自燃煤矸石作为辅助胶凝组分的需水性和活化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矸石作为水泥混合材具有很高的经济价值和社会价值,.目前煤矸石在这方面的应用还处于粗放式,而且存在着许多问题(配成水泥需水量大,强度低等),使得综合利用率不高,因此如何合理有效的处理煤矸石是当务之急。
     本文针对自燃煤矸石水泥需水量大和强度低的问题,主要做了以下研究:通过改变自燃煤矸石细度与掺量降低自燃煤矸石体系的需水性;利用灰色关联对自燃煤矸石粒径分布与体系需水量的关系进行分析;研究自燃煤矸石粉磨时间对自燃煤矸石水泥强度的影响;通过复掺煅烧白云石、硅灰、矿渣和粉煤灰对自燃煤矸石水泥强度进行优化。主要结果如下:
     采用对自燃煤矸石粉磨时间的不同得出自燃煤矸石作为混合材对水泥体系需水性的研究。研究表明:随着自燃煤矸石细度的增加,水泥标准稠度用水量先呈现下降趋势,但随着细度继续增加,水泥标准稠度用水量呈现持续增长的趋势。
     采用灰色关联分析的方法分析了自燃煤矸石粒径分布对水泥体系需水量的影响。结果表明:不论水泥细度大小,粒径范围在5.0~10.0μm的自燃煤矸石将增加水泥的需水量,而适当增加10.0~40.0μm范围的自燃煤矸石颗粒,将有利于降低水泥体系需水量。
     采用矿渣、钢渣与自燃煤矸石复合后,矿渣-自燃煤矸石水泥体系需水量和钢渣-自燃煤矸石水泥体系需水量都低于单掺自燃煤矸石水泥,且矿渣对自燃煤矸石水泥需水性优化效果较好。
     采用柠檬酸法和水化法对煅烧白云石的活性进行了研究,我们得出白云石经过750℃煅烧,保温2.5 h后的活性最好。
     采用水泥胶砂实验强度方法对复掺750℃煅烧白云石改性自燃煤矸石进行研究。结果表明:水泥体系早期强度有所增加,后期强度全部低于单掺自燃煤矸石。
     在复掺750℃煅烧白云石的条件下通过引入硅灰,各组强度都有不同程度的增加,与单掺自燃煤矸石的体系相比早期强度增加不太明显,后期强度增加明显。当煅烧白云石掺量为8 wt%时,28天强度比单掺自燃煤矸石的体系强度增加近8 MPa,而90天强度增加11 MPa。微观分析显示水泥浆体结构致密,水化产物较多。
     矿渣对自燃煤矸石的复合效应优于粉煤灰对自燃煤矸石的复合效应,体系强度都随着矿渣和粉煤灰掺量的增加而增加。当矿渣的掺量在10 wt%时,28天强度比单掺自燃煤矸石的体系强度要高近10 MPa,60天、90天平均增加近7MPa。当粉煤灰的掺量在10 wt%时,28天强度比单掺自燃煤矸石的体系强度要高近7 MPa,而60天、90天平均增加仅为3.5 MPa。
The research on coal gangue as the cement admixture has high economic value and social significance. At present, the utilization of coal gangue in this field is in extensive style, and has a lot of problem, such as the greater water requirement and lower strength, and the comprehensive utilization of the coal gangue was low. So the utilization of coal gangue in reasonable and effective is urgent affairs.
     This paper researched on the coal gangue as the cement admixture aiming at the problem on the utilization. The water requirement of spontaneous combusted gangue cement was decreased by changing the fineness and mixing amount of coal gangue; the relationship of water requirement and particle size distribution for coal gangue was studied; and the effect of grinding time of coal gangue on strength of spontaneous combusted gangue cement was researched; at last, strength of spontaneous combusted gangue cement was optimized by adding calcined dolomite, silica fume, slag. The main results were as follows:
     In this paper, the auxiliary gelling was modified by 750℃calcined dolomite, silica, slag and fly ash. The influence of SCG for admixture in cement on the water demand was studied, we can determined the optimum fineness and optimizational measures of SCG. The influence of different calcination temperature and soaking time on dolomite activity was studied by citric acid way and hydration way, we can find the best calcined system for dolomite. The supporting gel modification mechanism was studied by cement mortar strength, XRD, SEM. The main results were as follows:
     The influence of different grinding time for SCG on the water demand was studied. The experiment indicates that when the fineness of SCG increased, the water requirement decreased. When the fineness of SCG increased more, the water requirement of cementitious system will trend to increase significantly.
     The influence of particle size distribution of SCG on the water demand of cement system by gray relational analysis was studied. The results showed that no matter the fineness of cement, the particle size of SCG ranging from 5.0μm to 10μm will increase the water demand of cement system, and it will help reduce the water demand of cement system when the particle size of SCG appropriated to increase the range of 10~40μm.
     When compounding slag and steel slag into coal gangue respectively, the water requirement of steel slag gangue cement system was higher than slag gangue cement, but all were lower than only having coal gangue.
     The influence of calcining technology on the activity of light- burned dolomite was studied. The experimental results showed that the best technological parameters of calcining process were as follows:calcinations temperature was 750℃, holding time was 2.5h.
     Compound doped with 750℃calcined dolomite to modify the SCG for mixed materials by means of cement mortar test was studied. The experimental results showed that calcined dolomite contributed to increase the early strength of cement systems, but post- strength was all lower than the only doped SCG
     Through the introduction of silica fume, each group has different levels to increase strength, early strength was not significantly increased when compared with only doped SCG. When calcined dolomite content of 8 wt%, the 28- day strength was 8 MPa bigger than the strength of uni doped SCG, and the 90- day strength was 11 MPa bigger than the strength of uni doped SCG.
     For spontaneous combustion gangue, the compound effect of slag was equal than fly ash, and the strength of cement system will increase with the content of slag and fly ash increased. When content of the slag is 10 wt%, the 28- day strength was 10 MPa bigger than the strength of uni doped SCG,60- day and 90- day on average was nearly 7 MPa. When the content of fly ash is 10 wt%, the 28- day strength was 7 MPa bigger than the strength of uni doped SCG,60- day and 90- day on average was only 3.5 MPa.
引文
[1]王伟,周华强.煤矸石对环境的影响及其资源化利用[J].中国建材科技,2007,(3):47~49
    [2]张晋霞,叶璀玲,杨建国.煤矸石对环境的危害及其综合利用[J].能源技术与管理,2004,(2):54~55
    [3]甘智和.工业废渣建筑材料[M].北京:中国环境科学出版社,1992.47~49
    [4]Marland S, Han, B, Merchant A, etal. The effect of microwave radiation on coal grindability[J]. Fuel,2000, (11):1283~1288
    [5]Schulz D, Raubold-Rosar M. Recultivation of mining waste dumps in the Ruhrarea, Germany [J]. Water, Air, Soil Pollution,1996, (1):17~32
    [6]王国平,孙传敏.浅谈煤矸石资源化及其分类[J].煤炭经济研究,2004,(5):19~20
    [7]王国平.阜新矿区混堆煤矸石利用工业分类初探[J].中国煤田地质,2004,Vol.16(2):13~15
    [8]许泽胜,杨巧文,王新国等.煤矸石的分类及其综合利用[J].中国环保产业,2001,(7):24~27
    [9]张晓云,刘东玉.煤矸石综合利用技术分析[J].山西能源与节能,2000,(3):38~40
    [10]宋焕斌,张文彬.煤矸石的开发利用[J].化工矿物与加工,2000,(12):23~25
    [11]邓寅生,李毓琼,张玉贵.我国煤矸石分类探讨[J],煤炭加工与综合利用,1998,(3):26~30
    [12]葛宝勋,邓寅生.平顶山矿区煤矸石的二级分类探讨汇[J].煤矿环境保护,1994,Vol.8(6):38~41
    [13]崔龙鹏,白建峰,黄文辉.淮南煤田煤矸石中环境意义微量元素的丰度[J].地球化学,2004,Vol.33(5):535~540
    [14]冉景煜,牛奔,张力,等.煤矸石综合燃烧性能及其燃烧动力学特性研究[J].中国电机工程学报,2006,Vol.26(15):58~62
    [15]何贤发.煤矸石在水泥配料中的研究[J].四川水泥,2002,(4):9~10
    [16]孟祥金.浅谈利用煤矸石配料生产水泥技术[J].中国建材装备,1996,(10):19~20
    [17]刘桂建,许光泉,崔树军.梁宝寺区煤矸石及其综合利用途径研究[J].煤田地质与勘探,1997,Vol.25(4):21~24
    [18]胡志鹏,杨燕.煤矸石综合利用途径[J].粉煤灰综合利用,2004,(2):36~38
    [19]茅艳,段敬民,王智敏.煤矸石建筑材料性能特性的分析[J].煤炭工程,2004,(7):61~63
    [20]张德祥.粘土类煤矸石的资源化利用[J].中国煤炭,1996,(9):42~43,54
    [21]张述根,刘纯波,王万军.湘中地区煤矸石的矿物学特征研究[J].湖南地质,2003,Vol.22(2):96~100,86
    [22]王栋民,左彦峰,李俏.煤矸石的矿物学特征及建材资源化利用[J].砖瓦,2006,(2):17~23
    [23]王万军,赵彦巧.青峰煤矸石矿物学特征级分子筛制备研究[J].矿产保护与利用,2006,(6):18~23
    [24]Sripriya R, Rao P, Choudhury B R. Optimisation of operating variables of fine coal flotation using a combination of modified flotation parameters and statistical techniques[J]. International Journal of Mineral Processing,2003, (1):109~127
    [25]Akdemir O, Sdmnez L. Investigation of coal and ash recovery and entrainment in flotation[J]. Fuel, Processing Technology,2003, (1):1~9
    [26]Orem W, Castranova V, Tatu C A, etal. Health impacts of coal and coal use:possible solutions[J].2002, (1):425~443
    [27]Zolotko A A. Resources for secondary fuel from beneficiation wastes and prospects for its recovery[J]. Waste Management,1996, (12):36~38
    [28]Skarzynska K M. Reuse of coal mining wastes in civil engineering-part2:utilization of minestone[J]. Waste Management,1995, (2):83~126
    [30]张平萍,孙传敏.我国煤矸石的综合利用现状及存在问题[J].国土资源科技管理,2004,(6):65~68
    [31]郭云争.大力发展煤矸石的综合利用[J].砖瓦,2004,(4):39~41
    [32]闫开放.我国发展高起点煤矸石烧结砖的建议[J].砖瓦,2005,(5):34~36
    [33]宋焕斌,张文彬.煤矸石的开发利用[J].化工矿物与加工,2000,(12):23~25
    [34]张晓云,刘东玉.煤矸石综合利用技术分析[J].山西能源与节能,2000,(3):38~40
    [35]陆军.煤矸石发电是扩大煤矸石综合利用的有效途径[J].中国煤炭,2001,27(7):36~42
    [36]何贤发.煤矸石在水泥配料中的研究[J].四川水泥,2002,(4):9~10
    [37]孟祥金.浅谈利用煤矸石配料生产水泥技术[J].中国建材装备,1996,(10):19~20
    [38]杨志强,张仁水.煤矸石的特性及应用[J].山东矿业学院学报.1994,13(1):67~71
    [39]Guan Jianshi. Research on sintered gangue as the admixture in cement [A]. In:Proceedings of 1985 Beijing international symposium on cement and concrete[C]. Vol Ⅳ, Beijing:China building industry Press,1985,698~704
    [40]叶大年.Thomp定律在地质学及硅酸盐学中的重大意义[J].硅酸盐学报,1983,11(2):159~164
    [41]关建适.煤炭灰渣的活性[J].硅酸盐学报,1980,8(7):425~429
    [42]蔡晋强.石煤煤矸石的矿物组成及其在建材中的应用途径研究[J].矿产综合利用,1984,(4):18~26
    [43]冯彬.煤矸石活性的研究[J].上海环境科学,2000,Vol.19(7):349~351,353
    [44]高琼英,张智强.高岭石矿物高温相变过程及火山灰活性[J].硅酸盐学报,1989,Vol.17(6):541~548
    [45]Murat M. Hydration reaction and hardening of calcined clays and related minerals[J]. Cement and concrete research,1983,13 (4):511~518
    [46]刘可高,朱建华.煤矸石作水泥混合材的活化方法研究[J].建筑技术开发,2004,31(11):37~40,102
    [47]张永娟.煤矸石最佳热处理工艺制度的选择[J].水泥,2004,(1):16~19
    [48]杨南如.机械力化学工程及效应(Ⅱ)—机械力化学过程及应用[J].建筑材料学报,2003,Vol.3(2):93~97
    [49]戴银所.机械力化学及其在水泥中的应用[J].水泥技术,2002,(4):44~45
    [50]Jaesuk Ryou. Improvement on reactivity of cementitious waste materials by mechano-chemical activation[J]. Materials Letter,2003, (58):903~906
    [51]张长森,马素花,李如华等.细磨水泥熟料高掺量混合材水泥的研究[J].中国建材装备,2002,(1):44~45
    [52]Okada K, Kikuchi S, Ban T. Difference of mechanochemical factors for Al2O3 podwers upon dry and wet grinding[J]. Journal of materials science-materials in medicine,1992, (11): 862-864
    [53]Filio J M, Perucho R V, Saito F, et al. Mechanosynthesis of tricalciumaluminate hydrate by mixed grinding[J]. Materials science forum mater,1996, (2):503~508
    [54]张永娟,张雄.煤矸石-水泥颗粒群匹配与性能关系的人工神经元网络[J].硅酸盐学报,2004,(10):1314~1318
    [55]赵鸿胜,张雄,曹俊.煤矸石粒径分布对活性影响的灰色关联分析[J].水泥工程,2004,(2):23~32
    [56]张永娟,张雄.煤矸石颗粒群分布与其水泥性能的关系[J].新世纪水泥导报,2004,(3):16~19
    [57]Weiping Ma and Paul W. Hydrothermal reaction of fly ash with Ca(OH)2 and CaSO4·2H2O. Cement and concrete research,1997,27 (8):1237~1248
    [58]宫晨琛,李东旭,王晓钧.增钙锻烧煤研石的活性评价及其作用机理[J].硅酸盐学报,2005,33(7):545~552,842
    [59]宋旭艳,宫晨琛,李东旭.煤矸石活化过程结构特性和力学性能的研究[J].硅酸盐学报,2004,32(3):358~363
    [60]宋旭艳,李东旭.不同活化方法对煤矸石胶凝性能的影响[J].材料导报,2004,Vol.18(3):99~102
    [61]赵志曼,何天淳,程赫明,等.微波辐照激发煤矸石活性的机理研究[J].矿冶工程,2002,22(3):54~56
    [62]马成理.自燃煤矸石的材料性能试验研究[J].太原理工大学学报,2003,34(2):154~157
    [63]张长森.自燃煤矸石在水泥基材料中的应用[J].矿产综合利用,2004,(5):48~50
    [64]马骁,孟繁林,段迪,等.自燃煤矸石粉与粉煤灰复合对胶凝材料体系需水性的影响[J].吉林建筑工程学院学报,2006,23(3):58~61
    [65]黄志坚.浅议混合材细度及掺量对水泥需水性能的影响[J].水泥,2003,(3):34~36
    [66]黄福龙,陈起荣.以煤矸石为混合材生产普通水泥[J].福建建材,1997,(3):33~35
    [67]张永娟,张雄.颗粒群分布与掺煤矸石的水泥性能的关系研究[J].水泥,2003,(11):4~6
    [68]张长森,薛建平,房利梅.碱激发烧煤矸石胶凝材料的力学性能和微观结构[J].硅酸盐学报,2004,32(10):1276~1280
    [69]张长森,房利梅.碱激发烧煤矸石胶凝材料的硬化机理研究[J].材料科学与工艺,2004,12(6):597~601
    [70]徐彬,张天石,吕淑珍,等.大掺量煤矸石水泥混凝土耐久性研究[J].混凝土与水泥制品,1997,(6):16~19
    [71]Khaatib J M, Wild S. Pore size distribution of metakaolin paste[J]. Cement and concrete research,1996,26 (10):1545~1553
    [72]Poon C S, Laml, Kou S C, et al. Rate of pozzolantic reaction of metakaolin in high-performmance cement paste[J]. Cement and concrete research,2001,31 (9):1301~1306
    [73]王臣松.镁资源研究与开发述评之-镁水泥的研究与盐湖的开发[J].盐湖研究,1998,6(2):86~89
    [74]蒋述兴.复合型镁质胶凝材料研制与应用[J].非金属矿,1999,Vol.22(6):17~19
    [75]赵玉静,施惠生.煅烧白云石对水泥物理性能和膨胀行为的影响[J].建筑材料学报,2001,(2):110~115
    [76]施惠生,赵玉静,杜家桢.岳亮利用白云石开发膨胀水泥的初步研究[J].水泥,2001,(3):1~4
    [77]波任偌夫.压蒸材料工艺学[M].吕昌高,译.北京:中国建筑工业出版社,1985,17~19
    [78]韦江雄,陈益民.常温下MgO-SiO2-H2O体系胶凝性的研究[J].武汉理工大学报,2006,Vol.28(2):14~16
    [79]Brew D R M. Glasser F P. The magnesia-silica gel phase in slag cements:alkali (K, Cs) sorption potential of synthetic gels [J]. Cement and Concrete Research,2005, (35):77~ 83
    [80]徐光亮,振宇,钱光人,等.MgO对钙硅体系水热反应产物的影响研究,硅酸盐学报,2000,28(2):100~104
    [81]范付忠,钱光人,振宇,等.水热条件下CaO-MgO-SiO2-H2O体系中反应物的竞争与产物的转化机制[J].西南工学院学报,2000,15(4):1~4
    [82]Brew D.R. M, Glasser F.P. Synthesis and characterization of magnesium silicate hydrate gels[J]. Cement and concrete research,2005,35 (1):85~98