基于下垂控制的微电网运行仿真及小信号稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来相继发生的多起大面积停电事故,充分暴露了传统大规模电网的弊端。在能源危机和环境污染日益加剧的严峻形势下,世界各国开始关注基于可再生清洁能源的分布式发电技术。分布式发电具有许多优点,但大量分布式电源接入对大电网产生的不利影响制约了其发展,微电网的出现很好地解决了这一问题。微电网将分布式电源DG、负荷、储能单元及控制装置组合成一个单一可控的系统,既可与大电网并联运行,也可在大电网故障时孤岛运行。良好的运行控制是微电网实现诸多优势的前提,微电网的惯性小,容易受到扰动而产生振荡,所以对其稳定性的研究必不可少。
     基于下垂控制的微电网可以实现孤岛运行时电压和频率的自动调节,无需借助于通信,因而可以提高系统的可靠性,易于实现微电源和负荷的即插即用,而且运行方式变化时微电源不用改变控制方法,可以实现微电网运行方式的无缝切换。
     本文首先在分析微电源的输出功率传输特性和下垂控制原理的基础上,对下垂控制器进行了设计,针对低压微电网中线路阻抗呈阻性的特点,利用频域法对电压电流双环控制环节的传递函数进行分析,通过PI控制参数的设计使逆变电源等效输出阻抗呈感性,从而满足P-f、Q-U下垂特性。
     其次,利用Matlab/Simulink软件搭建了下垂控制器的仿真模型并设计仿真算例进行了验证,在此基础上建立了采用对等控制策略的微电网仿真模型,对其孤岛、并网及运行方式切换时的运行特性进行了仿真研究,验证了下垂控制方法的有效性和对等控制策略的控制效果。
     最后,建立了微电网孤岛运行时较完整的小信号状态空间模型,利用特征值法对孤岛微电网小信号模型的状态矩阵进行分析,得出不同参数变化时对微电网稳定性的影响:下垂特性系数增大会降低微电网系统的稳定性,线路阻抗参数较小时微电网系统容易失去稳定,并通过仿真验证了微电网小信号稳定性分析结论的正确性。
In recent years, large area power failures have occurred so frequently that fully exposed the malpractice of traditional grid. In the grim situation of increasing energy crisis and environmental pollution, people start to pay attention to distributed generation technologies based on renewable clean energy. Distributed generation has many advantages, but the adverse effects that the connection of a large number of distributed sources brings to the grid restrict its development, micro-grid is a good solution to this problem. Micro-grid combines distributed sources, loads, energy storage units and control devices into a single manageable system, which can both operate in grid-connected mode and islanding mode. Good operational control is the premise of micro-grid to achieve its advantages. The small inertia of micro-grid makes it vulnerable to disturbance and easily to oscillate, so it's essential to study on its stability.
     Micro-grid based on droop control can achieve automatic adjustment of voltage and frequency without resorting to communication when operating in islanding mode, so it can improve reliability of the micro-grid system, and can easily implement the plug-and-play of micro-sources and loads, moreover, micro-grid can change its operation mode without changing the control method of micro-sources, so that it can achieve seamless switching of operation mode.
     Firstly, based on the analysis of output power transmission characteristics of micro-sources and droop control theory, droop controller is designed. For the line impedance is resistive in the low voltage micro-grid, the transfer function of the voltage and current double loop control is analyzed using frequency domain method, and the equivalent output impedance of inverter sources is made inductive though design of PI control parameters, thus it can meet P-f, Q-U droop characteristics.
     Secondly, simulation model of the droop controller is built in Matlab/Simulink software and verified by a designed simulation example, based on this, a micro-grid simulation model using peer-to-peer control strategy is established, then simulation research on operating characteristics of islanding mode, grid-connected mode and operation mode switching is conducted to verify the effectiveness of droop control method and the control effect of peer-to-peer control strategy.
     Finally, complete small-signal state-space model of micro-grid in islanding operation mode is established, then the influence of different parameters'changing on micro-grid stability is concluded by analyzing the state matrix of micro-grid small-signal model though eigenvalue method:the increase of droop characteristic coefficient will reduce the stability of micro-grid system, and the micro-grid system will easily lose stability when the line impedance parameters become small. The conclusions of micro-grid small-signal stability analysis are demonstrated to be correct by simulation result.
引文
[1]陈永淑,周雒维,杜雄.微电网控制研究综述[J].中国电力,2009,42(7):31-35.
    [2]李鹏,张玲,盛银波.新能源及可再生能源并网发电规模化应用的有效途径-微网技术[J].华北电力大学学报,2009,36(1):10-14.
    [3]苏玲,张建华,王利,等.微电网相关问题及技术研究[J].电力系统保护与控制,2010,38(19):235-239.
    [4]鲁宗相,王彩霞,闵勇,等.微电网研究综述[J].电力系统自动化,2007,31(19):100-107.
    [5]荣延泽.分布式电源建模与微电网控制及保护[D].杭州:杭州电子科技大学,2012.
    [6]徐青山.分布式发电与微电网技术[M].北京:人民邮电出版社,2011.
    [7]杨恢宏,余高旺,樊占峰,等.微电网系统控制器的研发及实际应用[J].电力系统保护与控制,2011,39(19):126-129.
    [8]毕大强,牟晓春,任先文,等.含多微源的微电网控制策略设计[J].高电压技术,2011,37(3):687-693.
    [9]Standards Coordinating Committee 21. IEEE standard 1547 for interconnecting distributed resources with electric power system[S],2003.
    [10]Lasseter B. Microgrids[C]//Proceedings of 2001 IEEE Power Engineering Society Winter Meeting:Vol 1, Jan 28-Feb 1,2001, Columbus, OH, USA, Piscataway, NJ, USA: IEEE,2001:146-149.
    [11]Lasseter R H. Micro grids [C]//Proceedings of 2002 IEEE Power Engineering Society Winter Meeting:Vol 1, Jan 27-31,2002, New York, NY, USA, Piscataway, NJ, USA: IEEE,2002:305-308.
    [12]Lasseter R H, Paigi P. Microgrid:a conceptual solution[C]//35th Annual IEEE-PESC. Aachen, Germany,2004:4285-4290.
    [13]牟晓春,毕大强,任先文.低压微网综合控制策略设计[J].电力系统自动化,2010,34(19):91-96.
    [14]杨文杰.光伏发电并网与微网运行控制仿真研究[D].成都:西南交通大学,2010.
    [15]张建华,黄伟.微电网运行控制与保护技术[M].北京:中国电力出版社,2010:7.
    [16]张纯.微网双模式运行的控制策略研究[D].重庆:重庆大学,2011.
    [17]王成山,肖朝霞,王守相.微网综合控制与分析[J].电力系统自动化,2008,32(7):91-96.
    [18]Stevens J, Vollkommer H, Klapp D. CERTS microgrid system tests[C]//Power Engineering Society General Meeting,2007. IEEE. Tampa, FL.2007:1-4.
    [19]Sanchez M. Overview of microgrid research and development activities in the EU[C]// Proc. the 2006 Symposium on Microgrids, Montreal,2006.
    [20]Morozumi S. Micro-grid demonstration projects in Japan[C]//Power Conversion Conference-Nagoya,2007. PCC'07. IEEE,2007:635-642.
    [21]冒波波.微电网运行与控制的建模与仿真[D].成都:西南交通大学,2012.
    [22]Lasseter R, Akhil A, Marnay C, et al. Integration of distributed energy resources:the CERTS microgrid concept [EB/OL]. [2007-04-01]. http://certs, lbl. gov/pdf/50829. pdf.
    [23]裴玮,李澍森,李惠宇,等.微网运行控制的关键技术及其测试平台[J].电力系统自动化,2010,34(1):94-98.
    [24]马力CCHP及其所构成微网的运行特性研究[D].天津:天津大学,2008.
    [25]吴子平.基于微型燃气轮机发电系统的微网控制与分析[D].北京:华北电力大学,2009.
    [26]Laaksonen H, Saari P, Komulainen R. Voltage and frequency control of inverter based weak LV network microgrid[C]//2005 International Conference on Future Power Systems,16-18Nov. IEEE,2005:6 pp.-6.
    [27]丁明,杨向真,苏建徽.基于虚拟同步发电机思想的微电网逆变电源控制策略[J].电力系统自动化,2009,33(8):89-93.
    [28]王成山,杨占刚,王守相,等.微网实验系统结构特征及控制模式分析[J].电力系统自动化,2010,34(1):99-105.
    [29]Pecas Lopes J A, Moreira C L, Madureira A G. Defining control strategies for microgrids islanded operation[J]. IEEE Transactions on Power Systems,2006,21(2):916-924.
    [30]Paigi P, Lasseter R H. Autonomous control of microgrids[C]//Proceedings of 2006 IEEE Power Engineering Society General Meeting, Jan 18-22,2006, Montreal, Quebec, Canada, Piscataway, USA:IEEE,2006:8-15.
    [31]Paolo Piagi. Microgrid Control[D]. University of Wisconsin-Madison,2005.
    [32]Aris L. Dimeas, Nikos D. Hatziargyriou. Operation of a Multiagent System for Microgrid Control[J]. IEEE Transactions on Power Systems,2005,20(3):1447-1455.
    [33]章健,艾芊,王新刚.多代理系统在微电网中的应用[J].电力系统自动化,2008,32(24):80-82.
    [34]肖朝霞.微网控制及运行特性分析[D].天津:天津大学,2008.
    [35]刘磊.逆变型微电网的小信号建模及稳定性分析[D].秦皇岛:燕山大学,2012.
    [36]王聪颖.微电网运行控制仿真分析[D].哈尔滨:哈尔滨工业大学,2011.
    [37]E. Barklund, N. Pogaku, M. Prodanovic, and et al. Energy management system with stability constraint for stand-alone autonomous MicroGrid[C]//IEEE International Conference on System of Systems Engineering, USA,2007. Z114-Z119.
    [38]Pogaku N, Prodanovic M, Green T C. Modeling, Analysis and Testing of Autonomous Operation of an Inverter-Based Microgrid[J]. IEEE Transactions on Power Electronics, 2007,22(2):613-625.
    [39]Iyer S V, Belur M N, Chandorkar M C.A Generalized Computational Method to Determine Stability of a Multi-inverter Microgrid[J]. IEEE Transactions on Power Electronics.2010,25(9):2420-2432.
    [40]范元亮,苗逸群.基于下垂控制结构微网小扰动稳定性分析[J].电力系统保护与控制,2012,40(4):1-7.
    [41]范元亮,江全元,曹一家.含恒功率和下垂控制机组的微网小信号模型简化分析[J].湖南大学学报,2012,39(5):53-58.
    [42]Prabha Kundur. Power System Stability and Control [M]. McGraw-Hill Inc,1994: 699-727.
    [43]王康,金宇清,甘德强,等.电力系统小信号稳定性分析与控制综述[J].电力自动化设备,2009,29(5):10-19.
    [44]苏玲.微网控制及小信号稳定性分析与能量管理策略[D].北京:华北电力大学,2011.
    [45]王燕廷.微电网并网与孤岛运行模式切换的研究[D].吉林:东北电力大学,2011.
    [46]王永刚.基于下垂控制的微网频率稳定性分析[D].北京:华北电力大学,2012.
    [47]胡斌.一种基于状态转换的微网协调控制策略研究[D].重庆:重庆大学,2011.
    [48]杨俊虎.基于逆变器下垂控制的微电网运行特性及其控制系统研究[D].太原:太原理工大学,2012.
    [49]Engler A, Soultanis N. Droop control in LV-grids[C]//Proceedings of the 2005 International Conference on Future Power Systems, Nov 16-18,2005, Amsterdam, the Netherlands,2005:6 pp.-6.
    [50]张兴,曹仁贤.太阳能光伏并网发电及其逆变控制[M].北京:机械工业出版社,2010.
    [51]王成山,肖朝霞,王守相.微网中分布式电源逆变器的多环反馈控制策略[J].电工技术学报,2009,24(2):100-107.
    [52]陈理.分布式发电装置控制系统的设计和研究[D].杭州:浙江大学,2006.
    [53]闫炎.微电网逆变器多环反馈控制研究[D].秦皇岛:燕山大学,2012.
    [54]彭力.基于状态空间理论的PWM逆变电源控制技术研究[D].武汉:华中科技大学,2004.
    [55]叶楠,孟宪会,刑岩.逆变器电感电流和电容电流反馈控制方式的比较研究[C].航 空电源航空科技重点实验室学术年会论文集,2005:169-174.
    [56]张建华,苏玲,刘若溪.逆变型分布式电源微网小信号稳定性动态建模分析[J].电力系统自动化,2010,34(22):97-102.
    [57]Uudrill, J. M. Dynamic stability calculations for an arbitrary number of interconnected synchronous machines[J]. IEEE Trans on Power Apparatus and Systems,1968,87(3): 835-844.
    [58]张纯江,王晓寰,薛海芬,等.微网中三相逆变器类功率下垂控制和并联系统小信号建模与分析[J].电工技术学报,2012,27(1):32-39.