and photostimulatedluminescence in the X-ray storage phosphor BaBr2doped with cerium [J].Radiation Measurements,2004,38:511–514.
    [64] M.Secu,S.Schweizera,U.Rogulisab,et al.Radiation defects in Ce3+-activatedfluorobromozirconate glass-ceramic X-ray storage phosphors [J].RadiationMeasurements,2004,38:739–742.
    [65] Zhiqiang Liu,Tracy Massil and Hans Riesen.Spectral hole-burning properties ofSm2+ions generated by X-rays in BaFCl:Sm3+nanocrystals [J]. Physics Procedia,2010,3:1539–1545.
    [66] Rogulis,U.,Schweizer,S.,Assmann,et al. Ga2+hole centres and photostimulatedluminescence in the X-ray storage phosphor RbBr:Ga2+[J].J Appl.Phys.1998,84(8):4537–4542.
    [67] S.Schweizer,M.Secu,J.-M. Spaeth,et al.New developments in X-ray storagephosphors [J].Radiation Measurements,2004,38:633–638.
    [68] Rankin G.A, Wright F.E [J]. Am.J.Sci,1915,39:1.
    [69] Bu¨ssem W, Eitel A [J]. Z. Kristallogr,1936,95:175.
    [70] Bartl H, Scheller T, et al. Zur Struktur des12CaO·7Al2O3[J]. N Jb Miner Mh,1970,35:547-552.
    [71] Imlach J A,Glasser L S D,Glasser F P,et al.Exceess oxygen and the stability of“12CaO·7Al2O3”[J]. Cement Conc.Res,1971,1:57-61.
    [72] Hayashi K, Hirano M, Hosono H. Thermodynamics and Kinetics of HydroxideIon Formation in12CaO·7Al2O3[J]. J Phys Chem B,2005,109:11900-11906.
    [73] Hayashi K, Hirano M, Matsuishi S, et al.Microporous crystal12CaO·7Al2O3encaging abundant O-radicals [J]. J.Am Chem Soc,2002,124:738-739.
    [74] Hayashi K, Ueda N, Hirano M, et al. Effect of stability and diffusivity ofextra-framework oxygen species on the formation of oxygen radicals in12CaO·7Al2O3[J].Solid State Ionics,2004,173:89-94.
    [75] Yang S, Kondo J N, Hayashi K.Formation and Desorption of Oxygen Species inNanoporous Crystal [J]. Chem Mater,2004,16:104-110.
    [76] Hayashi K, Hirano M., Hosono, H.Excess Oxygen in12CaO·7Al2O3Studied byThermogravimetric Analysis [J].Chem Lett,2005,34:586-587.
    [77] Hosono H, Abe Y, et al. Occurrence of superoxide radical ion in crystalline12CaO·7Al2O3prepared via solid-state reaction [J]. Inorg Chem,1987,26:1192–1195.
    [78] Hayashi K, Matsuishi S, Ueda N, et al. Maximum Incorporation of OxygenRadicals, O-and O2-, into12CaO·7Al2O3with a Nanoporous Structur [J]. ChemMater,2003,15:1851-1854.
    [79] Jeevaratnam J,Glasser F P,Glasser L S D,et al. Anion substitution and structure of12CaO·7Al2O3[J]. J Am Ceram Soc,1964,47:105-106.
    [80] Hayashi K, Matsuishi S, Kamiya T. Light-induced conversion of an insulatingrefractory oxide into persistent electronic conductor [J]. Nature,2002,419:462-465.
    [81] Toda Y, et al. Intense thermal field electron emission from room-temperaturestable electride [J]. Appl Phys Lett,2005,87:254103-1-3.
    [82] Matsuishi S, Hayashi K, Hirano M, et al. Hydride Ion as Photoelectron Donor inMicroporous Crystal [J]. J Am Chem Soc,2005,127:12454-12455.
    [83] Hayashi K, Sushko P V, Shluger A L, et al. Hydride Ion as a Two-Electron Donorin a Nanoporous Crystalline Semiconductor12CaO·7Al2O3[J]. J Phys Chem B,2005,109:23836-23842.
    [84] Miyakawa M, Kamioka H, Hirano M, et al. Photoluminescence from Auion-implanted nanoporous single-crystal12CaO·7Al2O3[J]. Phys Rev B,2006,73:205108-1-7.
    [85] Matsuishi S, Toda Y, Miyakawa M. High-Density Electron Anions in aNanoporous Single Crystal:[Ca24Al28O64]4+(4e-)[J]. Science,2003,301:626-629.
    [86] Hayashi K,Sakai T, Hirano M, et al. Simple and Efficient Fabrication of RoomTemperature Stable Electride: Melt-Solidification and Glass Ceramics [J]. J AmChem Soc.,2005,127:1370-1371.
    [87] Sushko P V,Shluger A L, Hirano M. From Insulator to Electride:A TheoreticalModel of Nanoporous Oxide12CaO·7Al2O3[J]. J Am Chem Soc,2007,129:942-952.
    [88] Peter V. Sushko, Alexander L. Shluger, Katsuro Hayashi et al. Hopping andoptical absorption of electrons in nano-porous crystal12CaO·7Al2O3[J], ThinSolid Films445,2003,161-167.
    [89] Miyakawa M,Kamioka H,Hirano M,et al.Photoluminescence from Auion-implanted nanoporous single-crystal12CaO·7Al2O3[J].Phys Rev B,2006,73:205108-1-7.
    [90] E.Feldbach,M.Kirm,P.Liblik,et al.Luminescence of nanoporous C12A7compound[J]. phys.stat.sol.(c)4,2007, No.3,930–933.
    [91]闫小磊.Eu2+,Mn2+共掺杂12CaO·7Al2O3电子俘获材料的光激励发光及光存储机理研究[D].学位论文,东北师范大学,2011.
    [92] C.Joshi, K.Kumar and S.B.Rai. Upconversion and anomalous power dependencein Ca12Al14O33:Er3+/Yb3+single phase nanophosphor [J]. J Appl.Phys,2009,105(123103).
    [93]李鑫,潘石,邢立伟.超高密度光存储技术的进展[J].电子显微学报,2007,Vol.26.No.1:78-83.
    [94]王雷.蓝色长余辉材料CaAl2O4:Eu2+,Nd3+的合成及其发光性能的研究[D].学位论文,兰州大学,2008.
    [95] Randall J T, Wilkins M H F.Pro.R.Soc.1945, A84:366.
    [96] Garlick G, Gibson A F.Pro.Phys.Soc.1948,60:574.
    [97] Chen R, Glow Curves with General Order kinetics [J]. J.Electrochem.Soc:Solidstate Science.1969,116:1254-1257.
    [98]张纯祥,唐强等. CaSO4:Eu磷光体的热释光特性研究[J].物理学报,2002,51(12):2881-2886.
    [99] Shalgaonkar C S and Narlikar A V. Review: a review of the recentmethods for determining trap depth from glow curves [J]. J.Mater.Sci.1972,7:1465-1471.
    [100]肖志国,罗昔贤.蓄光型发光材料及其制品[M].化学工业出版社2005,11-12,109-119.
    [101] Hayashi K,Matsuishi S,Kamiya T.Light-induced conversion of an insulatingrefractory oxide into persistent electronic conductor [J]. Nature,2002,419:462-465.
    [102] Lin Yuanhua, Tang Zilong, et al.Anomalous luminescence in Sr4Al14O25:Eu,Dyphosphors [J]. Appl.Phys.Lett.,2002,81:996.
    [103] Kubota Shunichi, Shimada Masahiko, Sr3Al10SiO20:Eu2+as a blue luminescentmaterial for plasma displays [J] Appl.Phys. Lett.2002,81:2749.
    [104]刘全生.电子俘获型光存储材料的研究[D].长春:长春理工大学,2004.
    [105] F.Loncke, H.Vrielinck, P.Matthys,et al. Paramagnetic Eu2+center as a probe forthe sensitivity of CsBr x-ray needle image plates [J]. APPLIED PHYSICSLETTERS,2008,92:204102.
    [106] S. Hesse, J.Zimmermann, H.von Seggern. CsEuBr3:Crystal structure and its rolein the photostimulation of CsBr:Eu2+[J].JOURNAL OF APPLIED PHYSICS,2006,100:083506.
    [107] S.Schweizera, U.Rogulisa, S.Assmanna,et al. RbBr and CsBr doped with Eu2+as new competitive X-ray storage phosphors [J]. Radiation Measurements,2001,33:483-486.
    [108] W.Jiaa, D.Jiab, T.Rodrigueza, et al. UV excitation and trapping centers inCaTiO3:Pr3+[J]. Journal of Luminescence,2006,119-120:13-18.
    [109] GUO Yuzhu, YU Xibin, LIU Jie, et al. Photoluminescence of Eu2+-activatedNa1–xAl1–xSi1+xO4upon UV excitation[J]. JOURNAL OF RARE EARTHS,2010,28,1:34-36.
    [110] M. Secu,L.Matei,T.Serban,et al.Preparation and optical properties ofBaFCl:Eu2+X-ray storage phosphor [J]. Optical Materials,2000,15:115-122.
    [111] G.Corradi, M.Secu, S.Schweizer, et al. Photoluminescence and photostimulatedluminescence in the X-ray storage phosphor BaBr2doped with cerium [J].Radiation Measurements,2004,38:511-514.
    [112] Vasyl G K.Using electron trapping materials for opticalmemory [J].OpcicalMaterials,200l,16(4):369.
    [113]汪莹. X射线在医学影像诊断领域的应用及发展[J].广东科技,2000,219:101-102.
    [114] Paul Leblans, Dirk Vandenbroucke and Peter Willems. Storage Phosphors forMedical Imaging [J]. Materials,2011,4,1034-1086.
    [115] Lakshmanan, A.R. Radiation induced defects and photostimulated luminescenceprocess in BaFBr:Eu2+[J].Phys.Stat.Sol.(a),1996,153:3-27.
    [116]李盈盈.医用X射线机的应用安全和质量控制[J].2010, VOL.25, No.11,101-102.
    [117]倪培君,蔡和平,任安峰等.基于组分特性的材料密度工业X射线CT定量检测研究[J].无损检测,2011,7:377-0384.