滑杆折叠式闸门的试验研究与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为适应目前生态河道的发展理念,在对我国各种常用闸门的结构、类型、特点进行分析、比较的基础上,提出一种新型的滑杆折叠式闸门。该闸门主要由闸门梁系、闸门支铰、支撑杆、滑动轨道、制动装置及止水构成。闸门采用橡胶挡水布挡水,卷扬式手动启闭机启闭。门间以止水和连环扣件联系,可以实现多门一联,同时启闭。各闸门联结处无需修建中墩,与普通钢闸门比较,结构简单,重量轻,工程造价低,运行方便;在枯水期挡水满足人们饮用水的需要,汛期撤走保持河道流畅性,实现了闸门的重复利用,节省了工程造价。
     本文首先介绍了滑杆折叠式闸门的概念和设计思路,详细叙述了闸门各部件的尺寸和具体结构形式:在满足现行规范要求的基础上,闸门梁格采用复式梁格的布置形式,用齐平连接的方式连接,制作方便简单。另外,对闸门工作原理和应用优势做了详细说明和分析。
     采用模型试验研究的方法,使用静态应变仪,在闸门主要部位布设测点,测试闸门的应变规律。同时利用有限元分析软件ANSYS建立了闸门三维结构分析模型,分析了闸门主要构件(面板、主梁、次梁等)的应力、变形规律,校核了闸门的强度和刚度。通过试验结果和有限元结果的比较可以看出,两种方法所得结果虽然存在一定的差异,但是关键的指标均吻合较好,有限元分析较好地验证了试验结果,也验证了有限元模型的可靠性。另外,利用有限元分析了闸门自振频率随耦合面变化的规律。最后在对闸门静动力分析的基础上,为便于模型的修改和设置优化设计变量,以结构的应力、应变为约束条件,以体积最小为目标函数,运用ANSYS参数化语言APDL语言建立了闸门有限元模型,并对优化后的闸门进行了静动力特性的分析,得出了较满意的结果。
     在中小型河道中采用可操作性强的滑杆折叠式闸门来进行季节性挡水,无论是从用水的角度,还是从节省工程投资的角度来看,都是可以优先考虑和采纳的。
By analyzing all kinds of gate structures, types and characteristics in our country, a new thinking for designing slider folding gate is put forward to accommodate the concept of environmental riverway.The slider folding gate system is composed of girder system, trunnion, support bar, sliding rail, braking device and water stop. Rubber flush cloth is used to retain the water. Manual winch-type hoist is used to start and stop the gate. Gate leaf is connected by water stop and serial buckles, which can realize several leafs connected together and opening and closing at the same time.Each gate coupling place is not need of creation pier.The new type gate has more briefness structure:lighter Weight, less cost of project and easier working than the old ones. In dry period, the gate stop water to content people’s need of drinking water, and in flood seasons, the gate is dismantled to keep water flow away easily, which realize the reuse of the gate.
     At first, the gate’s conception and design solutions are introduced in the paper.The gate’s size of each part and specific structure forms are detailedly described. on the basis of the current specification, adopt double entry grillage to layout gate grillage and connect with rewind connection,which is easy to product. Besides, the paper detailedly explains and analyzes the gate’s working principle and application advantages.
     Adopting model test study method,layont points in main position of the gate to test the gate strain regulations by using static resistance strain indicator. At the same time , three - dimensional structure modeling of the gate is builded by using ANSYS to analyse stress deformation rules of the gate main members and check of strength and rigidity of the gate. It’s can be seen from test results and finite element results that the key indicators are in good coincidence although there are certain differences between the two results. The finite element analysis confirm the test results and the reliability of the finite element model. Variation rules of natural frequency with coupling surface also be analysed. Based on static and dynamic analysis of the gate, with structure stress and strain as constraint conditions and minimum volume as objective function, finite element model of the gate is builded using APDL. Satisfactory results are obtained by analysing static and dynamic characteristics of the optimized gate.
     Whether from the angle of using water or from saving engineering investment , it’s can be priorities and adopted to use workable slider folding gate in medium-size river to stop water seasonally.
引文
安徽省水利局勘测设计院.水工钢闸门设计[M] .北京:水利电力出版社,1983
    蔡新,郭兴文,张旭明.工程结构优化设计[M].北京:中国水利水电出版社,2003
    曹青,才君眉,王光纶.弧形钢闸门的静力分析[J].水力发电,2005,31(3):64-66
    陈爱军.现代城区河道综合治理研究[J].科技资讯,2010 (23):160
    陈德亮.水工建筑物[M].北京:中国水利水电出版社,2005
    陈精一.ANSYS工程分析实例教程[M].北京:中国铁道出版社,2006: 203-339
    陈志华,刘红波,周婷,曲秀姝.空间钢结构APDL参数化计算与分析[M].北京:中国水利水电出版社,2009
    仇强,仇美,刘福胜等.撑卧式平板钢闸门自震特性研究[J].人民黄河, 2009, 31(8): 86-87
    仇强,刘福胜.应用于河道中的新型钢闸门静力特性有限元分析[J].吉林水利,2009(5):18-21
    仇强.撑卧式平板钢闸门静动力特性研究与优化设计[D].山东农业大学硕士学位论文, 2009
    单传华,杨海霞.平面钢闸门自振特性研究[J].水利科技与经济,2007, 13 (3):159- 160, 164
    董平川,徐小荷,何顺利.流固耦合问题及研究进展[J] .地质力学学报,1999, (3):17-26
    高振海,聂正茂,严根华等.上翻式平面钢闸门水弹性振动试验研究[J].人民珠江, 2006 (4): 18–21
    耿灵生,巩向锋,王光辉等.基于ANSYS的支臂卧倒式钢闸门设计研究[J].水资源与水工程学报,2010,21(2):142-143
    龚曙光,谢桂兰,黄云清.ANSYS参数化编程与命令手册[M].北京:机械工业出版社, 2009
    江舸,徐海娜.双拱空间网架平面钢闸门的制造工艺[J].水电站设计,2010,26 (1): 90–92
    江苏省水利勘测设计研究院.水闸设计规范SL265-2001[M].北京:中国水利水电出社,2001
    永标,胡仁喜,黄书珍. ANSYS11.0土木工程有限元分析典型范例[M].北京:电子工业出版社,2007
    李力,宁军,张浩.城市生态河道建设方法探究[J].南阳师范学院学报,2010,9(9):72-74
    李权.ANSYS在土木工程中的应用[M].北京:人民邮电出版社,2007: 285-288
    李旭东,彭晓平.拓扑优化理论在二维深孔弧形闸门设计中的应用研究[J].西北水电,2008, (3):54-56
    李宗利.平面钢闸门主梁可靠度校准分析[J] .水力发电,1998(2):52-57
    刘礼华,欧珠光,陈五一.水工钢闸门检测理论与实践[M].武汉:武汉大学出版社,2008: 210-324
    刘礼华,杨志明等.某电站平板闸门的结构应力计算分析[J].水电站设计,2003, 19(2): 43-46
    刘明.土木工程结构试验与检测[M].北京:高等教育出版社,2008: 69-98
    刘守杰,田旨臣.小型水闸工程设计优化探讨[M].中国水利,1999,12:44
    刘细龙,杨福荣.闸门与启闭设备[M].北京:中国水利水电出版社,2002
    刘学勤.水力自控翻板闸门的推广应用研究[J].建材与装饰,2007,9: 65-67
    刘岳元,冯铁城,刘应中.水动力学基础[M].上海:上海交通大学出版社,1990
    卢新杰,石守津等.苏州河河口水闸底轴驱动式翻板闸门设计[J].水利水电科技进展, 2007, 27 (1):11-13,28
    美国ANSYS公司北京办事处.ANSYS动力分析指南[M],1998
    美国ANSYS公司北京办事处.ANSYS非线性分析指南[M],1998
    美国ANSYS公司北京办事处.ANSYS建模与网格划分指南[M], 1998
    美国ANSYS公司北京办事处.ANSYS耦合场分析指南[M],1998
    钱声源,张燎军,邹辉等.偏心铰弧形闸门振动特性研究[J].水电能源科学,2008, 26 (3):166- 168
    水利部,电力工业部,东北勘察设计研究院.水利水电工程钢闸门设计规范SL74-95[M].北京:电力工业出版社,1995
    谭建国.使用ANSYS6.0进行有限元分析[M].北京:北京大学出版社,2002
    王翠萍.平面钢闸门的破坏形式及发展状况[J].水利技术监督,2004(6):45-46
    王好强.平面钢闸门静动力分析与优化设计[D].河海大学硕士学位论文,2006
    王呼佳,陈洪军. ANSYS工程分析进阶实例[M].北京:中国水利水电出版社,2006: 129-167
    王计铭.平原地区河道整治措施初探[J].陕西水利,2010(4):125-126
    王龙帅,董衍玲,张俊杰.水工平面钢闸门漏水处理[J].山东水利,2006,8: 60
    王明才,周琴,傅宗甫.水下卧倒闸门脉动特性试验研究[J].黑龙江水专学报,2005,32 (4):31-33
    王勖成.有限单元法[M].北京:清华大学出版社,2003
    吴持恭.水力学(上) [M].北京:高等教育出版社,2003
    吴翎燕.浅谈河道治理中生态水工技术及其应用[J].科教导刊论坛,2010(5)上:191- 192
    夏志斌,姚谏.钢结构—原理与设计[M].北京:中国建筑工业出版社,2004
    谢智雄,周建方.大型弧形闸门静力特性有限元分析[J].水利电力机械,2006,28(4):21- 24
    徐海娜.平面钢闸门焊接变形的控制[J].焊接质量控制与管理,2006,35(5):64-66
    徐鹤山.ANSYS建筑钢结构工程实例分析[M].北京:机械工业出版社,2005
    许荣钦.悬臂升卧式平面钢闸门设计[J].水利科技,2003(3):29-30,50
    许兴武.新型闸门应力变形及振动原型观测实验[J].人民长江,2007,38(11):170-173
    严根华,阎诗武,樊宝康.水工泄水结构振动的模态分析与有限元综合法[J].振动、测试与诊断,1994 (3):1-7
    严根华,阎诗武.流激闸门振动及动态优化设计[J].水利水运科学研究,1993, 4 (3): 11-22
    严根华,阎诗武.水工弧形闸门三维水弹性耦合共振频率的数值计算[J],水利水运科学研究,1993 (3):45-53
    杨敏,练继建,林继铺.水流诱发平板闸门振动的激励机理[J].水动力学研究与进展, 1997, 2 (12):437-449
    叶镇国.水力自控翻板闸门泄流水力关联理论[J].湖南大学学报,1994, 21(3): 98 - 105
    易日.使用ANSYS6.1进行结构力学分析[M].北京:北京大学出版社,2002
    尤凤,肖自龙.叠梁闸门设计新思路[J].华北水利水电学院学报,2005,26(4):7-9
    张京彬.小型水闸安全现状及新建应注意的问题[J].广东水利水电,2009(5):17-18
    张良成.材料力学[M].北京:中国农业出版社,2003
    张平.溢流坝弧形闸门-闸墩及相邻闸门闸墩耦合流激振动特性研究[D].天津大学硕士学位论文,2009
    张文远.溪洛渡水电站泄洪洞事故闸门启闭力及流激振动试验研究[D].中国水利水电科学研究院硕士学位论文,2006
    赵禹.河道治理中工程总体布置优化设计[J].科技情报开发与经济,2010, 20(25): 145-147
    周云.防屈曲耗能支撑结构设计与应用[M].北京:中国建筑工业出版社,2007
    朱伯芳,黎展眉,张壁城.结构优化设计原理与应用[M].北京:水利电力出版社, 1984: 94-107
    朱伯芳.有限单元法原理与应用[M].北京:水利水电出版社,2009
    朱大林,游敏,杜汉斌.平面钢闸门主梁的可靠度分析及概率设计[J].水力发电, 1997 (3):33-35,46
    朱尔玉,季文玉,冯东,兰巍.土木工程结构试验基础教程[M].北京:中国科学技术出版社,2008: 170-234
    朱耿军.基于ANSYS软件平台的弧形闸门结构优化设计[D].南京水利科学研究院硕士学位论文,2005
    朱雷,陈威,吴玲.新型平板钢闸门的理论研究与实际应用[J].国外建材科技,2002, 23 (1): 69-71
    朱世哲,罗尧治.一种新型闸门力学性能的理论和试验研究[J].工程力学,2008,25 (9): 66-71
    朱世哲.双拱型空间钢管结构闸门的分析理论和试验研究[D].浙江大学博士学位论文,2006
    唐咏.基于模型试验和有限元法的弧形钢闸门动特性研究[D].南京航空航天硕士学位论文,2007
    卓美燕.中小型平面钢闸门面板的优化设计[J].黑龙江水专学报,2009,36(3):24-26
    ANSYS, Inc. ANSYS Basic Analysis Procedures Guide .ANSYS 7.0 HTML Online Documentation, 2002
    ANSYS, Inc. ANSYS Advanced Analysis Techniques Guide. ANSYS 7.0 HTML Online Documentation,2002
    ANSYS, Inc .ANSYS Modeling and Meshing Guide. ANSYS 7.0 HTML Online Documentation, 2002
    Browm J E, Hutt J M, Salama A E. Finite element solution to dynamic stability of bars. AIAA J,1986,6 (7):1423-1425
    Billeters P. Flow-induced multiple-mode vibrations of gate with submerged dischage. Journal of Fluids and Structures,2000,14(2):323-338
    Chander G. design guideline for spillway gate. Journal of hydraulic engineer, 1996, 122(3):155-165
    G. vittori L. Free and forced oscillations of a gate system as proposed for the protection of Venice Lagoon: the discrete and dissipative model.Coastal Engineering, 1997,31(1):37-58
    Hart E. D, Hite J. E., Barkley Dam Gate Vibrations, Symposium on Practical Experiences withFlow-Induced Vibrations, Kralsruhe: IAHR/UTAM, 1980: 890-906
    Ishii. Flow-Induced Vibration of Long-span Gate, Part I: Model Development, Fluids and Structures, 1992(6): 539-562
    Liu G. A. Shape and cross-section optimisation of a truss structure. Computers and Structures, 2001, 79(5):681-689
    Mostafiz. K. Dynamic performance evaluation of gate vibration. Journal of Structural Engineering,1999,125(4):445-452
    N.Ishii. Field study of a long-span shell-type gate undergoing flow-induced vibration. Journal of Fluids and Structure,1995,9(1):19-41
    O. C. Zienkiewicz.Analysis of Nonlinean Problems with Particular Reference to Jointed Rock Systems, Proc. 2nd, Int. Conf. Soc. Of Rock Meth.,Belgard, 1970 Vo1.3, Aug Parson B,Wilson E A. A method for determining the surfacestresses resulting from interferencefits. ASME J Engng for industry,1970;208-218
    Shigematsu T, Hara T, Ohga M. Dynamic stability analysis by matrix fuction. J of Engineering Mechanics,1987,113 (7) :1085-1100
    Shastry B P, Rao G V. Dynamic stability of bars considering shear deformation and rotatoryinertia. Computers &Structures ,1984 ,19 (5) :823-827
    Shastry B P, Rao G V. Dynamic stability of bars considering shear deformation and rotatory inertia. Computers &Structures ,1984 ,19 (5) :823-827
    Shigematsu T, Hara T, Ohga M. Dynamic stability analysis by matrix fuction. J of Engineering Mechanics,1987,113 (7) :1085-1100
    S. Z. Shen, X. D. Zhi. Failure Mechanism of Reticular Shells Subjected to Dynamic Actions, Advances in Steel Structures, Vo1, I, 2005:69-82
    Sibert K. The improvement of the Ohio River. Transactions of the ASCE63, 1909: 388-425 Sanabri S. Hydrodynamic study of the theolmsted wicket gate using a 1:25-scale model. Mechanical Systems and Signal Processing,1998,12(5):661-677
    Tsuta T, Yamaji S. Finite element analysis of contact problems. Theory and Practice in Finite Element Structural Analysis, Japan; University of Tokoy Press,1973
    VRIJER A, Stability of vertically movable gates, Sym on Practical Experiences withFlow-Induced Vibration,1980,30(4): 428-435
    Wang D. Truss shape optimization with multiple displacement constraint. Computer methods in applied mechanics and engineering,2002,191(33):3597-3612
    Westergaard H. Water pressures on dams during earthquakes Trans. ASCE, 1933, 9 (8):413-418
    Yan Shiwu. Dynamic characteristics of fainter gates and their optimization, structural Engineering, proc of ASCE,1991(11)
    Zhuo Jiashou,0-Y Xiao Ning. The Variational Inequality Method on the Contact Problems of Gravity Dam with Cracks.of EASEC-2,VP press,BankoK Thailand