基于矩阵变换的公差分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,客户对产品的质量要求越来越高。对于复杂装配体产品,其质量取决于产品装配后关键尺寸的误差。对产品制造业企业来说,通过产品制造和装配过程中的精度管理控制关键尺寸误差,提高产品质量,增强产品市场竞争力成为企业的首要任务之一。公差分析作为精度管理的核心内容,一直是精度管理领域的研究热点。在产品设计阶段对其进行公差分析,可以在产品样机验证前发现公差设计和装配工艺设计中可能存在的问题,提前解决以缩短产品开发周期,降低开发成本。同时进行公差分析还可以提高产品质量,降低产品制造成本。
     本论文提出了一种系统的三维公差分析方法,运用齐次坐标变换矩阵表达三维装配误差,通过矩阵运算进行公差分析。本文主要工作如下:
     (1)对公差分析领域的研究成果进行了综述,总结了这些研究成果的优点和不足,提出了本文公差分析研究的思路;
     (2)提出一种新的装配模型,为公差分析提供零件信息、装配特征信息、零件之间的定位关系信息和装配特征之间的配合关系信息。并根据装配模型生成装配体的关键尺寸的误差累积路线;
     (3)根据公差分析方法的特点,建立特征公差模型,把特征的形位公差以统一的形式进行定义,以便于在公差分析过程中直接应用;
     (4)应用蒙特卡洛方法模拟零件的制造,对特征所有的公差进行误差随机取值;
     (5)研究特征误差对零件装配误差的影响,把零件的装配误差用齐次坐标变换矩阵表示,研究根据误差累积路线计算装配体关键尺寸误差的方法;
     (6)研究对关键尺寸计算结果进行统计分析的方法,以及分析结果的意义。
Along with the development of modern manufacturing industry, the quality of products becomes more and more important in the competition among enterprises. Since complicated products are made of many parts, the quality is largely depended on the assembly accuracy of key characteristics. Therefore, the prime task is to improve the quality of products by machining accuracy and assembly accuracy management in order to improve the competitiveness of manufacturing enterprises. Tolerance analysis is the core of accuracy management and a lot of work has been done in this field by scholars both at home and abroad. Engineers can find the defects in the tolerance design and process design stage before making prototypes. Moreover, the development time and the manufacturing cost will be decreased at the meantime.
     The thesis proposes a systemic 3 dimensional tolerance analysis method in which the homogeneous coordinate transformation matrix represents for 3D assembly error and the matrix operation is used in tolerance analysis. The major work is as follows:
     (1)The previous work in tolerance analysis field is surveyed, and the advantage and disadvantages of those former study are concluded and a tolerance analysis method;
     (2)A new assembly model is proposed, providing the parts information, assembly feature information, constraint relation of parts and fitting relationship information, with which to generate the error accumulation route;
     (3)The feature tolerance model is established according to the matrix transformation method characteristic. The shape and position tolerance in the engineering drawing can be transformed into a special tolerance type that can be used directly in tolerance analysis method is put forward;
     (4)The Monte Carlo method is used to simulate product manufacturing process and take random error value for all the tolerance of the features;
     (5)The influence of the feature's deviation on assembly's key characteristics is studied, with the homogeneous coordinate transformation matrix representing for 3d assembly error;
     (6)The error accumulation result is analyzed and the analysis result for product tolerance optimization is also evaluated.
引文
[1]David M, Sharman Ali A, Yassine. Characterizing Complex Product Architectures[J]. Systems Engineering,2004,7(1):35--60
    [2]Laperriere. Planning of Products Assembly and Disassembly[J]. Annals of the CIRP.1992,41(1):111-123
    [3]余剑锋,程晖,姚定等.复杂产品装配顺序评价的路径反馈方法[J].西北工业大学学报.2009,27(1):24-29
    [4]葛宜银,李国波.公差模型和公差分析方法的研究.汽车工艺与材料[J].2009,7:51-53
    [5]Requicha A A, Robotics Research. Towards a Theory of Geometric Tolerancing[J]. International Journal of Advanced Manufacturing Trchnology. 1983,2(4):45-60
    [6]Will R. Tolerancing for function[J]. CIRP Annals.1988,37(2):1-8
    [7]Greenwood W H, Chase K W. Worst Case Tolerance Analysis with Nonlinear Problem[J]. Journal of engineering for industry.1988,110(8):232-235
    [8]Greenwood W H, chase K W. Root Sum Squares Tolerance Analysis with Nonlinear Problem[J]. ASME Journal of engineering for industry.1989,112(8): 382-384
    [9]Early R, Thompson J. Variation Simulation Modeling:Variation Analysis Using Monte Carlo Simulation[J]. ASME Design engineering division.1989,16(9): 139-144
    [10]Clement A, Riviere A. Tolerancing Versus Nominal Modeling in Next Generation CAD/CAM System[J]. Proceedings of 3rd CIRP Seminars on Aided Tolerancing. London:Chapman& Hall.1993,4:97-114
    [11]Zhang H C. Advanced Tolerancing Techniques[M]. New York:John Wiley & Sons Inc.1997
    [12]Salomons W. Computer Support in the Design of Mechanical Products, constraint Specification and Satisfaction in Feature Based Design for Manufacturing[D]. Netherlands:University of Twente,1995:47-58
    [13]Wayne Cai, Yufeng Long, Ching Hsieh. Variation simulation for digital panel assembly[J]. ASME international mechanical engineering congress.2003,5: 27-46
    [14]Zhengshu Shen. Tolerance Analysis with EDS/VSA[J]. Journal of computing and information science in engineering.2003,3:95-97
    [15]Schlatter B. Computer Aided 3D Tolerance Analysis of Disk Drivers[J]. IBM Journal of Research and Development.1996,40(5):537-542
    [16]张勇,黄克正,高常青等.公差设计商用软件的研究和展望[J].工具技术.2005,39(11):14~15
    [17]吴昭同,杨将新.计算机辅助公差优化设计[M].杭州:浙江大学出版社,1999
    [18]李斌,张根保,徐宗俊.有向功能关系图OFRG功能实现的代数方法[J].重庆大学学报,1999,22(1):41-46
    [19]李斌.计算机辅助公差设计中有向功能关系图OFRG功能实现方法及应用[D].重庆大学硕士学位论文,1998:25-28
    [20]刘玉生.基于数学定义的平面尺寸和形位公差建模与表示技术的研究[D].浙江大学博士学位论文,2000:23-37
    [21]刘玉生,高曙明,吴昭同等.基于特征的层次式公差信息表示模型及其实现[J].机械工程学报.2003,39(3):1~7
    [22]郭长虹,赵炳利,郝丽霞.基于蒙特卡洛的模拟的计算机辅助公差分析[J].现代制造工程.2004,8:74-76
    [23]王会卿,肖田元,张林鍹.基于向量环尺寸链模型的公差分析[J].现代制造技术.2005,8:82-84
    [24]杨文玉,胡紫阳.精密装配的基准信息链模型和偏差计算[J].中国机械工程.2005,16(27):1931~1935
    [25]胡紫阳.精密装配运动学约束建模及应用[D].华中科技大学硕士学位论文,2006:25-31
    [26]顾凌韬,金隼,曹俊等.基于特征的公差分析及其非线性问题研究[J].机械设计与制造.2007,4(4):42-44
    [27]杜华.产品设计中的计算机辅助公差分析[J].核动力工程.2009,30(5):82-85
    [28]U Roy, C R Liu, T C Woo. Review of Dimensioning and Tolerancing: Representation and Processing[J]. Computer Aided Design.1991,23(7):466-483
    [29]P Kopardkar, S Anand. Tolerance Allocation Using Neural Networks[J]. International Journal of Advanced Manufacturing Division (Pub-lication)DE. 1995,10(4):269-276
    [30]王恒,宁汝新.计算机辅助公差设计与分析的研究现状及展望[J].航空制造技术.2006,2:4-5
    [31]De Fazio T L, Whitney D E. Simplified Generation of all Mechanical Assembly Sequences [J]. IEEE Journal of Robotics and Automation.1987,3(6):640-658
    [32]Cho D Y, Shin C K, Cho H S. Automatic Inference on Stable Robotics Assembly Sequences Based on the Evaluation of Base Assembly Motion Instability [J]. Robotica.1993,11:351-362
    [33]付宜利,田立中,董正卫.装配关系的有向图表达方法研究[J].计算机集成制造系统.2003,9(2):149-153
    [34]张开富,李原,邵毅等.一种集成装配过程信息的装配建模方法[J].西北工业大学学报.2005,23(2):222-226
    [35]张开富,李原,邵毅等.基于关键特征和图的零件公差及建模方法[J].西北工业大学学报.2005,23(5):647-651
    [36]Lee K, Gossard D C. A Hierarchical Data Structure for Representing Assemblies[J]. Computer Aided Design.1985,17(7):15-19
    [37]王晓光,苏群星,姚志刚.某型导弹的虚拟维修系统中信息模型的实现[J].微计算机信息.2006,22(1):35-37
    [38]王俊,黄翔,李迎光.基于装配模型的快速设计方法研究[J].中国制造业信 息化,2006,35(1):28~31
    [39]董天阳,童若锋,张玲等.多细节层次装配模型及序列规划[J].计算机集成制造系统.2004,10(10):1212~1219
    [40]张刚,殷国富,邓克文等.面向装配的特征层次建模方法研究[J].计算机集成制造系统.2005,11(7):916-920
    [41]戴国洪,李长春,张友良.面向装配序列规划的装配建模研究[J].机械设计.2005,22(2):45~47.
    [42]R Mantripragada, D E Whitney. The Datum Flow Chain:A Systematic Approach to Assembly Design and Modeling[J]. Research in Engineering Design. 1998,10:150-165
    [43]Shukla G, Whitney D E. Systematic Evaluation of Constraint Properties of Datum Flow Chain[C]. The 4th IEEE International Symposium on Assembly and Task Planning Soft Research'Park, Fukuoka,2001:22-36.
    [44]Whitney D E. Mechanical assemblies:Their Design, Manufacture, and Role in Product Development[M]. New York:Oxford University Press,2004:210-234
    [45]熊有伦,尹周平,熊蔡华等.机器人操作[M].武汉:湖北科学技术出版社,2002:203~212
    [46]蔡自兴.机器人学[M].北京:清华大学出版社,2000:46-59
    [47]于永利,朱小东,张柳.离散事件系统模拟[M].北京:北京航空航天大学出版社,2003:37-48
    [48]徐旭松,杨将新,曹衍龙等.基于齐次坐标变换的制造误差建模研究[J].浙江大学学报.2008,42(6):1021~1026
    [49]张萌.数控机床运动误差检测与分析[D].河南科技大学硕士学位论文,2008:10-16
    [50]袁贵星,王平.蒙特卡洛模拟及其在公差设计中的应用[J].天津科技大学学报.2008,23(2):60~64
    [51]蔺小林,蒋耀林.现代数值分析[M].北京:国防工业出版社,2004:245-254