RNAi调控玉米抗甘蔗花叶病毒和粗缩病毒的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米是重要的粮食、饲料与工业原料作物。目前我国玉米的种植面积呈逐年增加的趋势,但玉米病害尤其是玉米的矮花叶病和粗缩病成了限制我国玉米生产发展的巨大障碍,造成玉米的大量减产和品质下降。利用基因工程技术培育推广抗病品种和寻找新方法已成为病毒病防治的迫切需求。RNA干涉作为一种特异、高效的反向遗传学手段,在植物的抗病毒育种中表现出了巨大的优势,成为植物抗病毒基因工程的热点。为进一步筛选和建立病毒cp基因dsRNA的原核表达体系和遗传转化体系,探讨RNAi技术在玉米抗病毒基因工程中的应用效果,建立玉米RNAi的分子育种新方法。本文利用大肠杆菌HT115高效表达甘蔗花叶病毒cp基因dsRNA,较系统地研究了外源dsRNA抗甘蔗花叶病毒RNAi调控技术;构建了兼抗甘蔗花叶病毒及粗缩病毒cp基因的RNAi复合表达载体,开展农杆菌介导的玉米原位转化,并对转化株进行了分子确证,在此基础上对转化株RNAi效果和抗病性进行了分析,获得了如下主要结果:
     1、根据甘蔗花叶病毒cp基因序列设计特异性引物,RT-PCR扩增甘蔗花叶病毒cp基因特异性干涉片段,构建cp基因反向重复原核表达载体LMCP。利用IPTG进行诱导表达并对诱导表达条件进行优化。结果表明,经过IPTG诱导,LMCP在大肠杆菌HT115(DE3)菌株中可表达产生预期大小的片段,经DNase I和RNase A消化处理,证实为dsRNA。同时IPTG浓度为0.4~0.6mmol/L,诱导表达4h,dsRNA的表达量最高。
     2、利用大肠杆菌表达的dsRNA提取液处理玉米8112植株,并对处理参数进行了优化,结果表明当dsRNA稀释1/5浓度以下时处理效果明显;dsRNA喷洒后3d内接种病毒,抗病毒侵染效果最好;另外,加入适宜浓度的渗透剂能提高dsRNA的抗病效果。
     3、RT-PCR分别扩增甘蔗花叶病毒和粗缩病毒外壳蛋白基因特异性RNA干扰片段,分别构建成反向重复序列并串联在一起,再与抗除草剂bar基因分别插入到pDTBU的两个T-DNA区段,构建了兼抗甘蔗花叶病毒和粗缩病毒的RNA干涉复合表达载体pDTBU SM。并通过冻融法将该载体直接导入农杆菌,获得了经PCR鉴定的转化子,用于农杆菌介导的玉米原位转化。
     4、利用农杆菌介导的原位转化技术将cp基因RNA干涉表达载体pDTBU SM转入玉米8112自交系,对T0代植株进行除草剂Basta筛选,结合PCR扩增筛选得到19株共转化植株,对T1代共转化株系进行PCR检测及Southern杂交分析,证明有3个株系发生了分离,且获得了整合有cp基因RNAi片段的转化株。
     5、提取T1代不同转化株的叶片总RNA以及开花期不同器官的RNA,经反转录反应后,进行荧光定量检测cp基因在不同转基因植株以及在同一转基因植株不同器官中的表达量,结果表明转化的cp基因干涉片段在不同转基因植株中的表达量不同。目的基因在雄花和叶中的表达量最高,而在根中的表达量最低。
     6、T2代转基因玉米植株4叶期时接种甘蔗花叶病毒,并于接毒后不同时间提取叶片总RNA,荧光定量检测外源病毒诱导对内源cp基因表达的影响,结果表明转化的cp基因干涉片段对甘蔗花叶病毒产生了干涉效应,转入的cp基因RNAi片段在转基因植株中能正确转录,并导致cp基因:mRNA含量的交替变化。
     7、对T2代4叶期转基因玉米接种甘蔗花叶病毒,于接毒后14d、21d、30d取叶片,ELISA检测植株的发病情况,结果表明,不同转化株株系的感病情况有差异,但抗病性均不同程度地高于对照。
     综上所述,本文利用细菌高效表达的dsRNA处理玉米8112自交系,通过对处理植株的发病情况进行研究,筛选并建立了外源dsRNA的干扰调控技术体系;成功构建了兼抗两种病毒的无选择标记RNAi复合表达载体,利用农杆菌介导的玉米原位转化技术,获得了整合cp基因的RNAi转化株,其RNAi效果显著,转化植株的抗病性得到了提高。其研究结果对建立RNA干扰调控技术体系在玉米抗病毒基因工程中的应用,开辟玉米抗病毒育种的新方法具有重要意义。
Maize is an important agricultural crop with diverse applications, including its primary uses in livestock feed, human consumption, and ethanol production (as well as other biofuels). Maize production in China is second in the world, and has now reached nearly one half that of the United States. However viral diseases, particularly maize dwarf mosaic disease caused by Sugarcane mosaic virus and maize rough dwarf disease are among the most damaging diseases affecting maize production and quality in China. It is urgency to cultivate and popularize disease-resistant cultivar and search for new methods. RNA interference (RNAi), as an important RNA-based reverse-genetic system, has been used for gene function and genetic melioration studies in plants. RNAi has displayed great advantage in antiviral of breeding which has been proved to be a technology distinctiveness, high efficiency, economy, and inhibiting gene expression, and has become the focus of scientist researches. In order to select and establish the prokaryotic expression system and the in planta transformation system of the cp gene from virus, and to investigate effects of RNAi in maize antivirus genetic engineering and to find a new molecular breeding method in maize, we explored a basic principle of inverted-repeat expression vector design, and report an efficient method to produce dsRNA using a bacterial expression system. Two marker-free siRNA complex expression vectors of pDTBU SM from SCMV cp and MRDV cp were constructed, and transformed into Agrobactirium tumefaciens. Our work illustrates some basic principles for protecting plants against viral diseases in vitro and in vivo, as well as the study of gene silencing mechanisms in plant viral infections. The integration of target gene was analyzed, and we investigated the effect of RNAi and amylase content. The main results are summarized as follow:
     1. Two fragments of the SCMV cp gene were amplified by RT-PCR, and cloned into the inverted-repeat cloning vector pUCCRNAi, and subsequently joined to generate LMCP. The two recombinant plasmids were transformed individually into E.coli HT115, and dsRNA was induced by IPTG. The results showed that the expression products were the dsRNA by treating with RNase A or DNase I to remove single-stranded RNA or DNA, respectively. Meanwhile, an IPTG concentration of0.4~0.6mmol/L and induction time of4h was the most optimal expression condition.
     2. The crude extracts of E.coli HT115containing large amounts of dsRNA were sprayed to plants and the experiment confirmed a preventative efficacy. Our findings demonstrated that spraying crude dsRNA-containing extracts inhibited SCMV infection, and the dsRNA derived from an upstream region (cp1) was more effective than was dsRNA derived from a downstream region(cp2) of the SCMV cp gene. The results showed that plants inoculated with the virus and LMCP preparation, diluted1/5or less, and treated at or before5days prior to viral inoculation, displayed decreased disease symptoms. Besides, dsRNA-containing extracts with penetrating agent of suitable selection concentration could Inhibit virus infection effectively.
     3. Based on the coat protein gene sequence of SCMV and MRDV in GenBank and MaizeSeq database, six pairs of specific primers were designed and six specific fragments were amplified by RT-PCR. To prepare siRNA that corresponded to part of the SCMV cp or MRDV cp gene. In the first cloning step, an inverted repeat sequence of pUCCRNAi+2F was constructed. Next, two inverted repeat sequences were inserted into pBluscript SK in series to generate pBluscript+SM. Meanwhile, Ubiquitin promoter and Nos termination were cloned into pDTB to generate pDTBU. In the third step, pDTBU and pBluscript+SM plasmids were digested and joined to generate pDTBU SM. The study presented here provides a valuable tool for plant viral control using RNAi and the PTGS approach.
     4. RNA interference expression vector of SCMV cp and MRDV cp gene were transformed into maize inbred lines8112by Agrobacterium tumefaciens and the results of PCR-Southern and Southern blot proved integration of the targeted segment into the8112genome successfully, and four transgenic plants were obtained finally.
     5. Total RNA was extracted from different maize leaves4LP (4-leaf-period) or different organs of florescenceand, and cDNA segment of cp was obtained by real-time quantitative PCR, which resulted in a reduction of endogenous cp mRNA. The results showed that the expression of the cp gene fragment in transgenic plants was different. And the highest expression was in male flowers and leaves, while the lowest was in the roots.
     6. Transgenic plants of4-leaf-stage in T2generation were inoculated with maize dwarf mosaic virus, and total RNA was extracted from the leaves at different times after inoculation, and the expression of endogenous cp gene was detected by fluorescence quantitative PCR when induced by exogenous virus. The results showed that the cp gene fragment in transgenic plants could be transcribed correctly which leaded to mRNA content in alternate, and the hpRNA structure transcripted by the cp gene could interference SCMV infection subsequently.
     7. Transgenic plants of4-leaf-period were inoculated with maize dwarf mosaic virus, and ELISA results were detected at14dpi、21dpi and30dpi (days post inoculation). The results showed that almost transgenic plants could inhibit SCMV infection, while more than87%non-transgenic plants displayed typical disease symptoms.
     In summary, maize inbred line8112was inoculated with crude extracts of bacterially expressed dsRNAs to protect maize plants against SCMV infection and viral infection was detected. RNAi technique system of dsRNA in vitro was filtered and constructed. Marker-free siRNA complex expression vector against SCMV and MRDV was constructed and in planta transformation to maize inbred line8112by mediated Agrobacterium tumefaciens. Transgenic plants were obtained and RNAi effect was in evidence. And the resistance of the transgenic plants was improved. Based on those above results, our study provides a reference on utilizing of the RNAi technique to protect maize against SCMV infection and constructing a new breeding method of high resistance maize.
引文
1. Virgil Fergason. Specialty Corns. CRC Press, Inc,1994,8(2):65-66
    2. Casey J, Slattery I, Halil Kavakli et al. Engineering starch for increased quantity and quality. Trends in Plant Science,2000,5(7):291-298
    3.周伦理.玉米矮花叶病研究进展.基因组学与应用生物学,2010,29(2):396-401
    4.苗洪芹,邸垫平,吴和平.玉米不同生育期接种玉米矮花叶病毒后对种子带毒率和寄主抗性水平的影响.河北农业大学学报,1998,21(1):27-291
    5. Rhodes C A, Pierce D A, Mettler I J. Genetically transformed maize plants from protoplasts. Science,1988,240:203-207
    6. James C. Global Status of Commercialized Transgenic Crops:2001 [J]. ISAAA Briefs No.24. ISAAA:Ithaca, N. Y,2001
    7. James C, Anatole F k. The annual global review of commercialized transgenic (GM) crops.2003, The International Service for the Acquisition of Agri-biotech Applications (ISAAA)
    8. Johnson L A. Corn, the major cereal of the Americas, In:Kulp K., and Ponte J. (eds.), Handbook of cereal science and technology. Dekker, New York,2000, pp.31-80
    9. Fromm M E, Taylor L P, Walbot V. Stable transformation of maize after gene transfer by electroporation [J]. Nature,1986,319:791-793
    10. Grimsley N, Hohn B, Hohn T, et al. "Agroinfection" an alternative route for viral infection of plants by using the Ti plasmid, Proc. Natl. Acad. Sci., USA,1986,83: 3282-3286
    11. Ishida Y H, Saito S, Ohta Y. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium Tumefaciens [J]. Nature Biotechnology,1996,14: 745-750
    12. Gordon-Kamm W J, Spencer T M, Mangano M L, et al. Transformation of maize cells and regeneration of fertile transgenic plants [J]. Plant Cell,1990,2:603-618
    13.丁群星,谢友菊,戴景瑞等.用子房注射法将Bt毒蛋白基因导入玉米的研究.中国科学,1993,23(7):707-713
    14. Ahmadabadi M, Ruf S, Bock R. A leaf-based regeneration system for maize(Zea mays L.), Transgenic Res.,2007,16(4):437-448
    15. Prakash N S, Bhojaraja R, Shivbachan S K, et al. Maker-free transgenic corn plant production through co-bombardment, Plant Cell Rep.,2009,28:1655-1668
    16. Pescitelli S M, and Sukhapinda K. Stable transformation via electroporation into maize type-Ⅱ callus and regeneration of fertile transgenic plants, Plant Cell Rep., 1995,14(11):712-716
    17. Wang A S, Evans R A, Altendorf P R, et al. A mannose selection system for production of fertile transgenis maize plants from proplasts, Plant Cell Rep.,2000, 19:654-660
    18.陈靖,李新征,亓宝秀等.基因枪轰击和农杆菌介导在玉米遗传转化中的应用.基因组学与应用生物学(online),2011, (doi:10.5376/gab.cn.2011.30.0001)
    19. Klein T M, Wolf E D, Wu R, Sanford J C. High-velocity microprojectiles for delivering nucleic acids into living cells, Nature,1987,327:70-73
    20. Sanfordj C, Klein T M, Wolf E D, et al. Delivery of substances into cells and tissues using a particle bombardment process [J]. Particulate Science and Technology,1987,6(1):27-37
    21. Koziel M G, Beland G L, Bowman C, et al. Field performance of elite transgenic maize plant expressing an insecticidal protein derived form bacillus thuringiensis [J]. Biotechnology,1993,11:194
    22. Register J C, Peterson D J, Bell P J, et al. Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol. Biol.,1994,25:951-961
    23.张秀君,刘俊起,赵倩等.用基因枪将高赖氨酸基因导入玉米及转基因植株的检测.农业生物技术学报,1999,74:363-367
    24.韩颖颖.基因枪介导的玉米自交系齐319遗传转化体系的建立[D].2002,山东师范大学硕士论文
    25.付凤玲,张莉萍,朱祯.玉米优良白交系转基因受体系统的建立及转化后的筛选与再生[J].四川农业大学学报,2000,18(2):97-99
    26.赵艳,钱前,王慧中等.基因枪转化的bar基因表达盒在水稻中的重组结构.中国水稻科学,2007,21(5):469-474
    27.李国圣,杨爱芳,张举仁等.玉米愈伤组织的遗传转化及抗除草剂植株再生[J].科学通报,2000,45(20):2181-2184
    28.李慧芬,李旭刚,刘翔等.转苏云金杆菌毒蛋白基因玉米植株的获得及其抗虫性分析[J].植物学报,2002,44(6):684-688
    29.肖莉杰,苍晶.玉米基因枪遗传转化体系的研究.黑龙江八一农垦大学学报, 2006,18(3):13-16
    30.张红伟,张红梅,郑祖平等.Bt转基因玉米的获得及其对玉米螟的抗性分析.西北植物学报,2004,24(7):1266-1270
    31.赵天永,王国英.用基因枪将GUS基因导入玉米和小麦的茎尖分生组织(简报).农业生物技术学报[J],1994,2(2):93-94
    32. Rasmussenj L, Kikkertj R, Poym K, et al. Biolistic transformation of tobacco and maize suspension cells using bacterial cells as microprojectiles [J]. Plant Cell Report,1994,13:212-217
    33.刘大文,王守才,谢友菊等.转Zm13-Barnase基因玉米的获得及其花粉育性研究[J].植物学报,2000,42(6):611-615
    34. Shou H X, Frame B R, Whitham S A, et al. Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated ransformation. Mol. Breeding,2004,13(2):201-208
    35. Grimsley N, Hohn T, Davis J W, et al. Agrobacterium mediated delivery of infectious maize streak virus into maize plants [J]. Nature,1987,325:177-179
    36. Gould J, Devey M, Hasegawa O, et al. Transformation of Zea mays Lusing Agrobacterium tumefaciens and the shoot apex [J]. Plant Physiology,1991,96: 426-434
    37. Lupotto A, Reali A, Passera S, et al. Maize transformation with Agrobacterium tumefaciens [J]. Maize Genetics Cooperation Newsletter,1998,72:20-22
    38.黄璐,卫志明.不同基因型玉米的再生能力和胚性与非胚性愈伤组织DNA的差异[J].植物生理学报,1999,25(4):332-338
    39. Frame B R, Shou H, Chikwamba R K, et al. Agrobacterium tumefaciens mediated transformation of maize embryos using a standard binary vector system, Plant Physiol,2002,129:13-22
    40.张佳星,何聪芬,叶兴国等.农杆菌介导的单子叶植物转基因研究进展.生物技术通报,2007,2:23-26
    41.王云翠.农杆菌介导法转化玉米的研究.2003,扬州大学硕士论文
    42.李慧芬,张晓明,宋凤斌等.农杆菌及基因枪在禾谷类作物遗传转化中的应用[J].吉林农业科学,1998(2):32-34
    43.关淑艳,王丕武,马义勇等.应用农杆菌介导法将淀粉分支酶基因反义表达载体转入玉米自交系的研究[J].吉林农业大学学报,2005,27(5):498-502
    44.贺晨霞,夏光敏.农杆菌介导单子叶植物基因转化研究进展[J].植物学通报,1999,16(5):567-573
    45.张艳贞,王罡,季静等.农杆菌介导的玉米遗传转化研究进展、问题与分析[J].东北农业大学学报,2003,34(1):109-113
    46. Huang S, Gilbertson L, Adams T, et al. Generation of marker-free transgenic maize by regular two-border Agrobacterium transformation vectors [J]. Transgenic Res,2004,13(5):451-461
    47. Hiei Y, Ishida Y, Kasaoka K, et al. Improved frequency of transformation in rice and maize by treatment of immature embryos with centrifugation and heat prior to infection with Agrobacterium tumefaciens, The Plant Cell, Tissue Organ Cult., 2006,87(3):233-243
    48. Ishida Y, Hiei Y, Komari T. Agrobacterium-mediated transformation of maize. Nature Protocols,2007,2:1614-1621
    49. Quan R D, Shang M, Zhang H, et al. Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize, Plant Sci.,2004,166(1):141-149
    50. Huang X and Wei Z M. Successful Agrobacterium-mediated genetic transformation of maize elite inbred lines, Plant Cell, Tissue Organ Cult.,2005, 83(2):187-200
    51. Zhang Y S, Yin X Y, Yang A F, et al. Stability of inheritance of transgenes in maize (Zea mays L.) lines produced using different transformation methods, Euphytica,2005,144(1-2):11-22
    52. Frame B R, McMurray J M, Fonger T M, et al. Improved agrobacterium mediated transformation of three maize inbred lines using MS salts, Plant Cell Rep.,2006,25(10):1024-1034
    53. Kim H A, Utomo S D, Kwon S Y, et al. The development of herbicide-resistant maize:Stable Agrobacterium-mediated transformation of maize using explants of type Ⅱ embryogenic calli, Plant Bio. Rep.,2009,3:227-283
    54. Sidorov V, Gilbertson L, Addae P, et al. Agrobacterium-mediated transformation of seedling-derived maize callus, Plant Cell Rep.,2006,25:320-328
    55. Gelvin S B. Agrobacterium-mediated plant transformation:the biology behind the "gene-jockeying" tool, Microbial. Mol. Biol. Rev.,2003,67(1):16-37
    56. D'Halluin K, Bonne E, Bossut M, et al.Transgenic maize plants by tissue electroporationn.Plant cell,1992,4:1495-1505
    57. Laursen C M, Krzyzek R A, Flick C E, et al. Production of fertile transgenic maize by electroporation of suspension culture cells [J]. Plant Mol. Bio.,1994,24: 51-61
    58.柯遐义,张秀文,石和平等.以玉米幼胚为受体的外源基因转化研究[J].广东农业科学,1995,2:14-16
    59.程振东,卫志明,许智宏.用PEG法把外源基因导入甘蓝型油菜原生质体再生再生转基因植株.实验生物学报,1994,27(3):341-350
    60.薛红卫,卫志明,许智宏.通过PEG法转化甘蓝获得转基因植株.植物学报,1997,39(1):28-33
    61. Omirulleh S, Abraham M, Golovkin M, et al. Activity of a chimeric promoter with the doubled CaMV35S enhancer element in protoplast derived cells and transgenic plants of maize [J]. Plant Mol Biol,1993,21:415-428
    62. Ohta Y. High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc Natl Acad Sci U S A,1986,83(3):715-719
    63. Armstrong C L. The first decade of maize transformation:a review and future perspective. Maydica,1999,44:101-109
    64.丁明忠,潘光堂,荣廷昭等.大豆总DNA直接导人法培育优质高蛋白玉米材料研究[J].西南农业学报,2001,14:8-12
    65.王罡,张艳贞,魏松红等.花粉管通道法将Bt毒蛋白基因导入优良玉米自交系.吉林农业大学学报,2002,24(4):40-44
    66.王罡,杜娟,张艳华.用花粉管通道法将Bt杀虫基因导入玉米自交系的研究.玉米科学,2002,10(1):36-37
    67.关淑艳,张健华,柴晓杰等.花粉管通道法将淀粉分支酶基因反义表达载体转入玉米自交系的研究[J].玉米科学,2005,13(4):13-15
    68.张慧英,冯锐,吕平等.外源DNA直接导入甜玉米自交系后代性状变异[J].中国农学通报,2006,22(9):186-188
    69.沈世华,张秀君,郭奕明等.玉米基因转化的离体子房注射及其转基因植株的鉴定.植物学报,2001,43(10):1055-1057
    70.李余良,胡建广,苏菁等.子房注射法将Bt基因导入超甜玉米.玉米科学,2005,13(1):41-43
    71.梁雪莲,郭平毅,孙毅等.玉米3种非组培转基因方法转化外源bar基因研究.作物学报,2005,31(12):1648-1653
    72.项艳等.玉米优良自交系遗传转化体系的建立及sbeⅡb基因RNA干涉研究.2006,安徽农业大学博士学位论文
    73. Antonelli N M, Stadle J. Genomic DNA can be used with cation methods for highly efficient transformation of maize protoplasts. Theoretical and Applied Genetics,1990,80:395-401
    74.李颖,崔海信,宋瑜等.PEI介导外源基因进入植物细胞的瞬时表达.中国农业科学,2009,42(6):1918-1923
    75.王景雪,孙毅,崔贵梅等.花粉介导法获得玉米转基因植株.植物学报(英文版),2001,43(3):275-279
    76.张宏,王国英,谢友菊等.超声波介导法转化玉米愈伤组织及可育转基因植株的获得.中国科学,C辑,1997,27(2):162-167
    77.刘凡,王国英,曹鸣庆.农杆菌介导的植物原位转基因方法研究进展.分子植物育种,2003,1(1):108-116
    78.贾士荣.高等植物遗传转化研究的发展和应用.植物遗传转化技术手册.中国科学技出版社,1994,1-11
    79. Bechtold N, Ellis J, Pelletier G. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C.R.Acad.Sci.Paris Life Sci, 1993,316:1194-1199
    80.张广辉,巩振辉,薛万新.大白菜和油菜真空渗入遗传转化法初报.西北农业大学学报,1998,26(4):81-86
    81. Trieu A T, Burleigh S H. Transformation of Medicago truncatula via infiltration of seedings or flowering plants with Agrobacterium. The Plant Jounal,2000, 22(6):531-541
    82. Curtis I S, and Nam H G. Transgenic radish by floral-dip method-plant development and surfactant are important in optimizing transformation efficiency. Transgenic Research,2001,10:363-371
    83. Brian W T, Joanna Mantis. In planta Agrobacterium-mediated transformation by vacuum infiltration. Methods Mol Biol,2006,323:215-23
    84. Clough S J, Bent A F. Floral dip:a simplified method for agrobacterum-mediated transformation of Arabidopsis thaliana. The Plant Journal,1998,16(6):735-743
    85. Curtis I S, Nam H G. Transgenic radish(Raphanus sativus L. longipinnatus Bailey) by floral-dip method-plant development and surfactant are important in optimizing transformation efficiency. Transgenic Research,2001,10:363-371
    86.徐光硕,饶勇强,陈雁等.用in planta方法转化甘蓝型油菜.作物学报,2004,30(1):1-5
    87.韩国民.玉米SBE Ⅱb不同类型RNAi载体的构建及原位转化方法的研究.2006,安徽农业大学硕士论文
    88. Kojima M, Arai Y, Iwase N, et al. Development of a simple and efficient method for transformation of buckwheat plants(Fagopyrum seculentum) using Agrobacterium tumefaciens. Biosci.Biotechnol.Biochem.,2000,64:845-847
    89. Ping L X, Nogawa M, Nozue M, et al. In planta transformation of mulberry trees (Borus alba L.) by Agrobacterium tumefaciens. J.Insect Biotechnol.Sericol.,2003, 72:177-184
    90. Kojima M, Shioiri H, Nogawa M, et al. In planta transformation of kenaf plants (Hibiscus cannabinus var. aokawa no.3) by Agrobacterium tumefaciens. J. Biosci. Bioeng.2004,98:136-139
    91. Putu S, Tsutomu S, Hidenari S, et al. Development of simple and efficient in planta transformation method for rice(Oryza sativa L.) using Agrobacterium tumefaciens. J.Biosci.Bioeng.,2005,100:391-397
    92. Bratic A M, Majic D B, Miljus-Djukic J D, et al. In planta transformation of buckwheat (Fagopyrum esculentum Moench.). Archives of biological sciences, 2007,59(2):135-138
    93. Weeks J T, Ye J S, Rommens CM. Development of an in planta method for transformation of alfalfa (Medicago sativa). Transgenic research,2008,17(4): 587-597
    94. Thierry R, Melanie C, Sarah B, et al. Highly efficient Agrobacterium-mediated transformation of wheat via in planta inoculation. Methods Mol Biol,2009,478: 115-124
    95. Kumar A M, Reddy K N, Sreevathsa R, et al. Towards crop improvement in bell pepper(Capsicum annuum L.):Transgenics (uid A::hpt Ⅱ) by a tissue-culture-independent Agrobacterium-mediated in planta approach. Scientia horticulturae,2009,119 (4):362-370
    96. Yasmeen A, Mirza B, Inayatullah S, et al. In Planta Transformation of Tomato. Plant molecular biology reporter,2009,27(1):20-28
    97. Wiktorek-Smagur A, Hnatuszko-Konka K, Kononowicz A K. Flower bud dipping or vacuum infiltration-two methods of Arabidopsis thaliana transformation. Russian journal of plant physiology,2009,56(4):560-568
    98. Fujita K, Matsuoka T, Suzuki S, et al. In Planta Transformation Technique for Grapevines(Vitis vinifera L) using Dormant Buds. Journal of plant biochemistry and biotechnology,2009,18 (2):161-167
    99. Liu M, Yang J, Cheng Y Q, et al. Optimization of soybean(Glycine max L.) Merrill in planta ovary transformation using a linear minimal gus gene cassette. Journal of Zhejiang University-Science b,2009,10(12):870-876
    100. Razzaq A, Hafiz I A, Mahmood I, et al. Development of in planta transformation protocol for wheat. African journal of biotechnology,2011,10(5): 740-750
    101. Chumako M I, Rozhok N A, Velikov V A, et al. Agrobacterium-mediated in planta transformation of maize via pistil filaments. Russian journal of genetics,2006,42(8):893-897
    102.蒋晓芳.抗粗缩病RNA干扰表达载体的构建和玉米茎尖生长点原位转化.2010,四川农业大学硕士论文
    103. Mamontova E M, Velikov V A, Volokhina I V, et al. Agrobacterium-mediated in planta transformation of maize germ cells. Russian journal of genetics,2010, 46(4):501-504
    104. Chen T Z, Wu S J,; Zhao J, et al. Pistil drip following pollination:a simple in planta Agrobacterium-mediated transformation in cotton. Biotechnol Lett,2010, 32(4):547-555
    105. Golovkin M V, Abrahamm, Morocz S, et al. Production of transgenic maize plants by direct DNA uptake into embryogenic protoplasts [J]. Plant Sci,1993,90: 41-52
    106.程焉平.转基因玉米的研究与应用[J].黑龙江农业科学,2003(1):28-31
    107.沈世华,张秀君,郭奕明等.玉米基因转化的离体子房注射及其转基因植株的鉴定[J].植物学报,2001,43(10):1055-105
    108.付凤玲,冯质雷,渠柏艳等.玉米未成熟胚胚性愈伤组织诱导率与内源激素含量的关系.核农学报,2006,20(1):10-14
    109.李学红,李冬玲,张举仁等.玉米茎尖培养研究(1)-胚状体和丛生芽发生的扫描电镜观察[J].潍坊学院学报,2001,1(2):47-50
    110. Armstrong C L, Creen C E. Establishment and maintenance of friable embryogenic maize callus and involvement of plantline [J]. Planta,1985,164: 57-60
    111.陈莉,窦秉德,罗玉明等.玉米茎尖培养再生体系的建立[J].淮阴师范学院学报(自然科学版),2006,5(1):64-66
    112.张举仁.一种转化大粒种子植物的方法及其应用[P].No 1305005,中国,2005
    113. RAZZAQAbdul,张艳敏,杨帆等.小麦茎生长点转化研究初报.华北农学报,2005,20(1):17-22
    114.吕素莲,尹小燕,张可炜等.农杆菌介导的棉花茎尖遗传转化及转betA植株的产生[J].高技术通讯,2004,14(11):20-25
    115.董福双.小麦茎尖生长点转化技术研究.2008,河北农业大学硕士论文
    116. Lu C, Vasil V, Vasil, I K. Improved efficiency of somatic embryogenesis in tissue culture of maize(Zea mays L.). Theor. Appl. Genet,1983,66:285-289
    117. Vasil V, Vasil I K, Lu C. Somatic embryogenesis in long-term callus cultures of Zea mays L. (Gramineae). Am J Bot,1984,71:158-161
    118. Duncan D R, et al. The production of callus capable of plant regeneration From immature embryos of numerous Zea mays genotypes. Planta,1985,165:322-332
    119. Clive James, Anatole F k. Golbal review of the field testing and commercialization of transgenic plants 1986 to 1995. The International Service for the Acquisition of Agri-biotech Applications (ISAAA),1996
    120. Clive James. Global Review of Commercialized Transgenic Crops:2002 ISAAA Briefs, No.292005
    121. Clive James. Preview:Global Status of Commercialized Transgenic Crops:2001. ISAAA Briefs, No.24-2001 2005
    122. Clive James. Global Review of Commercialized Transgenic Crops:2000 2005
    123. Clive James. Global Review of Commercialized Transgenic Crops:1999. ISAAA Briefs, No.17-1999 2005
    124. Clive James. Global Review of Commercialized Transgenic Crops:1998. ISAAA Briefs, No.8-1998 2005
    125.董文琦,屈冬玉,王海波.消除转基因植物中选择标记的研究进展.中国生态农业学报,2004,12(3):29-34
    126. Huang J, Rozelle S, Prat C, et al. Plant Biotechnology in China [J]. Science, 2002,295:674-677
    127. Qian Y. Analysis of advantages and disadvantages on transgenic crops [J]. Biotechnology Information,1999,5:7-11
    128. Hare P D, Chua N H. Excision of selectable marker genes from transgenic plants. Nature Biotechnology,2002,20:575-580
    129. Losey J E, Rayor L S, Carter M E. Transgenic pollen harms monarch larvae [J]. Nature,1999,399:214-216
    130. Hilbeck A. Effect of transgenic Bacillus thuringiensis comfed prey on mortality and development time of immature Chrysoperla camea (Neuroptera:Chrysopidae) [J]. Environ Entomol,1998,27:480-487
    131.杨金慧,王丕武,曲静等.BADH/pepB双价基因无选择标记表达载体转化苜蓿的初步研究.中国草地学报,2009,31(4):20-23
    132.薛健,郭东全,赵桂兰等.安全标记和无选择标记转基因技术研究进展.华北农学报,2008,23(增刊):96-102
    133. Daniell H. Molecular strategies for gene containment in transgenic crops. Nature Biotechnology,2002,20:581-586
    134. Bertolla F, Kay E, Simonet P. Potential dissemination of antibiotic restistance genes from transgenic plants to microorganisms[J]. Infect Control Hosp Epidemiol,2000, June,21(6):390-393
    135. Stewart CNJr, Richards HAt, Halfhill M D. Transgenic plants and biosafety: science misconceptions and public perceptions [J]. Biotechniques,2000,29(4): 832-836,838-843.
    136. Fuchs R L, Ream J E, ammond B J, et al. Safty assessment of the neomycin phosphotransferase Ⅱ (npt Ⅱ) protein [J]. Bio/Technology 1993,11:1543-1547
    137. Kumpatla S P, Teng W, Buchholz W G, et al. Epigenetic transcriptional silencing and 5-azacytidine-mediated reactivation of a complex transgene in rice. Plant Physiol,1997,115(2):361-373
    138. Matzke and Matzkez (eds). Special issue on plant gene silencing [J]. Plant Mol Biol,2000,43:121-148.
    139. Gebhand F K. Monitoring field release of genetically modified sugar beets for persistence of transgenic DNA and horizontal gene transfer. FEMS Microbiol, 1999,28:261-272
    140. Nielsen K M, Elsas J D, Smalla K. Transformation of Acinetobacrer sp. Strain BD413 (pFG4D npt II) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants. Appl. Emiron. Mirobiol.,2000,66: 1237-1242
    141.张洁,郑文永,王冬梅.无选择标记转基因植物研究进展.安徽农业科学,2009,37(12):5390-5392,5405
    142. Depicker A, Herman L, Jacobs A. Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction [J]. Mol Gen Genet,1985,201:477-484
    143. De Block M, De Brouwer D, Tenning P. Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neogenes in the transgenic plants[J]. Plant Physiol,1989,91:694-701.
    144. McKnight T D, Lillis M T, Simpson R B. Segregation of genes transferred to one plant cell from two separate Agrobacterium stains [J].1987,8:439-445
    145. De Block, Debrouwer D. Two T-DNAs co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly intergrated at the same locus. Theor Appl Genet,1991,82:257-263
    146. Jeongmoo Park, Young Koung Lee. Co-transformation using a negative selectable marker gene for the production of selectable marker gene-free transgenic plants [J]. Theor Appl Genet,2004,109:1562-1567
    147.刘峰,赵伊英,苏永昌等.双农杆菌共转化获得无标记转pepc基因的水稻植株.应用与环境生物学报,2005,11(1):393-398
    148.魏兵强,赵长增,陆璐等.无选择标记的甜瓜a-ACO1基因植物表达载体的构建及对烟草的共转化效果.甘肃农业大学学报,2007,42(5):68-72
    149. Daley M, Knauf V C, Summerfelt K R, et al. Co transformation with one Agrobacterium tumefiens strain containing two binary plasmids as a method for producing marke-free transgenic plants[J]. Plant Cell Reports,1998,17:489-496
    150. De Framond A J, Back E W, Chilon W S, et al. Two unlinked T-DNAs can transform the same tobacco plan t cell and segregate in the Fl generation. Mol Gen Genet.1986,202:125-131
    151. Xing A Q, Zhang Z Y, Sato S, et al. The use of the two T-DNA binary system to derive marker-free transgenic soybeans. In Vitro Cellular and Developmental Biology-plant,2000,36(6):456-463
    152. Komari T, Hiei Y, Satito Y, et al. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefiens and segregation of transform ants free from selection markers [J]. Plant J,1996,10(1): 165-174
    153.朱丽,傅亚萍,刘文真等.利用共转化和花药培养技术快速获得无选择标记的三价转基因水稻.中国水稻科学,2007,21(5):475-481
    154.孙磊,张启翔,周琳等.利用双T-DNA载体系统获得无选择标记转基因菊花.园艺学报,2008,35(5):727-734
    155.张秀春,彭明,吴坤鑫等.利用双T-DNA载体系统培育无选择标记转基因 大豆.大豆科学,2006,25(4):369-372
    156.许美容,夏志辉,翟文学等.水稻细菌性条斑病非寄主抗性基因Rxol的双右边界双元载体的构建.中国水稻科学,2008,22(2):208-210
    157.夏志辉,李晓兵,陈彩艳等.无选择标记和载体骨干序列的Xa21转基因水稻的获得.生物工程学报,2006,22(2):204-210
    158.许明,黄志伟,程祖锌等.以DsRed2基因为可视标记的双T-DNA共转化载体的构建.福建农林大学学报(自然科学版),2010,39(3):263-268
    159.于恒秀,刘巧泉,王玲等.无抗性选择标记转AP1基因抗病水稻新品系的选育.中国农业科学,2005,38(12):2373-2379
    160. Zhou H Y, Chen S B, Li X G, et al. Generating marker-free transgenic tobacco plants by agrobacterium mediated transformation with double T-DNA binary vector. Acta Botanica Sinica,2003,45 (9):1103-1108
    161.张新梅,徐惠君,杜丽璞等.共转化法剔除转基因小麦中的bar基因.作物学报,2004,30(1):26-30
    162. Daley M, Knauf V C, Summerfelt K R, et al. Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Reports,1998,17:489-496
    163. Li J Y, Mao W X, Yang L J, et al. Introducing antisense waxy gene into rice seeds reduces grain amylase contents using a safe transgenic technique. Chinese Science Bulletin,2005,50(1):39-44
    164.陈松彪,李旭刚,王锋等.无选择标记转基因植物的培育.中国生物工程杂志,2005,25(2):1-7
    165. Hohn B, Levy A, Puchta H. Elimination of selection markers from transgenic plant [J]. Current Opinion in Biotechnology,2001,12 (2):139-143
    166. Ebinuma H, Sugita K, Matsunaga E, et al. Selection of marker-free transgenic plants using isopentenyl transferase gene [J]. Proc Nati Acad Sci USA 1997,94: 2117-2121
    167. Goldsbrough A P, Lastrella C N, Yoder J I. Transposition mediated repositioning and subsequent elimination of marker genes from transgenic tomato [J]. Biotechnology,1993,11:1286-1292
    168.金维正,段瑞君,张帆等.利用Ac/Ds转座子系统在水稻中获得无选择标记转基因植株的方法.生物工程学报,2003,9(6):668-673
    169. Ebinuma H, Sugita K, Matsunaga E, et al. Systems for the removal of a selection marker and their combination with a positive marker [J]. Plant Cell Rep, 2001,20:383-392
    170. Cotsaftis O, Sallaud C, Breifler J C, et al. Transposon-mediated generation of T-DNA and marker-free rice plants expressing a Bt endotoxin gene [J]. Mol Breed,2002,10:165-180
    171. Charng Y C, Li K T, Tai H K, et al. An inducible transposon system to terminate the function of a selectable marker in transgenic plants [J]. Molecular Breeding,2008,21(3):359-368
    172.孙磊,张启翔,周琳等.利用双T-DNA载体系统获得无选择标记转基因菊花[J].园艺学报,2008,35(5):727-734
    173. Zhu L, Fu Y P, Liu W Z, et al. Rapid generation of selectable marker-free transgenic rice with three target genes by co-transformation and anther culture [J]. Rice Science,2007,14(4):239-246
    174. Zubko E, Scutt C, Meyer P. Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes [J]. Nature Biotechnology,2000,18(4):442-445
    175. Srivastava V, Ow D W. Marker-free site-specific gene integration in plants [J]. Trends in Biotechnology,2004,22(12):627-629
    176. Darbani B, Eimanifar A, Stewart C N, et al. Methods to produce marker free transgenic plants [J]. Biotechnology Journal,2007,2(1):83-90
    177. Afolabi A S, Worland B, Snape J W, et al. A large-scale study of rice plants transformed with different T-DNAs provides new insights into locus composition and T-DNA linkage configurations [J]. Theoretical and Applied Genetics,2004, 109(4):815-826
    178. De neve M, De buck S, Jacobs A, et al. T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs [J]. The Plant Journal,1997,11(1):15-29
    179. Gidonia D, Srivastavab V, Carmia N. Site-specific excisional recombination strategies for elimination of undesirable transgenes from crop plants [J]. In Vitro Cellular and Developmental Biology Plant,2008,44(6):457-467
    180. Dale O W. Gene transfer with subsequent removal of the selection gene from the host genome [J]. The Proceedings of the National Academy of Sciences USA, 1991,88(28):10558-10562
    181. Chakraborti D, Sarkar A, Mondal H A, et al. Cre/lox system to develop selectable marker free transgenic tobacco plants conferring resistance against sap sucking homopteran insect [J]. Plant Cell Reports,2008,27(10):1623-1633
    182. Cregg J M, Madden K R. Use of site-specific recombination to regenerate selectable markers [J]. Mol Gen Genet,1989,219:320-323
    183. Dale E C, David WOw. Intra and intermolecular site-specific recombination in plant cell mediated by bacterphage P1 recombinase [J]. Gene,1990,1:79-85
    184. Onouchi H, Nishihama R, Kuodo M, et al. Visualization of site-specific recombination catalyzed by a recombinase from Zygosaccharomyces rouxii in Arabidopsis thaliana [J]. Mol Gen Genet,1995,247:653-660
    185. Maeaer S, Kahmann R. The Gin recombinase of phage Mu can catalyze site-specific recombination in plant protoplast [J]. Mol Gen Genet,1991,230: 170-176
    186. Lyznik L, Mitchell J C, Hirayama L, et al. Activity of yeast FLP recombinase in maize and rice protoplasts [J]. Nucl. Acids Res,1993,214:969-975
    187. Lyznik L, Rao K V, Hodges T K. FLP-mediated recombination of FRT sites in the maize genome [J]. Nucleic Acids Res,1996,24:3784-3789
    188. Kilby N J, Davies G J, Hodges T K. FLP recombinase in transgenic plants: constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis [J]. Plant J,1995,8:637-652
    189.单晓昳,李蓓,张举仁.利用FLP/frt重组系统产生无选择标记的转基因烟草植株.生物工程学报,2006,22(5):744-750
    190. Onouchi H, Nishihama R, Kudo M, et al. Visualization of site-specific recombination catalyzed by a recombinase from Zygosacchacomyces rouxii in Arabidopsis thaliana. Mol Gen Genet,1995,247:653-660
    191.宋洪元,任雪松,司军等.利用Cre/lox定位重组系统获得无选择标记GFP转基因烟草.中国农业科学,2008,41(10):2973-2982
    192.宋洪元,任雪松,司军等.利用Cre/lox重组系统获得无选择标记的SKTI抗虫转基因烟草.西北植物学报,2010,30(1):0021-0029
    193. Thirukkumaran G, Khan R S, Chin D P, et al. Isopentenyl transferase gene expression offers the positive selection of marker-free transgenic plant of Kalanchoe blossfeldiana. Plant Cell Tiss Organ Cult,2009,97:237-242
    194. Sugita K. Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Reports,1999,18:941-947
    195. Matsunaga E, Sugita and Ebinuma H. Asexual production of selectable marker-free transgenic woody plants, vegetatively propagated species. Molecular Breeding,2002,10:95-106
    196. Sugita K, Kasahara J, Masallara T, et al. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. The Plant Journal,2000,22(5):461-469
    197. Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans [J]. Nature,1998,391 (6669): 806-811
    198. Tuschl T, Zamore P D, Lehmann R, et al. Targeted mRNA degradation by double-stranded RNA in vitro [J]. Genes Dev,1999,13:3191-3197
    199. Zamore P D, Tuschl T, Sharp P A, et al. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals [J]. Cell, 2000,101:25-33
    200. Bernnstein E, Caudy A A, Hammond S M, et al. Role for a bidentate ribonuclease in t he initiation step of RNA interference [J]. Nature,2001,409: 363-366
    201.仟玥欣,宋于刚,陈学清.RNAi研究进展[J].世界华人消化杂志,2004,12(3):748-750
    202.马丽.玉米矮花叶病毒基因遗传转化研究[D].2007年,山东农业大学博士论文
    203.郭兴启,李菡,张杰道等.表达马铃薯Y病毒外壳蛋白基因的转基因烟草抗病机制研究[J].应用与环境生物学报,2003,9(4):372-376
    204.朱俊华,朱常香,温孚江等.止向和反向重复RNA介导的抗马铃薯Y病毒基因工程比较研究[J].植物病理学报,2004,2(34):133-140
    205. Nykanen A, Haley B, Zamore P D. ATP requirement and small interference RNAs structure in the RNA interference pathway [J]. Cell,2001,107(3):309-321
    206.陈爱葵,李梅红RNAi的研究及应用.广东教育学院学报,2008,28(3):69-73
    207. Chang C F, Elliot M, Meyerowitz S. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana [J]. Proc Natl Acad Sci USA, 2000,97(9):4985-4990
    208. Zhang L S, Chen D Y. RNA interference and its promising future [J]. Hereditas (Beijing),2003,25 (3):341-343
    209.程海鹏,朱睦元,金伟等.植物转基因沉默研究进展[J].生物工程进展,2001,21:47-42
    210. Zamore P D, Tuschl T, Sharp P A, Bartel D P. RNAi:Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals [J]. Cell,2000,101:25-33
    211. Carl D, Novina Phillip A. The RNAi revolution [J]. Cell,2005,430(8):161-164
    212. Lu R, Martin-Hernandez A, Peart J R, et al. Virus induced gene silencing in plant [J]. Methods,2003,30:296-303
    213. Burch-Smith T M, Anderson J C, Martin G B, et al. Applications and advantages of virus-induced gene silencing for gene function studies in plants [J]. Plant J.,2004,39:734-746
    214.李奇科.RNA干涉介导的马铃薯抗病毒研究.2009,贵州大学硕士论文
    215.颜培强,李丽杰,康宏等.应用RNAi技术培育抗2种病毒病的转基因烟草.中国生物工程杂志,2007,27(11):27-31
    216.竺晓平,朱常香,宋云枝等.cp基因3′端短片段介导的对马铃薯Y病毒的抗性[J].中国农业科学,2006,39(6):1153-1158
    217. Yan P Q, Bai X Q, Wan X Q, et al. Expression of TMV coat protein gene RNAi in transgenic tobacco plants confer immunity to tobacco mosaic virus infection [J]. hereditas (Beijing),2007,29(8):1018-1022
    218. Miki D, Itoh R, Shimamoto K. RNA silencing of single and multiple members in a gene family of rice. Plant Physiol,2005,138(4):1903-1913
    219. Abhary M K, Anfoka G H, Nakhla M K, et al. Post-transcriptional gene sileneing in controlling viruses of the Tomato yellow leaf curl virus complex. Arch Virol,2006,151:2349-2363
    220. Himani Tyagi, Shanmugam Rajasubramaniam, Manchikatla Venkat Rajam. RNA-interference in rice against Rice tungro bacilliform virus results in its decreased accumulation in inocul ated rice plants [J]. Transgenic Res,2008,17: 897-904
    221. Waterhouse P M, Graham M W, Wang M B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA,1998,95(23):13959-13964
    222. Wang M B, Abbott D C, Waterhouse P M. A single copy of a virus derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus. Mol Plant Pathol,2000,1(6):347-356
    223.刘小红,张红伟,刘昕等MDMV-cp基因的克隆及其转基因玉米的研究[J].生物工程学报,2005,21(1):144-148
    224.白云凤,杨红春,曲琳等.抗甘蔗花叶病毒的无标记反向重复转基因玉米 [J].作物学报,2007,33(6):973-978
    225. Wesley S W, Liu Q, Wielopolska A, Ellacott G, Smith N, Singh S, Helliwell C. Custom knock-outs with hairpin RNA-mediated gene silencing. Methods in Molecular Biology,2003,236:Plant Functional Genomics:Methods and Protocols Edited by:Erich Grotewold (?) Humana Press, Inc., Totowa, NJ.
    226. Kooter J M, Matzke M A, Meyer P. Listening to the silent genes:transgene silencing, gene regulation and pathogen control [J]. Trends in plant science,1999, 4(9):340-347
    227. Caplen N J, Parrish S, Imani F, Fire A, Morgan R A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems [J]. Proc Natl Acad Sci USA,2001,100:9742-9747
    228. Nykanen A, Haley B, Zamore P D. ATP requirement and small interference RNAs structure in the RNA interference pathway [J]. Cell,2001,107(3):309-321
    229. Parrish S, Fire A. Distinct roles for RDE1 and RDE4 during RNA interference in Caenorhabditis elegams [J]. RNA,2001,7:1397-1402
    230. Helliwell C, Waterhouse P, Lu R. Constructs and methods for high-throughput gene silencing in plants[J]. Methods,2003,30(4):289-295
    231. Tenllado F, Diaz-ruiz J R. Double-stranded RNA-mediated interference with plant virus infection. J. Virol.,2001,75(24):12288
    232. Sabine B. Antisense RNA regulation and RNA interference [J]. Biochemicaet Biophysica Acta,2002,1575:15-25
    233. Baulcombe D. RNA silencing in plants [J]. Nature,2004,431:356-363
    234. Voinnet O. RNA silencing as a plant immune system against virus [J]. Trends Genet,2001,17 (8):449-459
    235. Anastasia M, Kriton K, Alexandra B, et al. Generation of transgenic potato plants highly resistant to potato virus Y (PVY) through RNA silencing [J]. Mol. Breeding,2004,14:185-197
    236. Hammond S M, Caudy A A, Hannon G J. Post-transcriptional gene silencing by double-stranded RNA [J]. Nat. Rev. Genet.,2001,2 (2):110-119
    237. Tenllado F, Liave C, Diaz-ruiz J R. RNA interference as a new biotechnological tool for the control of virus disease in plants [J]. Virus Res.,2004,102:85-96
    238.刘显军,刘忠松.RNAi研究及在植物中的应用[J].作物研究,2006,16(5):562-567
    239.李基光,王三文,张德咏,唐前君,肖启明RNAi技术的研究及其在植 物上的应用.安徽农业科学,2010,38(8):3897-3899
    240.朱春晖,张德咏,刘勇.转录后基因沉默与植物抗病毒研究进展.长江蔬菜,2010,(8):1-6
    241.何明远.利用dsRNA诱导烟草抗黄瓜花叶病毒病的研究.2006,湖南农业大学硕士学位论文
    242. Tenllado F, Barajas D, Vargas M, et al. Transient expression of homologous hairpin RNA causes interference with plant virus infection and is overcome by a virus encoded suppressor of gene silencing [J]. MPMI,2003,16:149-158
    243. Tenllado F, Martinez-garcia B, Vargas M, et al. Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections [J]. BMC Biotechnology,2003,3:3-13
    244.张德咏,朱春晖,成飞雪等.表达dsRNA的细菌提取液可抑制黄瓜花叶病毒对烟草的侵染[J].植物病理学报,2008,38(4):304-311
    245.牛娜,牛成峰,胡有燕等.源于马铃薯Y病毒cp基因的dsRNA原核表达及提取.青岛农业大学学报(自然科学版),2009,26(3):184-187
    246.张雪,温延益.Red重组系统用于大肠杆菌基因修饰研究进展[J].中国生物工程杂志,2008,28:89-93
    247.梁艳,(?)anvimon Saksamerprome, Kallaya Sritunyalucksan等.一种大规模制备双链RNA的简单方法及其在斑节对虾中的应用.水产学报,2010,34(7):1011-1016
    248.尹国华,刘楠,孙兆楠等.利用Red重组系统敲除大肠杆菌mc基因构建dsRNA原核表达体系[J].山东农业大学学报(自然科学版),2009,40(3):461-464
    249. Yin G H, Liu N, Sun Z N, et al. Production of double-stranded RNA for interference with TMV infection utilizing a bacterial prokaryotic expression system [J]. Appl Microbiol Biotechnol,2009,84 (2):323
    250. Meyer MD and Pataky JK. Increased Severity of Foliar Diseases of Sweet Corn Infected with Maize Dwarf Mosaic and Sugarcane Mosaic Viruses. Plant Disease. 2010,94(9):1093-1099
    251.袁鹰,刘德璞,张光弟等.玉米常规育种中存在的问题的生物技术解决方案[J].分子植物育种,2005,3(1):135-139
    252.蒋军喜,陈正贤,李桂新等.我国12省市玉米矮花叶病病原鉴定及病毒致病性测定.植物病理学报,2003,33(4):307-312
    253.蒋军喜,李桂新,周雪平.玉米矮花叶病毒研究进展[J].微生物学通报,2002,29(5):77-81
    254.王海光.玉米矮花叶病流行原因分析及预测方法[D].2003,中国农业大学
    255.孟祥兵,王秀芳.基因沉默[J].生命的化学,2001,21(2):111-114
    256. Goldbach R, Bucher E, Prins M. Resistance mechanisms to plant viruses:an overview [J]. Virus Res.,2003,92:207-212
    257. Murry L E, Elliott L G, Capitant S A, et al. Transgenic corn plants expressing maize dwarf mosaic virus strain B coat protein are resistant to mixed infections of maize dwarf mosaic virus and maize dwarf mosaic virus [J]. Nature Biotechnology,1993,11 (13):1559-1564
    258.刘小红,何道文,张红伟等.玉米抗矮花叶病毒B株系的QTL定位[J].河北农业大学学报,2006,29(60):56-59
    259.周小梅,贾炜珑,赵云云.转MDMV cp基因玉米植株的再生.植物研究,2006,26(4):461-464
    260.雷海英,雷海英,孙毅等.病毒复制酶基因介导玉米抗矮花叶病的研究[J].华北农学报,2008,23(5):114-117
    261.白云凤,赵晋锋,郑军等.反义外壳蛋白基因介导的抗SCMV转基因玉米研究.作物学报,2006,32(5):661-665
    262.白云凤.利用不同策略获得抗SCMV转基因玉米的研究.2005,中国农业大学博士学位论文
    263. Zhang Z Y, Fu F L, Gou L, Wang H G, Li W C. RNA interference based transgenic maize resistant to maize dwarf mosaic virus. J. Plant Biol.2010,53: 297-305
    264.吕鹏,苏凯,刘伟等.粗缩病对夏玉米产量和植株性状的影响.玉米科学,2010,18(2):113-116
    265.王鹏,刘书义,白雪峰等.黄淮地区玉米田粗缩病大发生机理分析.农业科技通讯,2010,52-55
    266.檀根甲,江彤,李淼等.栽培避害对安徽省玉米粗缩病发生的影响.安徽农业大学学报,2010,37(3):407-410
    267.黄强,李晚忱,王振营等.玉米粗缩病研究的回顾与展望.玉米科学,2011,19(2):140-143
    268.谭振波,张敬原,刘昕等.玉米粗缩病毒及抗病策略[J].植物保护学报,2002,29(1):88-92
    269.陈香华,赵桂东,熊战之等.利用生态学手段预防玉米粗缩病的发生[J].中国植保导刊,2009,29(1):17-18
    270.董奎义.玉米不同品种(组合)粗缩病免疫性鉴定[J].中国种业,2010,3
    271.马侠,崔德周,刘怀华等.玉米抗粗缩病基因STS分子标记的筛选.玉米科学,2010,18(3):61-64,67
    272.路银贵,苗洪芹,邸垫平等.中国玉米杂交优势群主要种质抗玉米粗缩病性鉴定.河北农业大学学报,2010,33(3):5-7,12
    273. Qian Y X, Jiang H Y, Han G M, et al. A modified method of agrobacterium mediated in planta transformation of maize [J]. Acta laser biology,2009,18(2): 250-256
    274.蒋军喜,谢艳,阙海勇.江西甘蔗花叶病病原的分子鉴定[J].植物病理学报,2009,39(2):203-206
    275. Sai J Q, Kang L Y, Huang Z, et al. Nucleotide sequence of maize dwarf mosaic virus capsid protein gene and its expression in Escherichia coli. Sci China B, 1995,38(3):313-319
    276.谢伟,乐超银.泛素启动子在转基因植物中的应用.三峡大学学报(自然版),2007,29(2):176-179
    277.萨母布鲁克J,拉塞尔DW.分子克隆试验指南(黄培堂等,译)第三版.北京:科学出版社,2003
    278. Stoutjesdijk P A, Singh S P, Liu Q, et al. Waterhouse PA, Green AG: hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol,2002,129:1723-1731