轿车车身装配偏差流的状态空间建模方法及应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要

引文
[1] Ceglarek D., Shi J., Design evaluation of sheet metal joints for dimensional integrity, ASME Journal of Manufacturing Science and Engineering, 1998, 120 (2): 452-460.
    [2] JD Power, Initial quality survey 1997 for automobiles, JD Power and Associated, 1997.
    [3] 傅向阳, 新投产车型车身的 FE 方法, 汽车技术, 1999, 3: 24-28.
    [4] Montgomery D. C., Woodall W. H., A discussion on statistically-based process monitoring and control, Journal of Quality Technology, 1997, 29 (2): 121-162.
    [5] Turner J., Wozny M., Tolerances in computer-aimed design, The Visual Computer, 1987, 3: 214-266.
    [6] Turner J., Wozny M., The M-space theory of tolerance, Proceedings of the ASME Advanced in Design Automation, USA, 1990: 217-225.
    [7] Turner J., Wozny M., Tolerance analysis in a solid modeling environment, ASME Computer in Engineering, 1987, 2: 169-175.
    [8] Martino P., Gabriele G. A., Application of variational geometry to the analysis of mechanical tolerances, Proceedings of Failure Prevention and Reliability, 1989, 16: 19-27.
    [9] Lin P. D., Chen J. F., Analysis of errors in precision for closed loop mechanisms, ASME Journal of Mechanical Design, 1994, 116: 197-203.
    [10] Gao J. S., Kenneth W. C., Sepencer P. M., Comparison of assembly tolerance analysis by the direct linearization and modified monte carlo simulation methods, Proceedings of the ASME Design Engineering Technical Conferences, Boston, 1995, 82 (1), 353-360.
    [11] Hu S. J., Stream of variation theory for automotive body assembly, Annals of the Crip, 1997, 46 (1): 1-6.
    [12] Liu S., Hu S. J., An offset finite element model and its application in predicting sheet metal assembly variation, Internal Journal of Machine Tools and Manufacturing, 1995, 35 (11): 1545-1557.
    [13] Liu S., Hu S. J., Variation simulation for deformable sheet metal assemblies using finite element methods, ASME Journal of Manufacturing Science and Engineering, 1997, 119: 368-374.
    [14] Hsieh C., Kong P., A framework for modeling variation in vehicle assembly processes, Journal of Vehicle Design, 1997, 18 (5): 466-473.
    [15] Hsieh C., Kong P., Simulation and optimization of assembly processes involving flexible parts, Journal of Vehicle Design, 1997, 18 (5): 455-465.
    [16] Liu S., Hu S. J., Sheet metal joint configuration and their variation characteristics, ASME Journal of Manufacturing Science and Engineering, 1998, 120: 461-467
    [17] Lawless J. F., Machay R. J., Robinson J. A., Analysis of variation transmission inmanufacturing processes – part I, Journal of Quality Technology, 1999, 31 (2): 131-142.
    [18] Lawless J. F., Machay R. J., Robinson J. A., Analysis of variation transmission in manufacturing processes – part II, Journal of Quality Technology, 1999, 31 (2): 143-154.
    [19] McCaragher B., Task primitives for the discrete event modeling and control of 6-dof assembly tasks, IEEE Transactions on Robotics and Automation, 1996, 12 (2): 280-289.
    [20] Mantripragada R., Whitney D. E., Modeling and controlling variation propagation in mechanical assemblies using state transition models, IEEE Transactions on Robotics and Automation, 1999, 15 (1): 124-140.
    [21] Hu S. J., Wu S. W., Identifying root cause of variation in automobile body assembly using principal component analysis, Transactions of NAMRI, 1992, 20: 311-316.
    [22] Wu S. K., Hu S. J., Wu S. M., A fault identification and classification scheme for an automobile door assembly process, International Journal of Flexible Manufacturing Systems, 1994, 6 (4): 261-285.
    [23] Roan C., Hu S. J., Wu S. M., Computer aided identification of root cause of variation in automobile body assembly, ASME Journal of Manufacturing Science and Engineering, 1993, 64: 391-400.
    [24] Ceglarek D., Shi J., Wu S. M., A knowledge-based diagnostic approach for the launch of the auto-body assembly process, ASME Journal of Engineering for Industry, 1997, 116 (4): 491-499.
    [25] Ceglarek D., Shi J., Dimensional variation reduction for automotive body assembly, Manufacturing Review, 1995, 8 (2): 139-154.
    [26] Ceglarek D., Shi J., Fixture failure diagnosis for auto-body assembly using pattern recognition, ASME Journal of Engineering for Industry, 1996, 118: 55-66.
    [27] Apley D. W., Shi J., Diagnosis of multiple fixture faults in panel assembly, ASME Journal of Manufacturing Science and Engineering, 1998, 120 (4): 793-801.
    [28] Jin J., Shi J., State space modeling of sheet metal assembly for dimensional control, ASME Journal of Manufacturing Science and Engineering, 1999, 121 (4): 756-762.
    [29] Ding Y., Ceglarek D., Shi J., Modeling and diagnosis of multistage manufacturing processes part I-state space model, Proceedings of the 2000 Japan/USA Symposium on Flexible Automation, Ann Arbor, 2000, 7: 23-26.
    [30] Zhou S., Huang Q., Shi J., State space modeling of dimensional variation propagation in multistage machining processes using differential motion vector, IEEE Transactions on Robotics and Automation, 2003, 19 (4): 296-309.
    [31] Ding Y., Ceglarek D., Shi J., Fault diagnosis of multi-station manufacturing processes by using state space approach, ASME Journal of Manufacturing Science and Engineering, 2002, 124 (2): 313-322.
    [32] Ding Y., Shi J., Ceglarek D., Diagnosability analysis of multi-station manufacturingprocesses, ASME Journal of Manufacturing Science and Engineering, 2002, 124 (1): 1-13.
    [33] Huang Q., Shi J., Variation transmission analysis and diagnosis of multi-operational machining processes, IEEE Transactions on Quality and Reliability, 2004, 36: 807-815.
    [34] Zhou S., Chen Y., Shi J., Statistical estimation and testing for variation root cause determination of multistage manufacturing processes, IEEE Transactions on Automation Science and Engineering, 2004, 1 (1): 73-83.
    [35] Jin J., Guo H., ANOVA method for variation component decomposition and diagnosis in batch manufacturing processes, The International Journal of Flexible Manufacturing Systems, 2003, 15 (2): 167-186.
    [36] Ding Y., Kim P., Ceglarek D., Optimal sensor distribution for variation diagnosis in multistation assembly processes, IEEE Transactions on Robotics and Automation, 2003, 19 (4): 543-556.
    [37] Liu C., Ding Y., Chen Y., Optimal coordinate sensor placements for estimating mean and variance components of variation source, IEE Transactions, 2005, 37 (9): 877-889.
    [38] Kim P., Ding Y., Optimal design of fixture layout in multistation assembly processes, IEEE Transactions on Automation and Engineering, 2004, 1 (2): 133-145.
    [39] Kim P., Sun J., Multi-station fixture layout design using simulated annealing, International Journal of Management Science, 2004, 10 (2): 73-87.
    [40] Cai W., Robust pin layout design for sheet-panel locating, International Journal of Advantage Manufacturing and Technology, 2006, 28: 486-494.
    [41] Li B., Shiu B. W., Lau K. J., Robust fixture configuration design for sheet metal assembly with laser welding, ASME Journal of Manufacturing Science and Engineering, 2003, 125 (1): 120-127.
    [42] Gopalakrishnan K. G., Goldberg K., Bone G., Unilateral fixture for sheet metal parts with holes, IEEE Transactions on Automation Science and Engineering, 2004, 1 (2): 110-120.
    [43] Wang J., Zhou J., Lin Z., Locators optimization for measuring fixture design, Chinese Journal of Mechanical Engineering, 2004, 17 (3): 332-335.
    [44] Menassa R. J., Devries W. R., Optimization methods applied to selecting support positions in fixture design, ASME Journal of Engineering for Industry, 1991, 113: 412-418.
    [45] Liu Y. G., Hu S. J., Assembly fixture fault diagnosis using designated component analysis, ASME Journal of Manufacturing Science and Engineering, 2005, 127 (2): 358-368.
    [46] 连军, 车身装配偏差传递的离散事件动态系统建模研究, 博士论文, 上海交通大学, 2003.
    [47] Takezawa N., An improved method for establishing the process-wise quality standard,Reports of Statistical and Applied Research, JUSE, 1980, 27 (3): 63-75.
    [48] Shiu B., Ceglarek, D., Shi J., Multi-station sheet metal assembly modeling and diagnostics, NAMR/SME Transactions, 1996, 23: 199-204.
    [49] 刘豹, 现代控制理论, 机械工业出版社, 1998.
    [50] Palm, William J., Control systems engineering, New York Wiley, 1986.
    [51] Khan A., Ceglarek D., Shi J., Ni J., Sensor optimization for fault diagnosis in single fixture systems: a methodology, ASME Journal of Manufacturing Science and Engineering, 1999, 121: 109-121.
    [52] Wang Y., Nagarkar S. R., Locator and sensor placement for automated coordinate checking fixtures, ASME Journal of Manufacturing Science and Engineering, 1999, 121: 709-719.
    [53] Golub, Van Loan, 矩阵计算, 科学出版社, 2001.
    [54] 陈祖明, 矩阵论引论, 北京航空航天大学出版社, 1988.
    [55] Rao, Kleffe, Estimation of variance components and applications, Amsterdam: North-Holland, 1998.
    [56] 朱军, 线性模型分析原理, 科学出版社, 1999.
    [57] 王松桂, 史建红, 尹素菊, 线性模型引论, 科学出版社, 2004.
    [58] Zhou S., Chen Y., Shi J., Root cause estimation and statistical testing for quality improvement of multistage manufacturing processes, IEEE Transactions on Automation Science and Engineering, 2004, 1 (1): 77-83.
    [59] Seifert B., Estimation and test of variance components using the MINQUE method, Statistics, 1985, 16 (4): 621-635.
    [60] Muculloch C., Searle, S. R., Generalized linear and mixed models, New York: Wiley, 2001.
    [61] Harville, D. A., Maximum likelihood approaches to variance component estimation and to related problems, Journal of American Statistical Association, 1977, 72: 320-338.
    [62] Stern, S. E., Welsh, Likelihood inference for smell variance components, The Canadian Journal of Statistics, 2000, 28 (3): 517-532.
    [63] Rao, C. R., Estimation of variance components-MINQUE theory, Journal of Multivariate Analysis, 1971, 1: 257-275.
    [64] Rao, C. R., Estimation of variance and covariance components in linear models, Journal of American Statistical Association, 1972, 67: 112-115.
    [65] Kleffe J., Seifert B., On the role of MINQUE in testing of hypotheses under linear mixed models, Communications in Statistical-Theory and Methods, 1988, 17: 1287-1309.
    [66] Seifert B, Testing hypotheses in linear mixed model, Journal of Statistical Planning and Inference, 1993, 36: 253-268.
    [67] Seifert B., Exact tests in unbalanced mixed analysis of variance, Journal of StatisticalPlanning and Inference, 1992, 30: 257-266.
    [68] Chen C. T., Linear system theory and design, Orlando, FL: Harcourt Brace Jovanovich, 1984.
    [69] Fedorov V. V., Theory of optimal experiments, New Your: Academic press, 1972.
    [70] Atkinson A. C., Donev A. N., Optimum experimental design, New York: Oxford University Press, 1992.
    [71] Pukelsheim F., Optimal design of experiments, New York Wiley, 1993.
    [72] 周明, 孙树栋, 遗传算法原理及应用, 国防工业出版社, 2002.
    [73] Michalewics Z., Genetic algorithm + data structure = evolution programs, Berlin Heidelberg Springer Verlag, 1996.
    [74] Goldberg D. E., Kalyanmoy D., A comparative analysis of selection schemes used in genetic algorithm, Foundations of Genetic Algorithms, San Francisco, CA, USA, 1991: 69-93.
    [75] Kalyanmoy D., Mayank G., Optimization of engineering designs using a combined genetic search, Proceedings of the Seventh International Conference on Genetic Algorithms, 1997: 521-528.
    [76] Saravanan R., Asokan P., Sachidanandam M., A multi-objective genetic algorithm (GA) approach for optimization of surface grinding operations, International Journal of Machine & Manufacture, 2002, 42: 1327-1334.
    [77] Goldbert D., Genetic algorithms in search optimization and machine learning, Addison-Wesley Publishing Company, INC, 1989.
    [78] 张杰, 阳宪惠, 多变量统计过程控制, 化学工业出版社工业装备与信息工程出版中心, 2000.
    [79] 陈公宁, 矩阵理论与应用, 高等教育出版社, 1990.
    [80] Ding Y., Ceglarek D., Shi J., Processes-oriented tolerance synthesis of multistage manufacturing systems, Proceedings of the 2000 ASME IMECE, Orlando, 2000, 11: 5-10.
    [81] Ngoi, B. K. A., Ong C. T., A complete tolerance charting system, International Journal of Production Research, 1993, 31: 453-469.
    [82] Ngoi B. K. A., Ong J. M., A complete tolerance charting system in assembly, International Journal of Production Research, 1999, 37: 2477-2498.
    [83] Cunningham T. W., Matripragada R., Lee D. J., et all., Definition analysis and planning of a flexible assembly process, Proceedings of 1996 Japan/USA Symposium on Flexible Automation, 1996, 2: 767-778.
    [84] Fainguelernt D., Weill R., Bourdet P., Computer aided tolerancing and dimensioning in process planning, Annals of the CIRP, 1986, 35 (1): 381-386.
    [85] Archard J. F., Contact and rubbing of flat surfaces, Journal of Applied Physics, 1953, 24: 981-988.
    [86] Tang L. C., Goh C. J., Lim S. C., On the reliability of components subject to sliding wear-a first report, Sliding Wear, 1988, 22: 1177-1181.
    [87] Wallbridge N. C., Dowson D., Distribution of wear rate data and statistical approach to sliding wear theory, Wear, 1987, 6: 191-210.
    [88] 周志革, 车身装配误差建模、诊断与控制的统计方法与随机模拟理论, 博士论文, 上海交通大学, 1999.
    [89] ZangWill W. I., Nonlinear programming: a unified approach, Prentice-Hass Englewood Cliffs, 1967.
    [90] Shiyu Zhou, Yu Ding, Yong Chen, Jianjun Shi. Diagnosability study of multistage manufacturing processes based on linear mixed-effects models, Journal of Quality Technology, 2000, 11: 1034-1042.
    [91] Ding Yu, Dariusz Ceglarek, Jianjun Shi. Design evaluation of multi-station assembly processes by using state space approach, ASME Journal of Mechanical Design, 2002, Vol. 124(3): 408-418.