氰乙基纤维素的均相合成、结构及其溶液性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素是地球上最丰富的天然高分子,可以制备成再生纤维素材料或纤维素衍生物。然而,纤维素存在很强的分子内和分子间氢键作用,不能在普通溶剂中溶解,也缺乏热可塑性,致使纤维素的应用受到许多限制。纤维素的化学修饰是以纤维素为原料,通过引入不同的取代基团,赋予其新的结构和性能,是提高天然高分子性能和扩大其使用范围的重要方法。目前,商业化的纤维素衍生物主要是通过淤浆法在非均相条件下合成的。异相体系中, OH的反应活性和可及度取决于在碱催化和反应介质的相互作用时的氢键破坏程度,其主要问题是不能较好地控制反应过程,难以预测产物的性能,因此纤维素的均相衍生化反应意义重大。本工作根据纤维素醚化反应必须以强碱作为催化剂的特点,利用本实验室自主研制开发的纤维素溶剂(碱/尿素溶液)作为反应介质,以丙烯腈为醚化剂,均相合成氰乙基纤维素(CEC),并对产物的结构、性质和应用进行深入研究。
     本论文的主要创新有以下几点:1)首次在水体系(碱/尿素水溶液)通过均相反应合成氰乙基纤维素,并对其分子结构、溶液性质、热稳定性和热致液晶行为进行深入研究;2)阐明取代度、温度和分子量等一系列变量对水溶性CEC流变行为的影响;3)部分取代的CEC在水溶液可发生溶液-凝胶转变行为,用Winter理论确定其凝胶化温度;4)首次用流变学方法确定了高取代度CEC在DMAc中的标度方程;5)将高取代度CEC溶于DMAc中,通过流延法成膜,并对其力学性能、防水性和介电性质进行研究。
     本论文的主要研究内容和结论包括以下几个部分。首先,以NaOH/尿素溶液为溶剂和均相反应介质、以丙烯腈为醚化剂,首次在碱水体系均相合成了一系列CEC。随丙烯腈对纤维素AGU单元摩尔比由1:1升高到9:1,产物的总取代度也由0.21升高到2.26。纤维素AGU单元6位羟基的反应活性高于2位和3位。当DS低至0.54时,CEC试样可以溶于水;当DS超过1.37时,它们在有机溶剂中具有较好的溶解性,有机溶剂溶解的试样在140~180°C范围都有结晶熔融峰,并表现出很好的液晶现象。
     以丙烯腈为醚化剂成功地在LiOH/尿素体系中均相合成了不同取代度的CEC试样。通过核磁共振、红外、元素分析、光散射等测试手段确定其化学结构和溶液性质。通过控制不同的反应条件,可以得到DS值为0.26~1.81的一系列CEC。取代度的大小决定试样的溶解性。水溶性CEC在0.9wt%NaCl水溶液中单链和聚集体并存;而油溶性CEC在0.5%LiCl-DMAc溶液中没有聚集出现,并表现为伸展的刚性棒状链结构。
     利用光散射和流变仪对不同分子量的水溶性CEC的溶液性质进行了研究。由于分子内和分子间的氢键作用,CEC在水溶液中形成聚集体。随着浓度的增加,CEC溶液的流变行为逐渐由牛顿流体向剪切变稀行为转变。随着分子量的增大,分子间相互作用增强,损耗模量G′′和储能模量G′值相应增加,剪切变稀行为显著。Carreau模型能够很好地描述CEC溶液的剪切变稀行为。在稀溶液中,CEC单链与大的聚集体共存,溶液的流动行为偏离Cox-Merz定律;随着CEC浓度的增加,由于分子链相互交联缠结形成均一的网络结构,其流动行为符合Cox-Merz定律。另外,CEC溶液显示出良好的热稳定性和温度可逆的黏性行为,长时间放置对溶液性质并没有大的影响。
     流变实验结果证明CEC水溶液在升高温度时会发生溶液-凝胶转变。CEC溶液的凝胶点与温度、溶液浓度以及取代度有关。利用浓度区间确定了稀溶液到浓溶液转变的临界浓度。依据Winter-Chambon理论准确确定体系的临界凝胶化转变温度Tgel,并得到凝胶点时的标度指数n值,升高温度时,CEC溶液发生溶液-凝胶转变,而且该转变过程是不可逆的。当温度高于Tgel时,体系出现微相分离。四个单元的Maxwell模型可以很好地拟合CEC水溶液的动态粘弹行为。
     通过流变仪对DS为1.49、1.65和1.81的CEC试样在DMAc中的流变行为进行研究。结果显示,随温度升高,高取代CEC试样均形成弱凝胶,且该溶液-凝胶转变是不可逆的。各试样的n值相差很小,表明不同取代度的CEC形成类似的凝胶结构,凝胶强度随取代度的增加而增大。在20°C到80°C内,可以用两个标度方程来描述其溶液行为。CEC溶液的凝胶化过程不仅与温度有关,而且与时间有关。随着取代度的增加,凝胶化时间减小。
     将不同氮含量的高取代度CEC溶解在DMAc中,通过流延法制得透明薄膜。通过拉力测试、动态力学热分析、热重分析、吸水性、透光性和介电频率谱等对其性质进行表征。实验证明,这些CEC试膜具有较高的透光率和优良的力学性能,随着取代度的增加,σb从42.05MPa增加至119.61MPa,对应的E从1005MPa增加至1458MPa,并能保持较高的断裂伸长率。材料具有较好的热稳定性和抗水性,吸水率与氮含量存在依赖关系。另外,CEC试膜的介电常数高,介电损耗较小,可以应用在许多介电材料中。
     上述基础研究成果证明碱/尿素溶液体系可以作为纤维素的溶剂和均相反应介质成功制备氰乙基纤维素,由此为纤维素衍生物的合成提供了新的方法。同时,论文阐明了不同取代度的一系列CEC的结构、性质与功能之间的相互关系。这些研究成果将为纤维素衍生物的“绿色”利用提供重要的信息和科学依据,因此具有重要的学术价值和应用前景。
Cellulose is the most common and inexhaustible raw material and can beconverted into various regenerated materials and derivatives. However, cellulose stillhas not reached its potential applications in many areas because it is difficult toprocess in general solutions or in the melting state on account of its strongintermolecular and intramolecular hydrogen bonding. The chemical modification ofcellulose is the dominant route to tailor the functions, modify the properties, andimprove the overall utilization of this naturally occurring biopolymer. Nowadays, allcommercial cellulose derivatives have been prepared with heterogeneous procedureswith the cellulose slurry in industry. In case of heterogeneous reactions, theaccessibility and reactivity of the OH groups are clearly determined by hydrogenbond-breaking activation steps through alkaline compounds and by interaction withthe reaction media, which prevents effective synthesis of cellulose products withdesired degree of reaction, reproducible substitution patterns, and targeted properties.Therefore, homogeneous modification of cellulose has been one focus of celluloseresearch for a long time. In this thesis, cyanoethyl celluloses (CECs) werehomogeneously synthesized in alkali/urea aqueous solutions for the first time, byusing acrylonitrile as etherification reagents. The structure, properties and applicationsof CEC samples were well investigated.
     The novel creations of this work are as follows.(1) CECs were homogeneouslysynthesized in alkali/urea aqueous solutions for the first time. The structure, solutionproperties, thermotropic liquid crystalline behavior of the CEC samples wasinvestigated.(2) The effect of molecular weight (Mw), temperature and degree ofsubstitution (DS) on the rheological properties of water-soluble CEC samples weredetailed investigated.(3) Dynamic viscoelastic measurements indicated that thesol-gel transition of the CEC aqueous solution occurred at elevated temperature, andthe gel point Tgelwas determined by using the Winter-Chambon method.(4) Thescaling laws of CEC samples with high DS values in DMAc were decribed usingrheometry.(5) The CEC films were prepared by dissolving CEC samples with highDS values in DMAc using the casting method, which displayed excellent thermalstability, water resistance and dielectric properties.
     The main content and conclusions in this thesis are divided into the followingparts. The CEC samples were homogeneously synthesized in NaOH/urea aqueoussolutions under moderate conditions. The total DS values of the CEC samples increased from0.26to1.93with increasing molar ratio of acrylonitrile to AGU from1:1to9:1. The relative reactivity of hydroxyl groups is in the order of C-6﹥C-2﹥C-3. The DS value for water-soluble CEC was as low as0.54, but exhibited goodsolubility in organic solvents as the DS value increased to1.37. CEC with high DSvalue displayed apparent thermotropic liquid crystalline behavior at the temperatureabove its melting point.
     The CEC samples have been homogeneously synthesized in LiOH/urea aqueoussolution by using acrylonitrile as an etherification agent. The structure and solutionproperties of CEC samples were investigated by13C NMR, FTIR, element analysisand DLS. The DS of CECs obtained here were in the range of0.26~1.81, which canbe controlled by typical reaction conditions. The relative DS value at C-6position washigher than those at C-2and C-3positions. The DS had a great influence on itssolubility. The DLS and LLS results suggested that the individual chains coexistedwith their aggregates in0.9wt%NaCl aqueous solution for water-soluble samples.While water-insoluble samples showed no aggregation and existed as extended stiffchains in0.5%LiCl-DMAc.
     Solution properties of water-soluble CECs with different molecular weights havebeen investigated. CECs formed large aggregates spontaneously in aqueous solutionbecause of the strong hydrogen bonds. The rising concentration of CEC in thesolutions transformed the rheological behavior from Newtonian to shear thinning. Asthe molecular weight increased, the intermolecular interaction enhanced. The lossmodulus G′′and storage modulus G′increased and η*exhibited shear-thinningbehavior. We found that Carreau model can describe the shear-thinning of CECsolution. The derivation of complex viscosity and shear viscosity from Cox–Merz rulein dilute regime was related to the co-existence of single chain and large aggregates inCEC solution. As the concentration increased, the CEC system was transformed into ahomogeneous entanglement structure. Meanwhile, the CEC solutions displayed goodstability during long time storage.
     The dynamic viscelastic measurements showed CEC aqueous solution underwenta sol-gel transition with an increase of temperature. The results revealed that theviscoelestic properties of CEC aqueous solutions were very sensitive to thetemperature, concentration and DS. The critical gelation temperature Tgelandrelaxation exponent n of CEC solutions were accurately determined by theWinter-Chambon method. The sol-gel transition of CEC samples in water was thermoirrevesible. Above the gel point, a physical gel formed and micro-phaseseparation appeared in the system. The experimental data of rheological behavior ofG′and G can be described by four Maxwell elements.
     The solution behavior of CECs with DS of1.49,1.65and1.81in DMAc wereinvestigated using rheometry. The results indicated that water-insoluble CEC samplesformed weak gels in DMAc with increasing temperature, and the sol-gel transitionwas thermally irreversible. The exponent (n) values at the gel point showed anindependence of molecular weight due to the similar structure. The gel strengthincreased with the increase of the DS. The CEC solutions were decribed with twoscaling laws at20~80°C. The gelation process of CEC solution was also related totime, and the tgeldecreased with an increase of DS.
     The CEC films were prepared by dissolving water-insoluble CEC samples withdifferent nitrogen contents in DMAc by the casting method. The properties werecharacterized by tensile testing, DMTA, TG, water uptake experiments, UV-visspectroscopy, and dielectric frequency spectra. The results indicated that the CECfilms exhibited good optical transparency and mechanical properties. The σband Evalues of the CEC films increased from42.05MPa to119.61MPa, and1005MPa to1458MPa with increasing DS values, respectively. Meanwhile, the CEC filmsdisplayed excellent thermal stability and water resistance. Moreover, the CEC withhigh DS values could be used as dielectric materials due to its unusual dielectricproperties, namely high dielectric constant and relatively low dielectric loss factor.
     The basic research results mentioned above proved that alkali/urea aqueoussolution was a suitable solvent and reaction medium for the homogeneous synthesis ofCEC, which provided a new pathway for the preparation of cellulose derivatives.Meanwhile, this work clarified the relationships among the structures, properties andapplications of CEC with different DS. This thesis provided important informationand scientific evidences for the comprehensive utilization of cellulose derivativesthrough green methods. Therefore, there were great scientific significance andprospects of applications.
引文
[1]张俐娜,天然高分子科学与材料,北京:科学出版社,2007。
    [2] Klemm D., Philipp B., Heinze T., Heinze U., Wagenknecht W., In:Comprehensive Cellulose Chemistry, Vol.1. WILEY-VCH Verlag GmbH,Weinheim,1998, p1.
    [3] Klemm D., Heublein B., Fink H.P., Bohn A., Cellulose: Fascinating biopolymerand sustainable raw material, Angew. Chem. Int. Ed.,2005,44,3358-3393.
    [4] McCormick C.L., Callais P.A., Derivatization of cellulose in lithium chloride andN-N-dimethylacetamide solutions, Polymer,1987,28,2317-2323.
    [5] Hudson S.M., Cuculo J.A., The solubility of unmodified cellulose: a critique ofthe literature, J. Macromol. Sci.–Rev. Macromol. Chem.,1980, C18,1-82.
    [6] Purves C.B., Chemical nature of cellulose and its derivatives. In: Spurlin H.M.and Grafflin M.W.(Eds), Cellulose, and Cellulose Derivatives, Part1.Interscience, New York,1954, p.29-98.
    [7] Heinze T., New ionic polymers by cellulose functionalization, Macromol. Chem.Phys.,1998,199,2341-2364.
    [8]詹怀宇、李志强、蔡再生,纤维素化学与物理,北京:科学出版社,2005。
    [9] He X., Wu S., Fu D., Ni J., Preparation of sodium carboxymethyl cellulose frompaper sludge, J. Chem. Technol. Biotechnol.,2009,84,427-434.
    [10]Zhang C., Price L.M., Daly W.H., Synthesis and characterization of atrifunctional aminoamide cellulose derivative, Biomacromolecules,2006,7,139-145.
    [11]Schaller J., Heinze T., Studies on the synthesis of2,3-O-hydroxyalkyl ethers ofcellulose, Macromol. Biosci.,2005,5,58-63.
    [12]张光华、朱军峰、徐晓凤,纤维素醚的特点、制备及在工业中的应用,纤维素科学与技术,2006,14,60-65。
    [13]Figueiredo J. A., Ismael M. I., Anjo C. M. S., Duarte A. P., Cellulose andderivatives from wood and fibers as renewable sources of raw-materials, Top Curr.Chem.,2010,294,117–128.
    [14]Hon D.N.S., Yan H., Cellulose furoate I. Synthesis in homogeneous andheterogeneous systems, J. Appl. Polym. Sci.,2001,81,2649-2655.
    [15]Heinze T., Liebert T., Unconventional methods in cellulose functionalization,Prog. Polym. Sci.,2001,26,1689-1762.
    [16]Ye D., Farriol X., Improving accessibility and reactivity of celluloses of annualplants for the synthesis of methylcellulose, Cellulose,2005,12,507-515.
    [17]Nakayama E., Azuma J., Substituent distribution of cyanoethyl cellulose,Cellulose,1998,5,175-185.
    [18]许冬生,纤维素衍生物,北京:化学工业出版社,2001。
    [19]K hler S., Liebert T., Heinze T., Ammonium-based cellulose solvents suitable forhomogeneous etherification, Macromol. Biosci.,2009,9,836–841.
    [20]严璐彤、许冬生、王敏霞,纤维素醚基础知识-(四)其他纤维素醚类及醚类应用,纤维素醚工业,2001,9,32-37。
    [21]张俐娜,天然高分子改性材料及应用,北京:化学工业出版社,2006。
    [22]Quintana R., Persenaire O., Bonnaud L., Dubois P., Recent advances in (reactive)melt processing of cellulose acetate and related biodegradable bio-compositions,Polym. Chem.,2012,3,591-595.
    [23]Heinze T., Dicke R., Koschella A., Kull A.H., Klohr E.A., Koch W., Effectivepreparation of cellulose derivatives in a new simple cellulose solvent, Macromol.Chem. Phys.,2000,201,627-631.
    [24]Kamide K., Saito M., Cellulose and cellulose derivatives: Recent advances inphysical chemistry, Adv. Polym. Sci.,1987,83,1-55.
    [25]Liebert T., Heinze T., Synthesis path versus distribution of functional groups incellulose ethers, Macromol. Symp.,1998,130,271-283.
    [26]Rahn K., Diamantoglou M., Berghmans H., Heinze T., Homogeneous synthesis ofcellulose p-toluenesulfonates in N, N-dimethylacetamide/LiCl solvent system,Angew Makromol. Chem.,1996,238,143-163.
    [27]Dawsey T.R., McCormick C.L., The lithium chloride/dimethylacetamide solventfor cellulose: A literature review, J. Macromol. Sci., Rev. Macromol. Chem. Phys.,1990, C30,405-440.
    [28]Clasen C., Kulicke W.M., Determination of viscoelastic and rheo-optical materialfunctions of water-soluble cellulose derivatives, Prog. Polym. Sci.,2001,26,1839-1919.
    [29]Enebro J., Momcilovic D., Siika-aho M., Karlsson S., A new approach forstudying correlations between the chemical structure and the rheologicalproperties in carboxymethyl cellulose, Biomacromolecules,2007,8,3253-3257.
    [30]Ye D., Farriol X., Factors influencing molecular weights of methylcellulosesprepared from annual plants and juvenile eucalyptus, J. Appl. Polym. Sci.,2006,100,1785-1793.
    [31]Kobayashi K., Huang C.I., Lodge T.P., Thermoreversible gelation of aqueousmethylcellulose solutions, Macromolecules,1999,32,7070-7077.
    [32]Hirrien M., Desbrières J., Rinaudo M., Physical properties of methylcelluloses inrelation with the conditions for cellulose modification, Carbohydr. Polym.,1996,31,243-252.
    [33]Vigouret M., Rinaudo M., Desbrières J., Thermogelation of methylcellulose inaqueous solution, J. Chem. Phys.,1996,93,858-869.
    [34]Lu X., Hu Z., Gao J., Synthesis and light scattering study of hydroxypropylcellulose microgels, Macromolecules,2000,33,8698-8702.
    [35]Klug E.D., Manufacture of water-soluble hydroxyl-alkyl cellulose ethers, USP3131176,1964.
    [36]Orii S., Sasagawa Y., Ito A., Sakai Y., Process of producing hydroxypropylcellulose, US P4292426,1981.
    [37]张景强、李清春、吴晗,纤维素硫酸酯化修饰的研究,广州化工,2010,38,116-119。
    [38]高洁、汤烈贵,纤维素科学,北京;科学出版社,1999。
    [39]Heinze T., Pohl M., Schaller J., Meister F., Novel bulky esters of cellulose,Macromol. Biosci.,2007,7,1225-1231.
    [40]宋强、杨益琴,纤维素月桂酸酯的制备及其结构和性能表征,南京林业大学学报(自然科学版),2011,35,91-95。
    [41]Yamamoto T., Takayama K., Honma K., Synthesis, structure and antiviral activityof sulfates of cellulose and its branched derivatives, Carbohydr Polym.,1991,4,53-63.
    [42]Grabner D., Liebert T., Heinze T., Synthesis of novel adamantoyl cellulose usingdifferently activated carboxylic acid derivatives, Cellulose,2002,9,193-201.
    [43]Wang Z.-M., Li L., Xiao K.-J., Wu J.-Y., Homogeneous sulfation of bagassecellulose in an ionic liquid and anticoagulation activity, Bioresource Technol.,2009,100,1687-1690.
    [44]Groth T., Wagenknecht W., Anticoagulant potential of regioselective derivatizedcellulose, Biomaterials,2001,22,2719–2729.
    [45]Yan H., Hon D. N.-S., Cellulose furoate. III. Properties and applications, J. Appl.Polym. Sci.,2001,82,253-257.
    [46]Wang Z., Xiao K., Li L., Wu J., Molecular weight-dependent anticoagulationactivity of sulfated cellulose derivatives, Cellulose,2010,17,953-961.
    [47]张黎明、谭业邦、李卓美,甜菜碱型烯类单体与羟乙基纤维素的接枝聚合,高分子材料科学与工程,2000,16,44-46.
    [48]Gupta K., Sahoo S., Graft copolymerization of acrylonitrile and ethylmethacrylate comonomers on cellulose using ceric ions, Biomacromolecules,2001,2,239-243.
    [49]彭小敏、廖丹葵、柳雨春,高锰酸钾引发木薯淀粉与丙烯酞胺接枝共聚反应的研究,安徽工业大学学报,2005,22,30-33。
    [50]Baiardo M., Frisoni G., Scandola M., Surface chemical modification of naturalcellulose fibers, J. Appl. Polym. Sci.,2002,83,38-45.
    [51]Uyama Y., Kato K., Ikada Y., Surface modification of polymers by grafting, Adv.Polym. Sci.,1998,137,1-39.
    [52]Leger L., Raphael E., Hervert H., Surface-anchored polymer chains: Their role inadhesion and friction, Adv. Polym. Sci.,1999,138,185-225.
    [53]Kurita M.K., Kayama M.Y., Nishlmura S.I., Graft-copolymerization of vinylmonomers onto chitin with cerium (IV) ion, J. Appl. Polym. Sci.,1991,42,2885-2891.
    [54]Yazdani-Pedram M., Lagos A., Jaime R.P., Study of the effect of reactionvariables on grafting of polyacrylamide onto chitosan, Polylm. Bull.,2002,48,93-98.
    [55]Morooka T., Norimoto M., Yamada T., Cyanoethylated cellulose prepared byhomogeneous reaction in paraformaldehyde-DMSO system, J. Appl. Polym. Sci.,1986,32,3757–3787.
    [56]林春香、詹怀宇、刘明华、付时雨,纤维素接枝共聚的研究进展,中国造纸学报,2010,1,90-95。
    [57]李忠彦、陈巍、何小维、罗志刚、黄强,辐射在接枝共聚中的应用,中国酿造,2006,6,1-4。
    [58]Andrews G.P., Gorman S.P., Jones D.S., Rheological characterisation of primaryand binary interactive bioadhesive gels composed of cellulose derivativesdesigned as ophthalmic viscosurgical devices, Biomaterials,2005,26,571-580.
    [59]Sannino A., Nicolais L., Concurrent effect of microporosity and chemicalstructure on the equilibrium sorption properties of cellulose-based hydrogels,Polymer,2005,46,4676-4685.
    [60]Ito T., Yeo Y., Highley C.B., Bellas E., Benitez C.A., Kohane D.S., Theprevention of peritoneal adhesions by in situ cross-linking hydrogels ofhyaluronic acid and cellulose derivatives, Biomaterials.,2007,28,975-983.
    [61]Shao D., Jiang Z., Wang X., Li J., Meng Y., Plasma induced graftingcarboxymethyl cellulose on multiwalled carbon nanotubes for the removal ofUO2+2from aqueous solution, J. Phys. Chem. B.,2009,113,860-864.
    [62]Ibrahim S.M., El Salmawi K.M., Zahran A.H., Synthesis of crosslinkedsuperabsorbent carboxymethyl cellulose/acrylamide hydrogels throughelectron-beam irradiation, J. Appl. Polym. Sci.,2007,104,2003-2008.
    [63]Rodríguez R., Alvarez-Lorenzo C., Concheiro A., Cationic cellulose hydrogels:kinetics of the cross-linking process and characterization as pH-/ion-sensitivedrug delivery systems, J. Control. Release,2003,86,253-265.
    [64]Lin C., Zhan H., Liu M., Fu S., Huang L., Rapid homogeneous preparation ofcellulose graft copolymer in BMIMCL under microwave irradiation, J. Appl.Polym. Sci.,2010,118,399-404.
    [65]I iklan N., Controlled release of insecticide carbaryl from sodium alginate,sodium alginate/gelatin, and sodium alginate/sodium carboxymethyl celluloseblend beads crosslinked with glutaraldehyde, J. Appl. Polym. Sci.,2006,99,1310-1319.
    [66]许云辉、陈宇岳、林红,氧化纤维素的研究进展及发展趋势,苏州大学学报(工科版),2006,2,1-6。
    [67]张俐娜,基于生物质的环境友好材料,北京:化学工业出版社,2011。
    [68]Marguerite R., Periodate oxidation of methylcellulose: characterization andproperties of oxidized derivatives, Polymer,2010,2,505-521.
    [69]Jiang B., Drouet E., Milas M., Rinaudo M., Study on TEMPO-mediated selectiveoxidation of hyaluronan and the effects of salt on the reaction kinetics, Carbohydr.Res.,2000,327,455-461.
    [70]陶芙蓉、王丹君、宋焕玲、丑凌军,高碘酸钠催化微晶纤维素的氧化,分子催化,2011,2,119-123.
    [71]Liebert T., Heinze T., Exploitation of reactivity and selectivity in cellulosefunctionalization using unconventional media for the design of products showingnew superstructures, Biomacromolecules,2001,2,1124-1132.
    [72]Nakagawa A., Fenn D., Koschella A., Heinze T., Kamitakahara H., Synthesis ofdiblock methylcellulose derivatives with regioselective functionalization patterns,J. Polym. Sci. Part A: Polym. Chem.,2011,49,4964-4976.
    [73]Bolto B.A., Soluble polymers in water purification, Prog. Polym. Sci.,1995,20,987-1041.
    [74]Ye D., Farriol X., Improving accessibility and reactivity of celluloses of annualplants for the synthesis of methylcellulose, Cellulose,2005,12,507-515.
    [75]Schurz J.,‘Trends in polymer science’: A bright future for cellulose, Prog. Polym.Sci.,1999,24,481-483.
    [76]Kr ssig H.A., Cellulose: Structure, Accessibility and Reactivity, Gordon andBreach Science Publishers, Polymer Monographs.,1993,11,167-323.
    [77]Carpita N., Vergara C., Enhanced: A recipe for cellulose, Science,1998,279,672-673.
    [78]Leipner H., Fischer S., Brendler E., Voigt W., Structural changes of cellulosedissolved in molten salt hydrates, Macromol. Chem. Phys.,2000,201,2041-2049.
    [79]Roy C., Budtova T., Navard P., Bedue O., Structure of cellulose-soda solutions atlow temperatures, Biomacromolecules,2001,2,687-693.
    [80]Heinze T., Carboxymethyl ethers of cellulose and starch. A review, Macromol.Symp.,2005,223,13-39.
    [81]Yamashiki T., Kamide K., Okajima K., Kowsaka K., Matsui T., Fukase T., Somecharacteristic features of dilute aqueous alkali solutions of specific alkaliconcentration (2.5mol L-1) which possess maximum solubility power againstcellulose, Polym. J.,1988,20,447-457.
    [82]Kamide K., Okajima K., Matsui T., Kowsaka K., Study on the solubility ofcellulose in aqueous alkali solution by deuteration IR and C-13NMR, Polym. J.,1984,16,857-866.
    [83]Kamide K., Saito M., Light scattering and viscometric study of cellulose inaqueous lithium hydroxide, Polym. J.,1986,18,569-579.
    [84]Isogai A., Atalla R.H., Dissolution of cellulose in aqueous solutions, Cellulose,1998,5,309-319.
    [85]殷延开、陈玉放、戴现波、哈成勇,纤维素的溶解及活化过程,纤维素科学与技术,2004,12,54-63。
    [86]殷艳飞、房桂干、邓拥军、韩善明、焦健、刘姗姗,碱预处理对慈竹机械浆酶解的影响,食品工业科技,2011,12,1-6。
    [87]Matsui T., Sano T., Yamane C., Kamide K., Okajima K., Structure andmorphology of cellulose films coagulated from novel cellulose/aqueous sodiumhydroxide solutions by using aqueous sulfuric acid with various concentrations,Polym. J.,1995,27,797-812.
    [88]Yamashiki T., Matsui T., Saitoh M., Okajima K., Kamide K., Sawada T.,Characterization of cellulose treated by the steam explosion method. Part1.Influence of cellulose resources on changes in morphology, degree ofpolymerization, solubility and solid structure, Brit. Polym. J.,1990,22,73-83.
    [89]Yamashiki T., Matsui T., Saitoh M., Matsuda Y., Okajima K., Kamide K., SawadaT., Characterization of cellulose treated by the steam explosion method. Part3:Effect of crystal forms (cellulose I, II and III) of original cellulose on changes inmorphology, degree of polymerization, solubility and supermolecular structure bysteam explosion, Brit. Polym. J.,1990,22,201-212.
    [90]王献玲、方桂珍、胡春平,超声波活化处理对微晶纤维素结构和氧化反应性能的影响,高等学校化学学报,2007,3,565-567。
    [91]邵自强,纤维素醚,北京:化学工业出版社,2007。
    [92]功靓、卓小龙、沈青,纤维素功能化研究的新进展Ⅲ纤维素的功能化方法,纤维素科学与技术,2010,18,61-85.
    [93]Tsunashima Y., Hattori K., Substituent distribution in cellulose acetates: Itscontrol and the effect on structure formation in solution, J. Colloid Interface Sci.,2000,288,279-286.
    [94]刘昭铁、樊岫珊,一种制备三醋酸纤维素的方法,专利号CN101016341,2007.
    [95]Heinze T., New ionic polymers by cellulose functionalization, Macromol. Chem.Phys.,1998,199,2341-2364.
    [96]McCormick C.L., Novel cellulose solutions, US Patent4278790,1981.
    [97]Turbak A.F., El-Katrawy A., Synder F., Auerbach A., Solvent system for cellulose,US Patent4302252,1981.
    [98]McCormick C.L., Callais P.A., Hutchinson Jr. B.H., Solution studies of cellulosein lithium chloride and N, N-dimethylacetamide, Macromolecules,1985,18,2394-2401.
    [99]Conio G., Corazzo P., Bianchi E., Tealdi A., Citerri A., Phase equilibria ofcellulose in N, N-dimethylacetamide/LiCl solutions, J. Polym. Sci., Polym. Lett.Ed.,1984,22,273-277.
    [100] R der T., Morgenstern B., Schelosky N., Glatter O., Solutions of cellulose inN,N-dimethylacetamide/lithium chloride studied by light scattering methods,Polymer.,2001,42,6765-6773.
    [101] Ishii D., Tatsumi D., Matsumoto T., Effect of solvent exchange on the solidstructure and dissolution behavior of cellulose, Biomacromolecules,2003,4,1238-1243.
    [102] Yanagisawa M., Isogai A., SEC-MALS-QELS study on the molecularconformation of cellulose in LiCl/amide solutions, Biomacromolecules,2005,6,1258-1265.
    [103] Ramos L.A., Assaf J.M., El Seoud O.A., Frollini E., Influence of thesupramolecular structure and physicochemical properties of cellulose on itsdissolution in a lithium chloride/N, N-dimethylacetamide solvent system.Biomacromolecules,2005,6,2638-2647.
    [104] Aono H., Tatsumi D., Matsumoto T., Characterization of aggregate structurein mercerized cellulose/LiCl-DMAc solution using light scattering andrheological measurements, Biomacromolecules,2006,7,1311-1317.
    [105] Henniges U., Kostic M., Borgards A., Rosenau T., Potthast A., Dissolutionbehavior of different celluloses, Biomacromolecules,2011,12,871-879.
    [106] Ass B.A.P., Ciacco G.T., Frollini E., Cellulose acetates from linters and sisal:Correlation between synthesis conditions in DMAc/LiCl and product properties,Bioresource Technol.,2006,97,1696-1702.
    [107] Ass B.A.P., Belgacem M.N., Frollini E., Mercerized linters cellulose:Characterization and acetylation in N, N-dimethylacetamide/lithium chloride,Carbohydr. Polym.,2006,63,19-29.
    [108] Ramos L.A., Morgado D.L., El Seoud O.A., da Silva V.C., Frollini E.,Acetylation of cellulose in LiCl-N,N-dimethylacetamide: first report on thecorrelation between the reaction efficiency and the aggregation number ofdissolved cellulose, Cellulose,2011,18,385-392.
    [109] de Marco Lima G., Sierakowski M.R., Faria-Tischer P.C.S., Tischer C.A.,Characterisation of bacterial cellulose partly acetylated by dimethylacetamide/lithium chloride, Mater. Sci. Eng. C,2011,31,190-197.
    [110] Hon D. N.-S., Yan H., Cellulose furoate. I. Synthesis in homogeneous andheterogeneous systems, J. Appl. Polym. Sci.,2001,81,2649-2655.
    [111] Yan H., Hon D.N.-S., Cellulose furoate. III. Properties and applications, J.Appl. Polym. Sci.,2001,82,253-257.
    [112] Zhang K., Brendler E., Geissler A., Fischer S., Synthesis and spectroscopicanalysis of cellulose sulfates with regulable total degrees of substitution andsulfation patterns via13C NMR and FT Raman spectroscopy, Polymer,2011,52,26-32.
    [113] Mayumi A., Kitaoka T., Wariishi H., Partial substitution of cellulose byring-opening esterification of cyclic esters in a homogeneous system, J. Appl.Polym. Sci.,2006,102,4358-4364.
    [114] Satgé C., Verneuil B., Branland P., Granet R., Krausz P., Rozier J., Petit C.,Rapid homogeneous esterification of cellulose induced by microwave irradiation,Carbohydr. Polym.,2002,49,373-376.
    [115] Satgé C., Granet R., Verneuil B., Branland P., Krausz P., Synthesis andproperties of biodegradable plastic films obtained by microwave-assistedcellulose acylation in homogeneous phase, C. R. Chimie,2004,7,135-142.
    [116] Crépy L., Chaveriat L., Banoub J., Martin P., Joly N., Synthesis of cellulosefatty esters as plastics-Influence of the degree of substitution and the fatty chainlength on mechanical properties, ChemSusChem.,2009,2,165-170.
    [117] Crépy L., Miri V., Joly N., Martin P., Lefebvre J.-M., Effect of side chainlength on structure and thermomechanical properties of fully substituted cellulosefatty esters, Carbohydr. Polym.,2011,83,1812-1820.
    [118] Das P., Saikia C.N., Homogeneous graft copolymerization of acrylonitrileonto high-cellulose in a dimethyl acetamide and lithium chloride solvent system,J. Appl. Polym. Sci.,2003,89,630-637.
    [119] Yue Z., Cowie J.M.G., Synthesis and characterization of ion conductingcellulose esters with PEO side chains, Polymer,2002,43,4453-4460.
    [120] Ifuku S., Kamitakahara H., Takano T., Tanaka F., Nakatsubo F., Preparationof6-O-(4-alkoxytrityl)celluloses and their properties, Org. Biomol. Chem.,2004,2,402-407.
    [121] Chang S., Condon B., Edwards, J., Preparation and characterization ofaminobenzyl cellulose by two step synthesis from native cellulose, Fiber. Polym.,2010,11,1101-1105.
    [122] Heinze T., Dicke R., Koschella A., Kull A.H., Klohr E.-A., Koch W.,Effective preparation of cellulose derivatives in a new simple cellulose solvent,Macromol. Chem. Phys.,2000,201,627-631.
    [123] K hler S., Heinze T., New solvents for cellulose: Dimethyl sulfoxide/ammonium fluorides, Macromol. Biosci.,2007,7,307-314.
    [124] stlund., Lundberg D., Nordstierna L., Holmberg K., Nydén M.,Dissolution and gelation of cellulose in TBAF/DMSO solutions: The roles offluoride ions and water, Biomacromolecules,2009,10,2401-2407.
    [125] Ciacco G.T., Liebert T.F., Frollini E., Heinze T., Application of the solventdimethyl sulfoxide tetrabutyl-ammonium fluoride trihydrate as reaction mediumfor the homogeneous acylation of Sisal cellulose, Cellulose,2003,10,125-132.
    [126] Heinze T., Liebert T., Pfeiffer K.S., Hussain M., Unconventional celluloseesters: Synthesis, characterization and structure-property relations, Cellulose,2003,10,283-296.
    [127] Ass B.A.P., Frollini E., Heinze T., Studies on the homogeneous acetylation ofcellulose in the novel solvent dimethyl sulfoxide/tetrabutylammonium fluoridetrihydrate, Macromol. Biosci.,2004,4,1008-1013.
    [128] Hasani M.M., Westman G., New coupling reagents for homogeneousesterification of cellulose, Cellulose,2007,14,347-356.
    [129] Casarano R., Nawaz H., Possidonio S., da Silva V.C., El Seoud O.A., Aconvenient solvent system for cellulose dissolution and derivatization:Mechanistic aspects of the acylation of the biopolymer in tetraallylammoniumfluoride/dimethyl sulfoxide, Carbohydr. Polym.,2011,86,1395-1402.
    [130] Liebert T., Heinze T., Exploitation of reactivity and selectivity in cellulosefunctionaliztion using unconventional media for the design of products showingnew superstructures, Biomacromolecules,2001,2,1124-1132.
    [131] Ramos L.A., Frollini E., Heinze T., Carboxymethylation of cellulose in thenew solvent dimethyl sulfoxide/tetrabutylammonium fluoride, Carbohydr. Polym.,2005,60,259-267.
    [132] Ramos L.A., Frollini E., Koschella A., Heinze T., Benzylation of cellulose inthe solvent dimethylsulfoxide/tetrabutylammonium fluoride trihydrate, Cellulose,2005,12,607-619.
    [133] Rohleder E., Heinze T., Comparison of benzyl celluloses synthesized inaqueous NaOH and dimethyl sulfoxide/tetrabutylammonium fluoride, Macromol.Symp.,2010,294,107-116.
    [134] Heinze T., Lincke T., Fenn D., Koschella A., Efficient allylation of cellulosein dimethyl sulfoxide/tetrabutylammonium fluoride trihydrate, Polym. Bull.,2008,61,1-9.
    [135] Blanchard L.A., Hancu D., Beckman E.J., Brennecke J.F., Green processingusing ionic liquids and CO2, Nature,1999,399,28-29.
    [136] Wilkes J.S., A short history of ionic liquids-from molten salts to neotericsolvents, Green Chem.,2002,4,73-80.
    [137]任强、武进、张军、何嘉松、过梅丽,1-烯丙基-3-甲基咪唑室温离子液体的合成及其对纤维素溶解性能的初步研究,高分子学报,2003,3,448-451。
    [138] Erdmenger T., Haensch C., Hoogenboom R., Schubert U.S., Homogeneoustritylation of cellulose in1-butyl-3-methylimidazolium chloride, Macromol.Biosci.,2007,7,440-445.
    [139] Vitz J., Erdmenger T., Haensch C., Schubert U.S., Extended dissolutionstudies of cellulose in imidazolium based ionic liquids, Green Chem.,2009,11,417-424.
    [140] Wu J., Zhang J., Zhang H., He J., Ren Q., Guo M., Homogeneous acetylationof cellulose in a new ionic liquid, Biomacromolecules,2004,5,266–268.
    [141] Cao Y., Wu J., Zhang J., Li H., Zhang Y., He J., Room temperature ionicliquids (RTILs): A new and versatile platform for cellulose processing andderivatization, Chem. Eng. J.,2009,147,13-21.
    [142] Barthel S., Heinze T., Acylation and carbanilation of cellulose in ionic liquids,Green Chem.,2006,8,301-306.
    [143] K hler S., Liebert T., Sch bitz M., Schaller J., Meister F., Günther W.,Heinze T., Interactions of ionic liquids with polysaccharides1. Unexpectedacetylation of cellulose with1-ethyl-3-methylimidazolium acetate, Macromol.Rapid Commun.,2007,28,2311-2317.
    [144] Sch bitz M., Meister F., Heinze T., Unconventional reactivity of cellulosedissolved in ionic liquids, Macromol. Symp.,2009,280,102-111.
    [145] Cao Y., Zhang J., He J., Li H., Zhang Y., Homogeneous acetylation ofcellulose at relatively high concentrations in an ionic liquid, Chin. J. Chem. Eng.,2010,18,515-522.
    [146] El Seoud O.A., Marson G.A., Ciacco G.T., Frollini E. An efficient, one-potacylation of cellulose under homogeneous reaction conditions, Macromol. Chem.Phys.,2000,201,882-889.
    [147] Schlufter K., Schmauder H.-P., Dorn S., Heinze T., Efficient homogeneouschemical modification of bacterial cellulose in the ionic liquid1-N-butyl-3-methylimidazolium chloride, Macromol. Rapid Commun.,2006,27,1670-1676.
    [148] Yoshidaa Y., Yanagisawa M., Isogaia A., Sugurib N., Sumikawa N.,Preparation of polymer brush-type cellulose β-ketoesters usingLiCl/1,3-dimethyl-2-imidazolidinone as a solvent, Polymer,2005,46,2548-2557.
    [149] Cao Y., Li H., Zhang J., Homogeneous synthesis and characterization ofcellulose acetate butyrate (CAB) in1-allyl-3-methylimidazolium chloride(AmimCl) ionic liquid, Ind. Eng. Chem. Res.,2011,50,7808-7814.
    [150] Huang K., Wang B., Cao Y., Li H., Wang J., Lin W., Mu C., Liao D.,Homogeneous preparation of cellulose acetate propionate (CAP) and celluloseacetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid, J. Agric.Food Chem.,2011,59,5376-5381.
    [151] K hler S., Heinze T., Efficient synthesis of cellulose furoates in1-N-butyl-3-methylimidazolium chloride, Cellulose,2007,14,489-495.
    [152] Liu C., Sun R., Zhang A., Ren J., Wang X., Qin M., Chao Z., Luo,Homogeneous modification of sugarcane bagasse cellulose with succinicanhydride using a ionic liquid as reaction medium, Carbohydr. Res.,2007,342,919-926.
    [153] Liu C., Sun, R., Zhang A., Ren J., Geng Z., Structural and thermalcharacterization of sugarcane bagasse cellulose succinates prepared in ionic liquid,Polym. Degrad. Stabil.,2006,91,3040-3047.
    [154] Li W., Jin A., Liu C., Sun R., Zhang A., Kennedy J., Homogeneousmodification of cellulose with succinic anhydride in ionic liquid using4-dimethylaminopyridine as a catalyst, Carbohydr. Polym.,2009,78,389-395.
    [155] Peng X., Ren J., Zhong L., Sun R., Homogeneous synthesis of hemicellulosicsuccinates with high degree of substitution in ionic liquid, Carbohydr. Polym.,2011,86,1768-1774.
    [156] Liu C., Sun R., Zhang A., Qin M., Ren J., Wang X., Preparation andcharacterization of phthalated cellulose derivatives in room-temperature ionicliquid without catalysts, J. Agric. Food Chem.,2007,55,2399-2406.
    [157] Zhang J., Wu J., Cao Y., Sang S., Zhang J., He J., Synthesis of cellulosebenzoates under homogeneous conditions in an ionic liquid, Cellulose,2009,16,299-308.
    [158] Huang K., Xia J., Li M., Lian J., Yang X., Lin G., Homogeneous synthesis ofcellulose stearates with different degrees of substitution in ionic liquid1-butyl-3-methylimidazolium chloride, Carbohydr. Polym.,2011,83,1631-1635.
    [159] Wang Z.-M., Li L., Xiao K.-J., Wu J.-Y., Homogeneous sulfation of bagassecellulose in an ionic liquid and anticoagulation activity, Bioresource Technol,.2009,100,1687-1690.
    [160] Gericke M., Liebert T., Heinze T., Interaction of ionic liquids withpolysaccharides,8–Synthesis of cellulose sulfates suitable for polyelectrolytecomplex formation, Macromol. Biosci.,2009,9,343-353.
    [161] Wang Z.-M., Xiao K.-J., Li L., Wu J.-Y., Molecular weight-dependentanticoagulation activity of sulfated cellulose derivatives, Cellulose,2010,17,953-961.
    [162] Zhou J., Zhang L., The solubility of cellulose in NaOH/urea aqueous solution,Polym. J.,2000,32,866–870.
    [163]张俐娜、周金平,溶解纤维素的溶剂组合物及其用途.专利号:ZL00114486.3,2003.
    [164]张俐娜、蔡杰、周金平,一种溶剂组合物及其制备方法和用途.专利号:ZL03128386.1,2005.
    [165] Cai J., Zhang L., Rapid dissolution of cellulose in LiOH/urea and NaOH/ureaaqueous solutions, Macromol. Biosci.,2005,5,539-548.
    [166] Cai J., Zhang L., Unique gelation behavior of cellulose in NaOH/ureaaqueous solution, Biomacromolecules,2006,7,183-189.
    [167] Cai J., Zhang L., Zhou J., Chen H., Jin H., Novel fibers prepared fromcellulose in NaOH/urea aqueous solution, Macromol. Rapid Commun.,2004,25,1558-1562.
    [168] Cai J., Zhang L., Zhou J., Qi H., Chen H., Kondo T., Chen X., Chu B.,Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueoussolution: Structure and properties, Adv. Mater.,2007,19,821-825.
    [169] Li R., Chang C., Zhou J., Zhang L., Li C., Primarily industrialized trial ofnovel fibers spun from cellulose dope in NaOH/urea aqueous solution, Ind. Eng.Chem. Res.,2010,49,11380-11384.
    [170] Zhou J., Zhang L., Cai J., Shu H, Cellulose microporous membranesprepared from NaOH/urea aqueous solution, J. Membr. Sci.,2002,210,77-90.
    [171] Mao Y., Zhou J., Cai J., Zhang L., Effects of coagulants on porous structureof membranes prepared from cellulose in NaOH/urea aqueous solution, J. Membr.Sci.,2006,279,246-255.
    [172] Xiong X., Zhang L., Wang Y., Polymer fractionation using chromatographiccolumn packed with novel regenerated cellulose beads modified with silane, J.Chromatogr. A,2005,1063,71-77.
    [173] Zhou J., Chang C., Zhang R., Zhang L., Hydrogels prepared fromunsubstituted cellulose in NaOH/urea aqueous solution, Macromol. Biosci.,2007,7,804-809.
    [174] Liu S., Zhou J., Zhang L., Guan J., Wang J., Synthesis and alignment of ironoxide nanoparticles in the regenerated cellulose film, Macromol. Rapid Commun.,2006,27,2084-2089.
    [175] Liu S., Zhang L., Zhou J., Structure and properties of cellulose/Fe2O3nanoparticles composite fibers spun via a effective pathway, J. Phys. Chem. C,2008,112,4538-4544.
    [176] Luo X., Liu S., Zhou J., Zhang L., In situ synthesis of Fe3O4cellulosemicrospheres with magnetic-induced protein delivery, J. Mater. Chem.,2009,19,3538-3545.
    [177] Zhou J., Zhang L., Deng Q., Wu X., Synthesis and characterization ofcellulose derivatives prepared in NaOH/urea aqueous solutions, J. Polym. Sci.Part A: Polym. Chem.,2004,42,5911-5920.
    [178] Ke H., Zhou J., Zhang L., Structure and physical properties ofmethylcellulose synthesized in NaOH/urea solution, Polym. Bull.,2006,56,349-357.
    [179] Zhou Q., Zhang L., Li M., Wu X., Cheng G., Homogeneoushydroxyethylation of cellulose in NaOH/urea aqueous solution, Polym. Bull.,2005,53,243-248.
    [180] Zhou J., Qin Y., Liu S., Zhang L., Homogeneous synthesis ofhydroxyethlcellulose in NaOH/urea aqueous solution, Macromol. Biosci.,2006,6,84-89.
    [181] Zhou J., Zhang L., Deng Q., Wu X., Synthesis and characterization ofcellulose derivatives prepared in NaOH/urea aqueous solutions, J. Polym. Sci.Part A: Polym. Chem.,2004,42,5911–5920.
    [182] Li M., Sun S., Xu F., Sun R., Cold NaOH/urea aqueous dissolved cellulosefor benzylation: Synthesis and characterization, Eur. Polym. J.,2011,47,1817-1826.
    [183] Qi H., Liebert T., Meister F., Heinze T., Homogenous carboxymethylation ofcellulose in the NaOH/urea aqueous solution, React. Funct. Polym.,2009,69,779-784.
    [184] Song Y., Sun Y., Zhang X., Zhou J., Zhang L., Homogeneous quaternizationof cellulose in NaOH/urea aqueous solutions as gene carriers, Biomacromolecules,2008,9,2259-2264.
    [185] Song Y., Zhou J., Zhang L., Wu X., Homogeneous modification of cellulosewith acrylamide in NaOH/urea aqueous solutions, Carbohydr. Polym.,2008,73,18-25.
    [186] Nagel M.C.V., Koschella A., Voiges K., Mischnick P., Heinze T.,Homogeneous methylation of wood pulp cellulose dissolved in LiOH/urea/H2O,Eur. Polym. J.,2010,46,1726-1735.
    [187] Song Y., Gan W., Li Q., Guo Y., Zhou J., Zhang L., Alkaline hydrolysis andflocculation properties of acrylamide-modified cellulose polyelectrolytes.Carbohydr. Polym.,2011,86,171-176.
    [188] Tamai N., Tatsumi D., Matsumoto T., Rheological properties and molecularstructure of tunicate cellulose in LiCl/1,3-dimethyl-2-imidazolidinone,Biomacromolecules,2004,5,422-432.
    [189] Yanagisawa M., Shibata I., Isogai A., SEC–MALLS analysis of celluloseusing LiCl/1,3-dimethyl-2-imidazolidinone as an eluent, Cellulose,2004,11,169-176.
    [190] Yanagisawa M., Shibata I., Isogai A. SEC-MALLS analysis of softwood kraftpulp using LiCl/1,3-dimethyl-2-imidazolidinone as an eluent. Cellulose,2005,12,151-158.
    [191] Ishii D., Isogai A., The residual amide content of cellulose sequentiallysolvent-exchanged and then vacuum-dried, Cellulose,2008,15,547-553.
    [192] Takaragi A., Minoda M., Miyamoto T., Liu H., Zhang L., Reactioncharacteristics of cellulose in the LiCl/1,3-dimethyl-2-imidazolidinone solventsystem, Cellulose,1999,6,93-102.
    [193] Yoshida Y., Isogai A., Thermal and liquid crystalline properties of cellulose-ketoesters prepared by homogeneous reaction with ketene dimmers, Cellulose,2006,13,637-645.
    [194] Yoshida Y., Isogai A., Preparation and characterization of celluloseβ-ketoesters prepared by homogeneous reaction with alkylketene dimers:Comparison with cellulose/fatty acid esters, Cellulose,2007,14,481-488.
    [195] Yoshida Y., Isogai A., Tsujii Y., Structural analysis of polymer-brush-typecellulose-ketoesters by molecular dynamics simulation, Cellulose,2008,15,651-658.
    [196] Zarth C.S.P., Koschella A., Pfeifer A., Dorn S., Heinze T., Synthesis andcharacterization of novel amino cellulose esters, Cellulose,2011,18,1315-1325.
    [197] Fischer S., Thümmler K., Pfeiffer K., Liebert T., Heinze T., Evaluation ofmolten inorganic salt hydrates as reaction medium for the derivatization ofcellulose, Cellulose,2002,9,293-300.
    [198] Liebert T., Heinze T., Exploitation of reactivity and selectivity in cellulosefunctionaliztion using unconventional media for the design of products showingnew superstructures, Biomacromolecules,2001,2,1124-1132.
    [199] K hler S., Liebert T., Heinze T., Ammonium-based cellulose solventssuitable for homogeneous etherification, Macromol. Biosci.,2009,9,836-841.
    [200] Heinze T., Liebert T., Klüfers P., Meister F., Carboxymethylation of cellulosein unconventional media, Cellulose,1999,6,153-165.
    [201]任天瑞、沈斌、李永红、万俊杰,纤维素的均相化学反应,化学进展,2004,6,948-953。
    [202]2010-2015年中国羟丙基甲基纤维素行业研究及战略咨询报告,中国研究报告网,2010。
    [1] Klemm D., Heublein B., Fink H.-P., Bohn A., Cellulose: Fascinating biopolymerand sustainable raw material, Angew. Chem. Int. Ed.,2005,44,3358-3393.
    [2] Heinze T., Liebert T., Klüfers P., Meister F., Carboxymethylation of cellulose inunconventional media, Cellulose,1999,6,153-165.
    [3] Jollet V., Chambon F., Rataboul F., Cabiac A., Pinel C., Guillon E., Essayem N.,Non-catalyzed and Pt/γ-Al2O3-catalyzed hydrothermal cellulose dissolution–conversion: influence of the reaction parameters and analysis of the unreactedcellulose, Green Chem.,2009,11,2052-2060.
    [4] Heinze T., Liebert T., Unconventional methods in cellulose functionalization,Prog. Polym. Sci.,2001,26,1689-1762.
    [5] McCormick C.L., Callais P.A., Derivatization of cellulose in lithium chloride andN, N-dimethylacetamide solutions, Polymer,1987,28,2317-2323.
    [6] Liebert T., Heinze T., Exploitation of reactivity and selectivity in cellulosefunctionalization using unconventional media for the design of products showingnew superstructures, Biomacromolecules,2001,2,1124-1132.
    [7] Fenn D., Heinze T., Novel3-mono-O-hydroxyethyl cellulose: Synthesis andstructure characterization, Cellulose,2009,16,853-861.
    [8] Ass B.A.P., Frollini E., Heinze T., Studies on the homogeneous acetylation ofcellulose in the novel solvent dimethyl sulfoxide/tetrabutylammonium fluoridetrihydrate, Macromol. Biosci.,2004,4,1008-1013.
    [9] Hussain M.A., Liebert T., Heinze T., Acylation of cellulose with N,N′-carbonyldiimidazole-activated acids in the novel solvent dimethylsulfoxide/tetrabutylammonium fluoride, Macromol. Rapid Commun.,2004,25,916-920.
    [10]Takaragi A., Minoda M., Miyamoto T., Liu H., Zhang L., Reaction characteristicsof cellulose in the LiCl/1,3-dimethyl-2-imidazolidinone solvent system, Cellulose,1999,6,93-102.
    [11]Johnson D.L., Compounds dissolved in cylclic amine oxides, US3447939,1966.
    [12]Volkert B., Wagenknecht W., Substitution patterns of cellulose ethers: Influenceof the synthetic pathway, Macromol. Symp.,2008,262,97-118.
    [13]Swatloski R.P., Spear S.K., Holbrey J.D., Rogers R.D., Dissolution of cellulosewith ionic liquids, J. Am. Chem. Soc.,2002,124,4974-4975.
    [14]Zhang H., Wu J., Zhang J., He J.,1-Allyl-3-methylimi-dazolium chloride roomtemperature ionic liquid: a new and powerful nonderivatizing solvent forcellulose, Macromolecules,2005,38,8272-8277.
    [15]Wu J., Zhang J., Zhang H., He J., Ren Q., Guo M., Homogeneous acetylation ofcellulose in a new ionic liquid, Biomacromolecules,2004,5,266-268.
    [16]Schlufter K., Schmauder H.-P., Dorn S., Heinze T., Efficient homogeneouschemical modification of bacterial cellulose in the ionic liquid1-N-butyl-3-methylimidazolium chloride, Macromol. Rapid Commun.,2006,27,1670-1676.
    [17]Gericke M., Liebert T., Heinze T., Polyelectrolyte synthesis and in situ complexformation in ionic liquids, J. Am. Chem. Soc.,2009,131,13220-13221.
    [18]Yan C., Zhang J., Lv Y., Yu J., Wu J., Zhang J., He J., Thermoplasticcellulose-graft-poly(L-lactide) copolymers homogeneously synthesized in anionic liquid with4-dimethylaminopyridine catalyst, Biomacromolecules,2009,10,2013-2018.
    [19]Cai J., Zhang L., Zhou J., Qi H., Chen H., Kondo T. et al., Multifilament fibersbased on dissolution of cellulose in NaOH/urea aqueous solution: Structure andproperties, Adv. Mater.,2007,19,821-825.
    [20]Qi H., Chang C., Zhang L., Properties and applications of biodegradabletransparent and photoluminescent cellulose films prepared via a green process,Green Chem.,2009,11,177-184.
    [21]Zhou J., Zhang L., Deng Q., Wu X., Synthesis and characterization of cellulosederivatives prepared in NaOH/urea aqueous solutions, J. Polym. Sci. Part A:Polym. Chem.,2004,42,5911-5920.
    [22]Zhou J., Qin Y., Liu S., Zhang L. Homogenous synthesis of hydroxyethyl-cellulose in NaOH/urea aqueous solution, Macromol. Biosci.,2006,6,84-89.
    [23]Qi H., Liebert T., Meister F., Heinze T., Homogenous carboxymethylation ofcellulose in the NaOH/urea aqueous solution, React. Funct. Polym.,2009,69,779-784.
    [24]Song Y., Sun Y., Zhang X., Zhou J., Zhang L., Homogeneous quaternization ofcellulose in NaOH/urea aqueous solutions as gene carriers, Biomacromolecules,2008,9,2259-2264.
    [25]Song Y., Zhou J., Zhang L., Wu X., Homogenous modification of cellulose withacrylamide in NaOH/urea aqueous solutions, Carbohydr. Polym.,2008,73,18-25.
    [26]Hebeish A., Zahran A.H., EI-Naggar A.M.Kh., Behavior of cyanoethylated cottontowards gamma radiation, J. Appl. Polym. Sci.,1985,30,4057-4067.
    [27]Sefain M.Z., Fadl M.H., EI-Wakil N.A., Naoum M. M., Kinetics ofheterogeneous cyanoethylation of cellulose, Polym. Int.,1993,32,251-255.
    [28]Huang Y., Loos J., Yang Y., Petermann J., Macromolecular cholesteric orderobserved by electron microscopy, J. Polym. Sci. Part B: Polym. Phys.,1998,36,439-446.
    [29]Dong Y., Qing Y., Huang Y., Textures and disclinations in the cholestericliquid-crystalline phase of a cyanoethyl chitosan solution, J. Polym. Sci. Part B:Polym. Phys.,2000,38,980-986.
    [30]Hassan M.L., EL-Wakil N.A., Sefain M., Thermoplasticization of bagasse bycyanoethylation, J. Appl. Polym. Sci.,2001,79,1965-1978.
    [31]Yamawaki Y., Morita M., Sakata I., Mechanical and dielectric properties ofcyanoethylated wood, J. Appl. Polym. Sci.,1990,40,1757-1769.
    [32]Chatterjee P.K., Conrad C.M., Investigation by infrared absorption of theby-products of the cyanoethylation of cotton cellulose, J. Polym. Sci. Part A-1,1966,4,233-243.
    [33]Tsuji W., Nakao T., Ohigashi K., Maegawa K., Kobayashi N., Shukri S., Kasai S.,Miyanaga K., Chemical modification of cotton fiber by alkali-swelling andsubstitution reactions-acetylation, cyanoethylation, benzoylation, and oleoylation,J. Appl. Polym. Sci.,1986,32,5175-5192.
    [34]Saha A.K., Das S., Basak R.K., Bhatta D., Mitra B.C., Improvement of functionalproperties of jute-based composite by acrylonitrile pretreatment, J. Appl. Polym.Sci.,2000,78,495–506.
    [35]Saha A.K., Mitra B.C., Studies on cyanoethylation of jute fiber, J. Appl. Polym.Sci.,1996,62,733-742.
    [36]Saad G.R., Dielectric behaviour of cyanoethylated cellulose, Polym. Int.,1994,34,411-415.
    [37]Wang L., Huang Y., Disklike texture of ethyl-cyanoethyl cellulose cholestericphase, Macromolecules,2002,35,3111-3116.
    [38]Vshivkov S.A., Rusinova E.V., Effect of magnetic field on phase transitions insolutions of cellulose derivatives, Polym. Sci., Ser. A,2008,50,725-732.
    [39]MacGregor J.H., The reaction of acrylonitrile with macromolecular hydroxysubstances. I. A general survey of the reaction, J. Soc. Dyers. Colourists,1951,67,66-73.
    [40]Morooka T., Norimoto M., Yamada T., Cyanoethylated cellulose prepared byhomogeneous reaction in paraformaldehyde-DMSO system, J. Appl. Polym. Sci.,1986,32,3575-3587.
    [41]Philipp B., Lukanoff B., Schleicher H., Wagenknecht W.Z., Homogeneumsetzung an cellulose in organischen l semittelsystemen, Zeitschrift fürChemie.,1986,26,50-58.
    [42]Brown W., Wiskst n R., A viscosity-molecular weight relationship for cellulosein cadoxen and a hydrodynamic interpretation, Eur. Polym. J.,1965,1,1-10.
    [43]Klemm D., Philipp B., Heinze T., Heinze U., Wagenknecht W., ComprehensiveCellulose Chemistry, Vol2, Functionalization of Cellulose, Wiley-VCH,Weinheim,1998, p161-164.
    [44]Nakayama E., Azuma J., Substituent distribution of cyanoethyl cellulose,Cellulose,1998,5,175-185.
    [45]Heinze T., Pfeiffer K., Studies on the synthesis and characterization ofcarboxymethylcellulose, Angew. Makromol. Chem.1999,266,37-45.
    [1] Siqueira G., Bras J., Dufresne A., Cellulosic bionanocomposites: A review ofpreparation, properties and applications, Polymer,2010,2,728-765.
    [2] Kim J., Yun S., Discovery of cellulose as a smart material, Macromolecules,2006,39,4202–4206.
    [3] Klemm D., Heublein B., Fink H.P., Bohn A., Cellulose: Fascinating biopolymerand sustainable raw material, Angew Chem. Int. Ed.,2005,44,3358-3393.
    [4] Klemm D., Philipp B., Heinze T., Heinze U., Wagenknecht W., ComprehensiveCellulose Chemistry, Vol2, Functionalization of Cellulose, Wiley-VCH,Weinheim,1998, p161–164.
    [5] Liebert T., Heinze T., Tailored cellulose esters: Synthesis and structuredetermination, Biomacromolecules,2005,6,333-340.
    [6] Compton J., Martin W.H., Word B.H., Barber R.P., Pilot plant production andproperties of cyanoethylated cotton, Textile Res. J.,1955,25,58-75.
    [7] Greathouse L.H., Janssen H.J., Berard W.N., Haydel C. H., Cyanoethylation ofcotton fabric, Ind. Eng. Chem.,1956,48,1263-1267.
    [8] Saha A.K., Das S., Basak R.K., Bhatta D., Mitra B.C., Improvement of functionalproperties of jute-based composite by acrylonitrile pretreatment, J. Appl. Polym.Sci.,2000,78,495–506.
    [9] Nada A.M.A., Seoudi R., Molecular structure, thermal analysis and electricalproperties of cyanoethyl and carbamoyl ethyl bagasse raw materials, J. Mol.Struc.,2006,797,111–120.
    [10]Yamawaki Y., Morita M., Sakata I., Mechanical and dielectric properties ofcyanoethylated wood, J. Appl. Polym. Sci.,1990,40,1757-1769.
    [11]Hassan L.M., EL-Wakil A.N., Sefain Z.M., Thermoplasticization of bagasse bycyanoethylation, J. Appl. Polym. Sci.,2001,79,1965-1978.
    [12]Volkert B., Wagenknecht W., Mai M., In: Cellulose solvents: For analysis,shaping and chemical modification, Liebert T. et al.; ACS Symposium Series;American Chemical Society: Washington DC,2010, p319.
    [13]MacGregor J.H., The reaction of acrylonitrile with macromolecular hydroxysubstances. I a general survey of the reaction, J. Soc. Dyers. Colourists,1951,67,66-73.
    [14]Morooka T., Norimoto M., Yamada T., Cyanoethylated cellulose prepared byhomogeneous reaction in paraformaldehyde-DMSO system, J. Appl. Polym. Sci.,1986,32,3575-3587.
    [15]Johnson D. L., Compounds dissolved in cyclic amine oxides, US3447939,1966.
    [16]Philipp B., Lukanoff B., Schleicher H., Wagenknecht W. Z., Homogeneumsetzung an cellulose in organischen l semittelsystemen, Zeitschrift fürChemie.,1986,26,50-58.
    [17]Kosan B., Michels C., Meister F., Dissolution and forming of cellulose with ionicliquids, Cellulose,2008,15,59-66.
    [18]Zhang H., Wu J., Zhang J., He J.,1-Allyl-3-methylimidazolium chloride roomtemperature ionic liquid: A new and powerful nonderivatizing solvent forcellulose, Macromolecules,2005,38,8272-8277.
    [19]Cai J., Zhang L., Zhou J., Qi H., Chen H., Kondo T. et al., Multifilament fibersbased on dissolution of cellulose in NaOH/urea aqueous solution: Structure andproperties, Adv. Mater.,2007,19,821-825.
    [20]Cai J., Zhang L., Rapid dissolution of cellulose in LiOH/urea and NaOH/ureaaqueous solutions, Macromol. Biosci.,2005,5,539-548.
    [21]Song Y., Sun Y., Zhang X., Zhou J., Zhang L., Homogeneous quaternization ofcellulose in NaOH/urea aqueous solutions as gene carriers, Biomacromolecules,2008,9,2259-2264.
    [22]Song Y., Zhou J., Zhang L., Wu X., Homogenous modification of cellulose withacrylamide in NaOH/urea aqueous solutions, Carbohydr. Polym.,2008,73,18-25.
    [23]Zhou J., Xu Y., Wang X., Qin Y., Zhang L., Microstructure and aggregationbehavior of methylcelluloses prepared in NaOH/urea aqueous solutions,Carbohydr. Polym.,2008,94,901-906.
    [24]Zhou J., Zhang L., Deng Q., Wu X., Synthesis and characterization of cellulosederivatives prepared in NaOH/urea aqueous solutions, J. Polym. Sci. Part A:Polym. Chem.,2004,42,5911-5920.
    [25]Zhou J., Qin Y., Liu S., Zhang L., Homogenous synthesis of hydroxyethyl-cellulose in NaOH/urea aqueous solution, Macromol. Biosci.,2006,6,84-89.
    [26]Qi H., Liebert T., Meister F., Heinze T., Homogenous carboxymethylation ofcellulose in the NaOH/urea aqueous solution, React. Funct. Polym.,2009,69,779-784.
    [27]Qi H., Chang C., Zhang L., Effects of temperature and molecular weight ondissolution of cellulose in NaOH/urea aqueous solution, Cellulose,2008,15,779-787.
    [28]Cai J., Liu Y., Zhang L., Dilute solution properties of cellulose in LiOH/ureaaqueous system, J. Polym. Sci. Pol. Phys.,2006,44,3093-3101.
    [29]Nagel C.V., Koschella A., Voiges K., Mischnick P., Heinze T., Homogeneousmethylation of wood pulp cellulose dissolved in LiOH/urea/H2O, Eur. Polym. J.,2010,46,1726-1735.
    [30]Brown W., Wiskst n R., A viscosity-molecular weight relationship for cellulosein cadoxen and a hydrodynamic interpretation, Eur. Polym. J.,1965,1,1-10.
    [31]Liu T., Rulkens R., Wegner G., Chu B., Laser light scattering study of a rigid-rodpolyelectrolyte, Macromolecules,1998,31,6119-6128.
    [32]Chatterjee P.K., Conrad C.M., Investigation by infrared absorption of theby-products of the cyanoethylation of cotton cellulose, J. Polym. Sci. Part A-1,1966,4,233-243.
    [33]Nakayama E., Azuma J., Substituent distribution of cyanoethyl cellulose,Cellulose,1998,5,175-185.
    [34]Zadorecki P., Hjertberg T., Arwidsson M., Characterization of cellulose ether by13C NMR,2Structural determination, Macromol. Chem.,1987,188,513-525.
    [35]Takahashi S., Fujimoto T., Barua B.M., Miyamoto T.,13C NMR spectral studieson the distribution of substituents in some cellulose derivatives, J. Polym. Sci.Part A: Polym. Chem.,1986,24,2981-2993.
    [36]Burchard W., Solution properties of branched macromolecules, Adv. Polym. Sci.,1999,143,113–194.
    [1] Klemm D., Heublein B., Fink H.P., Bohn A., Cellulose: Fascinating biopolymerand sustainable raw material, Angew. Chem. Int. Ed.,2005,44,3358-3393.
    [2] Heinze T., New ionic polymers by cellulose functionalization, Macromol. Chem.Phys.,1998,199,2341-2364.
    [3]张俐娜,天然高分子科学与材料,北京:科学出版社,2007。
    [4] Schaller J., Heinze T., Studies on the synthesis of2,3-O-hydroxyalkyl ethers ofcellulose, Macromol. Biosci.,2005,5,58-63.
    [5]张光华、朱军峰、徐晓凤,纤维素醚的特点、制备及在工业中的应用,纤维素科学与技术,2006,14,60-65。
    [6] Baiardo M., Frisoni G., Scandola M., Surface chemical modification of naturalcellulose fibers, J. Appl. Polym. Sci.,2002,83,38-45.
    [7] Heinze T., Carboxymethyl ethers of cellulose and starch. A review, Macromol.Symp.,2005,223,13-39.
    [8] Zhou J., Qin Y., Liu S., Zhang L., Homogeneous synthesis of hydroxyethl-cellulose in NaOH/urea aqueous solution, Macromol. Biosci.,2006,6,84-89.
    [9] Kobayashi K., Huang C.I., Lodge T.P., Thermoreversible gelation of aqueousmethylcellulose solutions, Macromolecules,1999,32,7070-7077.
    [10]Liebert T., Heinze T., Synthesis path versus distribution of functional groups incellulose ethers, Macromol. Symp.,1998,130,271-283.
    [11]Zhou Q., Zhang L., Li M., Wu X., Cheng G., Homogeneous hydroxyethylation ofcellulose in NaOH/urea aqueous solution, Polym. Bull.,2005,53,243-248.
    [12]de Marco Lima G., Sierakowski M.R., Faria-Tischer P.C.S., Tischer C.A.,Characterisation of bacterial cellulose partly acetylated by dimethylacetamide/lithium chloride, Mater. Sci. Eng. C,2011,31,190-197.
    [13]McCormick C.L., Callais P.A., Hutchinson Jr. B.H., Solution studies of cellulosein lithium chloride and N,N-dimethylacetamide, Macromolecules,1985,18,2394-2401.
    [14]Ass B.A.P., Ciacco G.T., Frollini E., Cellulose acetates from linters and sisal:Correlation between synthesis conditions in DMAc/LiCl and product properties,Bioresource Technol.,2006,97,1696-1702.
    [15]K hler S., Heinze T., New solvents for cellulose: Dimethyl sulfoxide/ammoniumfluorides, Macromol. Biosci.,2007,7,307-314.
    [16]Heinze T., Liebert T.F., Pfeiffer K.S., Hussain M.A., Unconventional celluloseesters: Synthesis, characterization and structure–property relations, Cellulose,2003,10,283-296.
    [17]Ramos L.A., Frollini E., Heinze T., Carboxymethylation of cellulose in the newsolvent dimethyl sulfoxide/tetrabutylammonium fluoride, Carbohydr. Polym.,2005,60,259-267.
    [18]Yanagisawa M., Shibata I., Isogai A., SEC–MALLS analysis of cellulose usingLiCl/1,3-dimethyl-2-imidazolidinone as an eluent, Cellulose,2004,11,169-176.
    [19]Cao Y., Zhang J., He J., Li H., Zhang Y., Homogeneous acetylation of cellulose atrelatively high concentrations in an ionic liquid, Chin. J. Chem. Eng.,2010,18,515-522.
    [20]Schlufter K., Schmauder H.-P., Dorn S., Heinze T., Efficient homogeneouschemical modification of bacterial cellulose in the ionic liquid1-N-butyl-3-methylimidazolium chloride, Macromol. Rapid Commun.,2006,27,1670-1676.
    [21]Zhang J., Wu J., Cao Y., Sang S., Zhang J., He J., Synthesis of cellulose benzoatesunder homogeneous conditions in an ionic liquid, Cellulose,2009,16,299-308.
    [22]Cai J., Zhang L., Rapid dissolution of cellulose in LiOH/urea and NaOH/ureaaqueous solutions, Macromol. Biosci.,2005,5,539-548.
    [23]Cai J., Zhang L., Unique gelation behavior of cellulose in NaOH/urea aqueoussolution, Biomacromolecules,2006,7,183-189.
    [24]Yan H., Hon D.N.-S., Cellulose furoate. III. Properties and applications, J. Appl.Polym. Sci.,2001,82,253-257.
    [25]Nakayama E., Azuma J., Substituent distribution of cyanoethyl cellulose,Cellulose,1998,5,175-185.
    [26]Nagel M.C.V., Koschella A., Voiges K., Mischnick P.; Heinze T., Homogeneousmethylation of wood pulp cellulose dissolved in LiOH/urea/H2O, Eur. Polym. J.,2010,46,1726-1735.
    [27]Takahashi M., Shimazaki M., Yamamoto J., Thermoreversible gelation and phaseseparation in aqueous methyl cellulose solutions, J. Polym. Sci. Part B: Polym.Phys.,2001,39,91-100.
    [28]Ghannam M.T., Esmail M.N., Rheological properties of carboxymethyl cellulose,J. Appl. Polym. Sci.,1997,64,289-301.
    [29]Wang Q., Li L., Effects of molecular weight on thermoreversible gelation and gelelasticity of methylcellulose in aqueous solution, Carbohydr. Polym.,2005,62,232-238.
    [30]Brown W., Wiskst n R., A viscosity molecular weight relationship for cellulosein cadoxen and a hydrodynamic interpretation, Eur. Polym. J.,1965.1,1-10.
    [31]Cummins H.Z., Pike E.R., Laser Light Scattering, Plenum Press: New York,1974.
    [32]Provencher S.W., Hendrix J., De Maeyer L., Paulussen N., Direct determinationof molecular weight distributions of polystyrene in cyclohexane with photoncorrelation spectroscopy, J. Chem. Phys.,1978,69,4273-4276.
    [33]Carreau P., Rheological equation from molecular network theories, Trans. Soc.Rheol,1972,16,99-127.
    [34]Graessley W.W., Viscosity of entangling polydisperse polymers, J. Chem. Phys.,1967,47,1942-1953.
    [35]Clasen C., Kulicke W.M., Determination of viscoelastic and rheo-optical materialfunctions of water-soluble cellulose derivatives, Prog. Polym. Sci.,2001,26,1839-1919.
    [36]Cox W.P., Merz E.H., Correlation of dynamic and steady-flow viscosities, J.Polym. Sci.,1958,28,619-622.
    [1] Clasen C., Kulicke W.M., Determination of viscoelastic and rheo-optical materialfunctions of water-soluble cellulose derivatives, Prog. Poly. Sci.,2001,26,1839-1919.
    [2] Fujii S., Sasaki N., Nakata M., Rheological studies on the phase separation ofhydroxypropylcellulose solution systems, J. Polym. Sci. Part B: Polym. Phys.,2001,39,1976-1986.
    [3] Madbouly S.A., Otaigbe J.U., Rheokinetics of thermal-induced gelation ofwaterborne polyurethane dispersions, Macromolecules,2005,38,10178-10184.
    [4] Klemm D., Heublein B., Fink H.P., Bohn A., Cellulose: Fascinating biopolymerand sustainable raw material, Angew. Chem. Int. Ed.,2005,44,3358-3393.
    [5] Kunal P., Banthia A.K., Majumdar D.K., Development of carboxymethylcellulose acrylate for various biomedical applications, Biomed. Mater.,2006,1,85-91.
    [6] Haque A., Richardson R.K., Morris E.R., Gidley M.J., Caswell D.C.,Thermogelation of methylcellulose. Part II: Effect of hydroxypropyl substituents,Carbohydr. Polym.,1993,22,175-186.
    [7] Desbrières J., Hirrien M., Ross-Murphy S.B., Thermogelation of methylcellulose:Rheological considerations, Polymer,2000,41,2451-2461.
    [8] Xu X., Liu W., Zhang L., Rheological behavior of aeromonas gum in aqueoussolutions, Food Hydrocolloids,2006,20,723-733.
    [9] Cho J., Heuzey M.C., Bégin A., Carreau P.J., Viscoelastic properties of chitosansolutions: Effect of concentration and ionic strength, J. Food Eng.,2006,74,500-515.
    [10]Song Y., Zhou J., Li Q., Lue A., Zhang L., Solution properties of theacrylamide-modified cellulose polyelectrolytes in aqueous solutions, Carbohydr.Res.,2009,344,1332-1339.
    [11]Li L., Aoki Y., Rheological images of poly(vinyl chloride) gels.1. Thedependence of sol–gel transition on concentration, Macromolecules,1997,30,7835-7841.
    [12]Tan L., Liu S., Pan D., Viscoelastic behavior of polyacrylonitrile/dimethylsulfoxide concentrated solution during thermal-induced gelation, J. Phys. Chem.B,2009,113,603-609.
    [13]Lue A., Zhang L., Investigation of the scaling law on cellulose solution preparedat low temperature, J. Phys. Chem. B,2008,112,4488-4495.
    [14]Chambon F., Winter H.H., Stopping of crosslinking reaction in a PDMS polymerat the gel point, Polym. Bull.,1985,13,499-503.
    [15]Winter H.H., Chambon F., Analysis of linear viscoelasticity of a crosslinkingpolymer at the gel point, J. Rheol.,1986,30,367-382.
    [16]Chambon F., Winter H.H., Linear viscoelasticity at the gel point of a crosslinkingPDMS with imbalanced stoichiometry, J. Rheol.,1987,31,683-697.
    [17]Guo Y., Zhou J., Zhang L., Dynamic viscoelastic properties of cellulosecarbamate dissolved in NaOH aqueous solution, Biomacromolecules,2011,12,1927-1934.
    [18]Li L., Shan H., Yue C.Y., Lam Y.C., Tam K. C., Hu X., Thermally inducedassociation and dissociation of methylcellulose in aqueous solutions, Langmuir,2002,18,7291-7298.
    [19]Kjoniksen A.-L., Nystr m B., Lindman B., Dynamic viscoelasticity of gellingand nongelling aqueous mixtures of ethyl(hydroxyethyl)cellulose and an ionicsurfactant, Macromolecules,1998,31,18521858.
    [20]Carotenuto C., Grizzuti N., Thermoreversible gelation of hydroxypropylcelluloseaqueous solutions, Rheol. Acta.,2006,45,468-473.
    [21]Lizaso E., Munoz M. E., Santamaria A., Formation of gels in ethylcellulosesolutions. An interpretation from dynamic viscoelastic results, Macromolecules,1999,32,1883-1889.
    [22]Nada A.M.A., Seoudi R., Molecular structure, thermal analysis and electricalproperties of cyanoethyl and carbamoyl ethyl bagasse raw materials, J. Mol.Struc.,2006,797,111-120.
    [23]Saha A.K., Das S., Basak R.K., Bhatta D., Mitra B.C., Improvement of functionalproperties of jute-based composite by acrylonitrile pretreatment, J. Appl. Polym.Sci.,2000,78,495-506.
    [24]Hassan L. M., EL-Wakil A.N., Sefain, Z.M., Thermoplasticization of bagasse bycyanoethylation, J. Appl. Polym. Sci.,2001,79,1965-1978.
    [25]Yamawaki Y., Morita M., Sakata I., Mechanical and dielectric properties ofcyanoethylated wood, J. Appl. Polym. Sci.,1990,40,1757-1769.
    [26]Greathouse L.H., Janssen H.J., Berard W.N., Haydel C.H., Cyanoethylation ofcotton fabric, Ind. Eng. Chem.,1956,48,1263-1267.
    [27]Brown W., Wiskst n R., A viscosity-molecular weight relationship for cellulosein cadoxen and a hydrodynamic interpretation, Eur. Polym. J.,1965,1,1-10.
    [28]Cai J., Liu Y., Zhang L., Dilute solution properties of cellulose in LiOH/ureaaqueous system, J. Polym. Sci. Pol. Phys.,2006,44,3093-3101.
    [29]Cai J., Zhang L., Unique gelation behavior of cellulose in NaOH/urea aqueoussolution, Biomacromolecules,2006,7,183-189.
    [30]Clark A. H., Ross-Murphy S. B., Structural and mechanical properties ofbiopolymer gels, Adv. Polym. Sci.,1987,83,57-192.
    [31]Graessley W.W., Viscosity of entangling polydisperse polymers, J. Chem. Phys.,1967,47,1942-1953.
    [32]Li L., Uchida H., Aoki Y., Rheological images of poly(vinyl chloride) gels.2.Divergence of viscosity and the scaling law before the sol-gel transition,Macromolecules,1997,30,78427848.
    [33]Han C.D., Yang H.H., Rheological behavior of compatible polymer blends. I.Blends of poly(styrene-co-acrylonitrile) and poly(ε-caprolactone), J. Appl. Polym.Sci.,1987,33,1199-1220.
    [34]Shchipunov Y.A., Mezzasalma S.A., Koper G.J.M., Hoffmann H., Lecithinorganogel with new rheological and scaling behavior, J. Phys. Chem. B,2001,105,10484-10488.
    [35]Ferry J.D., In Viscoelastic Properties of Polymers,3rd ed.; John Wiley&Sons:New York,1980, p509.
    [1] Klemm D., Heublein B., Fink H.P., Bohn A., Cellulose: Fascinating biopolymerand sustainable raw material, Angew. Chem. Int. Ed.,2005,44,3358-3393.
    [2]张光华、朱军峰、徐晓凤,纤维素醚的特点、制备及在工业中的应用,纤维素科学与技术,2006,14,60-65。
    [3]许冬生,纤维素衍生物,北京:化学工业出版社,2001。
    [4] Heinze T.; Liebert T., Unconventional methods in cellulose functionalization,Prog. Polym. Sci.2001,26,1689-1762.
    [5] Hassan M. L., EL-Wakil N. A., Sefain M., Thermoplasticization of bagasse bycyanoethylation, J. Appl. Polym. Sci.,2001,79,1965-1978.
    [6] Klemm D., Philipp B., Heinze T., Heinze U., Wagenknecht W., ComprehensiveCellulose Chemistry, Vol2, Functionalization of Cellulose, Wiley-VCH,Weinheim,1998, p161–164.
    [7] Sefain M. Z., Fadl M. H., EI-Wakil N. A., Naoum M. M., Kinetics ofheterogeneous cyanoethylation of cellulose, Polym. Int.,1993,32,251-255.
    [8] Houtz R. C., Process for the preparation of cyanoethyl cellulose, US, P.2375847.1945.
    [9] Greathouse L. H., Janssen H. J., Berard W. N., Haydel C. H., Cyanoethylation ofcotton fabric, Ind. Eng. Chem.,1956,48,1263-1267.
    [10]Compton J., Martin W. H., Word B. H., Barber R. P., Pilot plant production andproperties of cyanoethylated cotton, Text. Res. J.,1955,25,58-75.
    [11]Yamawaki Y., Morita M., Sakata I., Mechanical and dielectric properties ofcyanoethylated wood, J. Appl. Polym. Sci.,1990,40,1757-1769.
    [12]邵自强,纤维素醚,北京:化学工业出版社,2007。
    [13]Journeay G.E., Cyanoethyl ethers. US,2842541.1958.
    [14]Nakayama E., Azuma J., Substituent distribution of cyanoethyl cellulose,Cellulose,1998,5,175-185.
    [15]Saha A.K., Das S., Basak R.K., Bhatta D., Mitra B.C., Improvement of functionalproperties of jute-based composite by acrylonitrile pretreatment, J. Appl. Polym.Sci.,2000,78,495-506.
    [16]Volkert B., Wagenknecht W., Mai M., In: Cellulose solvents: For analysis,shaping and chemical modification. Liebert T. et al.; ACS Symposium Series;American Chemical Society: Washington DC,2010, p319.
    [17]Saha A. K., Mitra B. C., Studies on cyanoethylation of jute fiber, J. Appl. Polym.Sci.,1996,62,733-742.
    [18]Saad G.R., Dielectric behaviour of cyanoethylated cellulose, Polym. Int.,1994,34,411-415.
    [19]Hebeish A., Zahran A.H., EI-Naggar A.M.Kh., Behavior of cyanoethylated cottontowards gamma radiation, J. Appl. Polym. Sci.,1985,30,4057-4067.
    [20]Morooka T., Norimoto M., Yamada T., Cyanoethylated cellulose prepared byhomogeneous reaction in paraformaldehyde-DMSO system, J. Appl. Polym. Sci.,1986,32,3575-3587.
    [21]Brown W., Wiskst n R., A viscosity-molecular weight relationship for cellulosein cadoxen and a hydrodynamic interpretation, Eur. Polym. J.,1965,1,1-10.
    [22]Cai J., Liu Y., Zhang L., Dilute solution properties of cellulose in LiOH/ureaaqueous System, J. Polym. Sci. Pol. Phys.,2006,44,3093-3101.
    [23]Cai J., Zhang L., Unique gelation behavior of cellulose in NaOH/urea aqueoussolution, Biomacromolecules,2006,7,183-189.
    [24]Clasen C., Kulicke W.M., Determination of viscoelastic and rheo-optical materialfunctions of water-soluble cellulose derivatives, Prog. Polym. Sci.,2001,26,1839-1919.
    [25]Winter H.H., Chambon F., Analysis of linear viscoelasticity of a crosslinkingpolymer at the gel point, J. Rheol.,1986,30,367-382.
    [26]Chambon F., Winter H.H., Linear viscoelasticity at the gel point of a crosslinkingPDMS with imbalanced stoichiometry, J. Rheol.,1987,31,683-697.
    [27]Zhang Y., Xu X., Zhang L., Dynamic viscoelastic behavior of triple helicallentinan in water: effect of temperature, Carbohydr. Polym.,2008,73,26-34.
    [28]Li L., Aoki Y., Rheological images of poly(vinyl choride) gels.1. The dependenceof sol-gel transition on concentration, Macromolecules,1997,30,7835-7841.
    [29]Schwittay C., Mours M., Winter H.H., Rheological expression of physicalgelation in polymers, Faraday Discuss.1995,101,93-104.
    [30]Nishinari K., Takahashi R., Interaction in polysaccharide solutions and gels, Curr.Opin. Colloid Interface Sci.2003,8,396-400.
    [31]Desbrières J., Hirrien M., Ross-Murphy S.B., Thermogelation of methylcellulose:rheological considerations, Polymer,2000,41,2451-2461.
    [32]Li L., Thangamathesvaran P.M., Yue C.Y., Tam K.C., Hu X., Lam Y.C., Gelnetwork structure of methylcellulose in water, Langmuir,2001,17,8062-8068.
    [1] Klemm D., Heubletin B., Fink H.P., Bohn A. Cellulose: Fascinating biopolymerand sustainable raw material, Angew. Chem. Int. Ed.,2005,44,3358-3393.
    [2] Schurz J.,‘Trends in Polymer Science’: A bright future for cellulose, Prog. Polym.Sci.,1999,24,481-483.
    [3] Pandey S.N., Day A., Mathew M.D., Thermal analysis of chemically treated jutefibers, Textile Res. J.,1993,63,143-150.
    [4] Nada A.M.A., Seoudi R., Molecular structure, thermal analysis and electricalproperties of cyanoethyl and carbamoyl ethyl bagasse raw materials, J. Mol.Struc.,2006,797,111–120.
    [5] Nakayama E., Azuma J., Substituent distribution of cyanoethyl cellulose,Cellulose,1998,5,175-185.
    [6] Houtz R.C., Process for the preparation of cyanoethyl cellulose, US, P.2375847.1945.
    [7] Johnson D.L., Compounds dissolved in cyclic amine oxides, US3447939,1966.
    [8] Compton J., Martin W.H., Word B.H., Barber R.P., Pilot plant production andproperties of cyanoethylated cotton, Textile Res. J.,1955,25,58-75.
    [9]邵自强,纤维素醚,北京:化学工业出版社,2007。
    [10]MacGregor J.H., The reaction of acrylonitrile with macromolecular hydroxysubstances. I A general survey of the reaction, J. Soc. Dyers. Colourists,1951,67,66-73.
    [11]Saad G.R., Dielectric behaviour of cyanoethylated cellulose. Polym. Int.,1994,34,411-415.
    [12]Yamawaki Y., Morita M., Sakata I., Mechanical and dielectric properties ofcyanoethylated wood, J. Appl. Polym. Sci.,1990,40,1757-1769.
    [13]Hassan L.M., EL-Wakil A.N., Sefain Z.M., Thermoplasticization of bagasse bycyanoethylation, J. Appl. Polym. Sci.,2001,79,1965-1978.
    [14]许冬生,纤维素衍生物,北京:化学工业出版社,2001。
    [15]郭群晖、苑学竞、陈联楷,高取代氰乙基纤维素膜材料的合成及其性能,水处理技术,1990,1,33-39。
    [16]陈联楷、苑学竞、郭群晖,高取代氰乙基纤维素膜及其共混膜的研究,Ⅰ膜的耐生物及耐酸、碱水解性能,水处理技术,1990,4,288-292。
    [17]陈联楷、齐庆蕙、郭燕芳,氰乙基醋酸纤维素膜材料的合成及其性能,化学通讯,1986,3,8-15。
    [18]Brown W., Wiskst n R., A viscosity-molecular weight relationship for cellulosein cadoxen and a hydrodynamic interpretation, Eur. Polym. J.,1965,1,1-10.
    [19]Cai J., Liu Y., Zhang L., Dilute solution properties of cellulose in LiOH/ureaaqueous system, J. Polym. Sci. Pol. Phys.,2006,44,3093-3101.
    [20]Dufresne A., Vignon M.R. Improvement of starch film performances usingcellulose microfibrils. Macromolecules,1998,31,2693-2696.
    [21]Saha A.K., Das S., Basak R.K., Bhatta D., Mitra B.C., Improvement of functionalproperties of jute-based composite by acrylonitrile pretreatment, J. Appl. Polym.Sci.,2000,78,495–506.
    [22]Krause S., Polymer compatibility, J. Macromol. Sci.: Rev. Macromol. Chem.,1972,7,251-314.
    [23]Li J., Qian X., Chen J., Ding C., An X. Conductivity decay ofcellulose-polypyrrole conductive paper composite prepared by in situpolymerization method. Carbohyd. Polym.2010,82,504-509.
    [24]Li Y., Xu W., Feng J., Dang Z., Dielectric behavior of a metal-polymer compositewith low percolation threshold, Appl. Phys. Lett.,2006,89,0729021-3.
    [25]卢鹏荐、王一龙、孙志刚、官建国,高介电常数、低介电损耗的聚合物基复合材料,化学进展,2010,22,1619-1625。