新型气液传质三维塔板设计及流体力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气液传质设备在炼油、石油化工、精细化工、食品、医药及环保等部门均属量大面广的重要单元设备,在精馏、吸收、增湿、减湿等操作中都要用到。其投资一般占总投资的20%左右,有的甚至高达50%。蒸馏(精馏)是其用途最广的分离操作,在化工生产中,具有举足轻重的作用,所以一直是国外学者关注的重要课题。70年代以前,在大型塔器中,板式塔占有绝对优势。但能源危机的出现,突出强调节能问题,填料塔的技术有了长足的进步,冲击了蒸馏设备以板式塔为主的局面。进入90年代后,填料的发展较慢,进入了一个相对稳定期。与此相反的是,板式塔技术又有了明显的进步。我国在塔板的研究方面虽不如国外活跃,但三维塔板号称以板式塔的形式和造价提供填料塔的分离效果,以其优良性能吸引各研究者做了不少这方面的研究工作。
     本文在阅读有关文献的基础上,创造性的设计了三种形式的三维塔板,即板1、板2和板3;并对其流体力学性能进行了研究。其具体内容主要包括:对原有设备进行改造;设计新型的三维塔板;塔板的干板压降、操作压降、雾沫夹带量、漏点、底隙液体吹开点的测量及其影响因素的考察。
     实验结果及分析表明,开孔率相同时,所设计的三维塔板的干板压降和操作压降比筛板要高,与浮阀塔板相当或略小。这与国内研究者的观点一致,与日本专利的报道有出入。但要增加筛板的开孔率受限很多,在本实验条件的开孔率的基础上要再增加其开孔率几乎是不可能的;对于三维塔板,由于其独特的开孔设计,其开孔率还可以有较大的提高。三维塔板的干板压降基本上与板孔气速的2次方成正比。板孔形式由平板孔改为喷嘴孔,对其板压降的降低是有效的措施,可以降低25%左右。从干板压降的决定因素的考察可知,其主要是由板孔压降决定的。在整个操作过程中,三维塔板的雾沫夹带量都很小,如板2和板3均未达到雾沫夹带严重的程度。在相同条件下,三维塔板的雾沫夹带比筛板要小得多,如板2的雾沫夹带最大的才占筛板的40%不到。相同条件下,三维塔板的漏点气速与筛板基本相当。三维塔板的操作上限不是雾沫夹带决定的,而是底隙液体吹开点决定的;操作下限与筛板相同,是漏点决定的。三维塔板在L=1500l/h操作点的操作弹性比筛板高45.2%。在整个操作过程中,液流量对三维塔板的流体力学性能影响较小,且较高的板上液层对三维塔板有利。因此它适合液相负荷较大的操作。综合可知,三维塔板的处理能力与筛板相比可以提高较大。所设计的三种形式的三维塔板中,以板2和板3的综合性能较好。
At the department of the refining oil, petroleum chemical industry, industry of fine chemicals, foodstuff, medicine and environmental protection etc., equipment of gas-liquid is very important unit equipment used widely. It is used in the operations of rectifying, absorbing, humidification, de-humidification etc.. As usual, its investment is about 20 percent of all investment, and even gets 50 percent high.
    Distillation or rectification is a kind of separating operation. At the chemical industry processing, it plays a decisive role. So it is a very important thesis for study which scholars internal and external pay close attention to. At the before 1970' s, plate column plays absolute predominance in column plant. When energy crisis occurred, the question on saving energy is high lightly emphasized. The technology of packing column made great process, and charged into the situation that plate column is main equipment in the distillation equipment. Coming into 1990' s, the developing speed of packing is rather slow, and goes into a comparatively period. On the contrary, the technology of plant column has obvious progress. In the study field of tray deck, in our country, there is less active than other countries. But three-dimensional tray is known that it owns plate shape and provides packing column' s separating efficiency. Depending on his good performance, it attracts many studies to do many things in this re
    spect.
    Based on relate to literature reported, the thesis designs the three-dimensional tray that includes three kinds of structure called Tray 1, Tray2, TrayS. There is a research on its hydrodynamic performance. Its particular content mainly includes transforming old equipment, designing new types of three-dimensional tray, and measuring its hydrodynamic performance that includes measuring dry plate pressure, operating pressure, entrainment, leak source, down opening' s liquid blowout and seeing out their affecting factors.
    Experiment' s conclusion and analysis shows that when tray' s opening
    rate is same, at the respect of pressure,the designing three-dimensional tray is higher than conventional sieve tray, and is equal or even a little
    
    
    lower than floating valve tray. It demands that the study' s viewpoint home is reasonable, and there is different from Japanese patent demanded. But to increase sieve tray' s opening rate, there are many factors limited. At the experiment' s situation, that is to say, when the opening rate is 12.8 percent, to increase sieve tray' s opening rate, it is hardly possible. On the contrary, due to three-dimensional tray' s opening designing specially, its opening rate may still improve much. Three-dimensional tray' s dry plate pressure basically is 2 power of tray opening velocity. Transforming flat plate opening to spraying opening is a very effective way to reduce plate pressure, and can reduce about 25 percent. From investigating on determinative factors of dry plate pressure, we know that plate orifice pressure is mainly determinative factor. At the operating process, three-dimensional tray' s entrainment is very little. For example, the entrainment of Tray 2 and Tray 3 both do not get serious degree. At the s
    ame situation, three-dimensional tray' s entrainment is much less than that of sieve plate. For example, Tray 2 does not get only 40 percent of sieve tray' s. The velocity of leak source is almost equal to that of the sieve tray at the same situation. Three-dimensional tray' s operating upper limit is not decided by serious entrainment, but by down opening liquid blowout. And its operating lower limit is at the same as the sieve' s, this to say , it is decided by leak source. At the L=15001/h operating point, three-dimensional tray' s turndown ratio is larger than that of sieve tray, and is about 45. 2 percent higher. At the all operating process, fluid-flow has rather little effect on the hydrodynamic performance of three-dimensional tray, and higher liquid thickness at the plate is very good to three-dimensional tray' s hydrodynamic performance. So i
引文
[1] 化学工程手册编辑委员会.化学工程手册(第13篇)—气液传质设备.北京:化学工业出版社,1979年,第1版
    [2] 魏兆福,李宽红主编.塔设备设计.上海,上海科学技术出版社出版,1988年,第1版
    [3] 计建炳,谭天恩.我国塔器技术的进展.化工进展,2001,(1):43
    [4] 刘道德等编著.化工设备选择与工艺设计.长沙:中南工业大学出版社,1992年,第1版
    [5] 袁孝竞,余国琮.填料塔技术的现状与展望.天津:天津大学,1997
    [6] 赵汝龙.波纹型规整填料塔的设计.天津:天津大学填料塔新技术公司,1997
    [7] 王树楹.填料塔技术进展与工业应用.石油化工设计,1994,11(4):10
    [8] 李鑫钢.规整填料塔技术在炼油工业中的应用.石油化工设计,1994,11(4):24
    [9] 袁孝竞.塔器技术的最新进展.石油化工设计,1994,11(4):1
    [10] 张近.塔填料研究进展.化工进展,1989,(6):9
    [11] Brara Jose L..Column internals. Chemical Engineering, 1998, 105(2):76
    [12] 徐孝民.炼油厂蒸馏技术发展的若干问题.炼油设计,1998,(2):68
    [13] [新技术]栏.精馏、液/液萃取和膜技术.世界化工技术,1998,(1):47
    [14] News: Structured or Random. Chemical Engineering Progress, 1997, (11):84
    [15] 美国专利:US4724593[P]
    [16] 美国专利:US4668442[P]
    [17] 费维扬.国外化工塔器的若干最新进展.化工进展,1996,(6):40
    [18] News: ACT5, Durapack. Chemical Engineering, 1997, 104(6): 156
    [19] 兰州石油机械研究所,通用机械研究所合编.国外机械工业基本情况—化工炼油设备.北京:机械石油出版社,1995
    [20] 王树楹,管山.填料塔在高压蒸馏中的应用.化学工程,1998,26(5):6
    [21] 曹纬.国外填料塔最新进展.石油化工设备,2000,29(2):34
    [22] 计建炳,谭天恩.我国塔器技术的进展.化工进展,2000,(6):51
    [23] 梁治国(译),段道顺(校).大处理量的NYE塔板.世界石油科学,1994(4):75
    [24] 李好管.塔器分离技术最新进展.现代化工,2000,20(8),19
    
    
    [25] 陈宗松,刘宗甫.T型排列条形浮阀塔板的工业性实验.石油化工设备,1985,14(2):19
    [26] 刘艳升,段道顺,赵景芳,沈复.HTV船型浮阀排列方式对塔板流体力学及传质的影响.化学工程,1994,22(1):10-13
    [27] 李玉安,赵培,刘吉,路秀林.梯形导向浮阀塔板.高校化学工程学报,1997,11(13):261
    [28] 王忠诚,姜斌,黄洁,孙波.多种塔板组合的板式塔改造技术.化学工程,1998,26(5):56
    [29] 成枫,胡忠良,王忠诚,张雅芝,曾爱武,黄洁.石油化工,JF复合浮阀塔板的开发和应用,1995,24(2):118
    [30] W. V. Delnieki, J. L. Wagner. Performance of multiple Downcomer. Chemical Engineering Progress, 1970, 66(3): 50
    [31] Michael R. Resetarits et al..Oil & Gas Journal. High-capacity trays debollleneck Texas C, splitter, 1995, (6):45
    [32] Michael R. Resetarits et al..New Enchaned Capacity MD Tray Debottlenecks Deethanizer. I. Chem. E. Distillation and Absorption Conference, Birmingham, U. K.,1992
    [33] 俞晓梅,朱锦忠,许崇嗣.DJ型塔板工业应用的现状和展望.化学工程,1995,23(3):43
    [34] 王强,王树楹.塔器技术的发展与展望,石油化工设备,1997,26(4):35
    [35] 唐薰,朱爱梅,张旭东,李文生.板式塔气液传质三维与二维塔板的比较分析.现代化工,2001,21(18):42
    [36] 刘衍烈,佛明义,徐修建,翁力,王昂,郭明远.关于新型垂直筛板的初步探讨-流体力学.化学工程,1982,(2):16
    [37] 杨桂英.新型垂直筛板塔在PVC生产中的应用.化工装备技术,1998,19(1):19
    [38] 文衡.关于新型垂直筛板塔板压降问题.化学工程,1983,(5):38
    [39] 杜佩衡,刘金诚.国内新型垂直筛板塔的研究雏议.化学工程,1988,16(3):31
    [40] 刘衍烈,王昂,翁力,郭明远.新型垂直筛板的塔板分离效率研究.化学工程,1983,(5):24
    [41] 兰州石油机械研究所塔器组.关于垂直筛板(VST)的初步研究.化学工程,1982,(2):25
    
    
    [42] 徐维勤,沈自求.新型垂直筛板塔的流体力学性能研究.化学工程,1982,(2):8
    [43] 徐维勤.新型垂直筛板塔的改进.化学工程,1984,(6):12
    [44] 杜佩衡,于文奎,王庆瑶.新型垂直筛板塔的流体力学性能研究.石油化工设备,1986,15(9):1
    [45] 刘衍烈,翁力,王昂,郭明远.新型垂直筛板的帽罩单元传质性能.化学工程,1983,(5):14
    [46] 高步良,王志魁.新型垂直筛板塔预测板效率的数学模型.石油化工设备,1995,24(4):11
    [47] 张富生,王昂,倪炳华,王衍烈.高负荷导向垂直筛板的研究(Ⅰ)-实验测定与关联.化学工程,1990,18(1):9
    [48] 王志魁,张海跃,林义英.帽罩式汽液并流接触塔板的板效率-传质池与混合池双池模型.化学工程,1986.(1):61
    [49] 张海跃,王志魁.帽罩式汽液并流接触塔板汽相Murphree板效率数学模型.化学工程,1987,(5):29
    [50] 张佑红,包雪梅,王志魁.新型垂直筛板的传质点效率研究.石油化工,1996,25(7):483
    [51] 张佑红,包雪梅,王志魁.新型垂直筛板的传质点效率研究.化学工程,1996,24(3):17
    [52] 张海跃,董玉荣,王志魁.新型垂直筛板单罩的液体提升量的测定与关联.化学工程,1996,(2):75
    [53] 杜冬云,方云进,肖博文.新型垂直筛板塔研究进展.石油化工,1998,27(5):374
    [54] 郑学民,何鸿业.宝塔罩型塔板性能研究.化学工程,1995,23(23)
    [55] 于文奎,许国治.新型立体喷射塔板.湖北化工,1996,(2):53
    [56] 王良华,计建炳,姚克俭,徐崇嗣.穿流板结构参数对复合塔板的性能影响.化学工程,2000,28(1):14
    [57] 天津大学化工原理教研室编.化工原理(下册).天津:天津大学科技出版社,1992年第1版
    [58] 孙一坚编.工业通风.北京:中国建筑工业出版社,1985年第2版
    [59] 茅清希编著.工业通风.上海:同济大学出版社,1998年第1版