超大跨CFRP缆索悬索桥力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在新世纪,土木工程结构,特别是桥梁结构和房屋建筑结构的安全性和耐久性日益得到重视,结构材料受到了新的挑战。具有轻质、高强、耐腐蚀、耐疲劳等优良性能的碳纤维增强非金属聚合物复合材料(CFRP),引起了土木工程界的广泛重视和兴趣,相关的研究和应用得到迅速开展并不断深入。将CFRP用作悬索桥主缆能充分发挥材料性能优势,一方面,大幅度减轻主缆自重,提高悬索桥承载效率,进而增大悬索桥的极限跨径;另一方面,解决钢主缆的腐蚀问题,特别是位于海洋等恶劣环境条件下的钢主缆极易腐蚀;再次,因主缆自重的大幅减轻,可以采用体积更小的锚碇和索塔,从而节省材料,并方便施工。由于世界上当前尚无CFRP缆索悬索桥建成的先例,相关文献也非常少,因此本文结合国家自然科学基金资助项目-“碳纤维复合材料缆索承重桥力学行为分析与优化设计法研究”(50908016),围绕CFRP缆索悬索桥这一主题,开展了一系列的科研工作,现将本文的主要研究成果和结论概括如下:
     1、CFRP缆索悬索桥成桥状态计算
     作为准确分析悬索桥静力、动力性能的基础,本文系统地研究了悬索桥主缆线形和内力的计算方法。分别建立了单索和分段悬链线索的线形和内力计算解析公式,同时提出缆索设计参数的迭代求解方法,并编制了相应的计算程序。
     研究了主缆与鞍槽切点坐标的计算方法,推导了主缆与鞍槽间的接触内力及鞍槽内主缆成桥长度、无应力长度的计算公式,并探讨了CFRP主缆对索鞍的设计要求。
     2、超大跨CFRP缆索悬索桥静力性能分析
     独立推导了悬索桥的极限跨径、承载效率、主缆面积、主缆自重应力等的解析计算式,并对两种缆索悬索桥的上述参数进行了计算和比较,证实了CFRP缆悬索桥在静力性能方面的优势。
     探索性设计了主跨分别为2000m、3000m的钢缆悬索桥和CFRP缆悬索桥以及主跨为5000mCFRP缆悬索桥,并分析和比较两者在恒载、汽车荷载、温度作用下的静力性能,得出了若干重要结论,为工程设计提供了科学依据。
     3、超大跨CFRP缆索悬索桥动力性能分析
     基于悬索桥基频解析估算公式,定性地研究了CFRP缆悬索桥的主要自振特性,结果表明,CFRP缆悬索桥的扭弯频率比大于钢缆悬索桥的相应值,对提高抗风稳定性有利。
     基于静力分析所建立的模型,采用有限元法分析和比较超大跨度CFRP缆悬索桥和钢缆悬索桥的动力特性;通过分析主要设计参数对CFRP缆悬索桥动力性能的影响,提出了提高CFRP缆悬索桥空气静力稳定性的措施,为结构的优化设计提供理论基础。
     4、超大跨CFRP缆索悬索桥静风稳定性研究
     根据流体力学的研究手段及控制方程,建立了加劲梁断面气动特性的数值模拟方法,分别利用FEA和FLUENT提取了静力三分力系数,两者吻合较好,表明计算结果可信;运用CFD方法研究了采取边缘风嘴气动措施后各种主梁断面的气动特性,并给出本文设计中比较合理的断面型式,为加劲梁断面的优化设计提供科学依据。
     应用桥梁结构三维非线性空气静力分析方法,首次分析了CFRP缆悬索桥在静风荷载作用下的稳定性和变形特征,并与钢缆悬索桥进行比较,分析结果表明,CFRP缆悬索桥的静风稳定临界风速略小于钢缆索,与经验公式计算结果一致。
     首次分析了矢跨比、加劲梁约束条件、缆索体系等对CFRP缆悬索桥静风稳定性的影响,并据此提出了提高CFRP缆悬索桥抗风稳定性的若干措施。
     5、粘结型锚具的受力分析
     提出了CFRP粘结型直筒式锚具极限承载力的解析计算方法;设计了一种直筒+内锥式锚具;建立了CFRP粘结型锚具的有限元分析方法并分析了其受力全过程;首次分析了粘结胶体的弹性模量和厚度、锚具长度、内锥角度等对CFRP粘结型锚具受力性能的影响,为CFRP锚具的优化提供科学依据。
In the new century, the security and durability of civil engineering structures, such asbridge structures and building structures are considered increasingly and structural materialsare put forward new challenges. For its good performances, such as light weight, highstrength, good corrosion resistance and fatigue resistance, Carbon Fiber Reinforced Polymer(CFRP) has caught the attention and interest of the civil engineering realm, and it has beenresearched and applied rapidly. Used as main cables of suspension Bridges, its advantages canbe exerted fully. On the one hand, the deadweight of main cables can be greatly reduced, thecarrying efficiency can be improved, thus the ultimate span of suspension bridges can beincreased; On the other hand, the problem of corrosion of steel main cables can be solved,especially under severe environment conditions, such as the ocean environment, steel maincables are very easy to corrosion; Again, as the weight of main cable sharply reduces, asmaller anchorage and tower can be used, so materials can be saved and construction isconvenient. Up to date, there is no precedent of suspension bridge with CFRP cable is built,related literature is very less, so a series of scientific research work around the theme ofsuspension bridge with CFRP cable has been carried out in this paper, combining with theNNSF of China-" Mechanical behavior analysis and optimization design method research ofcable bearing bridges with CFRP "(50908016). The main research results and conclusions aresummarized as follows:
     1、Calculating of completed state of suspension bridge with CFRP cable
     As the basis of accurate analysis of static and dynamic performance of suspension bridges,the method of calculating the line shape and internal force of main cables is studiedsystematically in this paper. The calculation formulas of the line shape and internal force ofthe single cable and the segmental catenary cable are established respectively. Iterationmethod of the design parameter of the cables is put forward and a corresponding calculatingprogram is compiled.
     The calculation method of tangent point coordinates of main cable and saddle groove isstudied, the calculation formulas of interactive forces between main and saddle groove and the unstressed length of the main cable inside the saddle groove are deduced. Then the designrequirements of CFRP main cable saddle are discussed.
     2、Static performances analysis of super-span suspension bridge with CFRP cable
     The analytic calculation formulas of the ultimate span, carrying efficiency,main cable areaand deadweight stress of suspension bridges are deduced independently. The aboveparameters of two kinds of cable suspension bridges are calculated and compared. It indicatesthat CFRP cables suspension bridges have more advantages compared with steel cablessuspension bridges.
     The2000m-span,3000m-span suspension bridges with CFRP cables and steel cables and5000m-span suspension bridge with CFRP cables are designed deploringly. The staticperformances of the two kinds of main cables suspension bridges under the action of deadload, vehicle load and temperature are analyzed and compared using of the finite-elementmethod. Some important conclusions are obtained, which can provide scientific proofs fordesign.
     3、Dynamic performance analysis of super-span suspension bridge with CFRP cable
     Based on the analytic estimation formulas of fundamental frequency of suspension bridges,the natural vibration characteristics of CFRP cable suspension bridge is studied qualitatively,the results show that frequency ratio of torsional and bending of CFRP cable suspensionbridge is greater than the corresponding values of steel cable suspension bridge, which is goodfor improving the wind stability.
     Based on the models established for aforementioned static analysis, dynamic characteristicsof super-span CFRP cable suspension bridge and steel cable suspension bridge are analyzedand compared using of the finite element method. The general rules of dynamiccharacteristics of the super-span CFRP cable suspension bridge is summarized; Through theanalysis of influence of several main design parameters on the dynamic characteristics of theCFRP cable suspension bridge, the measures for improving the aerodynamic stability ofCFRP cable suspension bridge are put forward, which provides a theoretical basis forstructure optimization design.
     4、The study on aerostatic stability of suspension bridges with CFRP Cables
     According to the research techniques and the control equations of fluid mechanics, thenumerical simulation method of the aerodynamic characteristics of the stiffening girdersection is established. The static three component force coefficients are extracted respectivelyusing the FEA and the FLUENT software; Both are in good agreement, which indicates thatthe calculation results are credible. The aerodynamic characteristics of several kinds of maingirder section with different aerodynamic measures of edge tuyere are researched for the firsttime using CFD method. A reasonable cross section type is suggested in this paper, whichprovides a scientific basis for optimization design of the stiffening girder section.
     The stability and deformation characteristics of the two kinds of cable suspension bridgeunder calm wind load are analyzed and compared for the first time using bridge structurethree dimensional nonlinear aerostatic analysis methods. Analysis results show aerostaticinstability critical wind speeds of the CFRP cable suspension bridge is a little smaller thanthat of steel cable, which is consistent with calculation results from the empirical formula.
     The effects of rise-span ratio, constraint condition of stiffening girder and cable system,etcon the aerostatic stability of CFRP cable suspension bridge are analyzed for the first time,accordingly measures of improving wind resistance stability CFRP cable suspension bridgeare put forward.
     5、Mechanics Analysis of the adhesive Anchorage with CFRP
     The analytic calculation method of the ultimate capacity of straight pipe anchorage isproposed. A kind of straight pipe inner cone anchorage is designed. Finite element analysismethod of CFRP adhesive anchor is established and the Loading process of it is analyzed bythis method.
     The effect of elastic modulus, thickness of the adhesive colloid, anchorage length andinner cone angle on the mechanics performance of anchorage are analyzed for the first time,which will provide a scientific basis for optimization of CFRP anchor.
引文
[1]茅以升.中国古桥技术史[M].北京:北京出版社,1986
    [2]唐寰澄.中国古代桥梁[M].北京:文物出版社,1987
    [3]韩柏林.世界桥梁发展史[M].上海:知识出版社,1987
    [4][日]伊藤学,川田忠树著.超长大桥梁建设的序幕——技术者的新挑战[M].刘建新,和丕壮译.北京:人民交通出版社,2002
    [5]梅葵花,吕志涛. CFRP在超大跨悬索桥和斜拉桥中的应用前景[J].桥梁建设,2002,(2):75-78
    [6]项海帆,葛耀君.悬索桥跨径的空气动力极限[J].土木工程学报,2005,38(1):60-70
    [7]马文刚.大跨径CFRP缆索悬索桥静动力性能分析[D].西安:长安大学,2008
    [8]楼庄鸿.近年来悬索桥发展的若干趋势[J].土木工程学报,1999,16(3):35-39
    [9]李正仁译.关于在直布罗陀海峡最窄处建造碳纤维增强复合材料的建议[J].国外桥梁,1990,(4):45-50
    [10] Lin TY, Chow P. Gibraltar Strait Crossing-A Challenge to Bridge and StructuralEngineers[A]. Structural Engineering International[C],1991,(2):53-58
    [11]侯发亮.建筑结构粘结加固的理论与实践[M].武汉:武汉大学出版社.2003
    [12]冯鹏,叶列平. FRP结构和FRP组合结构在结构工程中的应用与发展[A].第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会论文集[C].北京,2002
    [13]王忠荣.树脂锚固剂[J].化学建材,2001,(1):24-27
    [14] JSCE “Recommendation for Design and Construction of Concrete Structures UsingContinuous Fiber Reinforcing Materials”[S]. Published by Research Committee onContinuous Fiber Reinforcing Materials. Japan, Oct,1997
    [15] Hamid Saadatmanesh, Fares E. Tannous.“Relax, Creep, and Fatigue Behavior of CarbonFiber Reinforced Plastic Tendons”[J]. ACI Materials Journal. Vol.96, No.2,1999:143-153.
    [16]吕志涛.新世纪混凝土结构对新材料的挑战[A].中国首届纤维增强塑料(FRP)混凝土结构学术交流会论文集[C].北京,2000.6
    [17]朱虹.新型FRP筋预应力混凝土结构的研究[D].南京:东南大学,2004
    [18]龚向华. CFRP索斜拉桥力学特性研究及优化设计[D].镇江:江苏大学,2006
    [19] Taketo Uomoto, et al.“Use of Fiber Reinforced Polymer Composites as ReinforcingMaterial for Concrete”[J]. Journal of Materials in Civil Engineering, Vol.14, No.3,2002:191-209
    [20] Lelli Van Den Einde, Lei Zhao, Frieder Seible.“Use of FRP Composites in CivilStructural Aapplications”[J]. Construction and Building Materials,2003,(17):389-403
    [21] Charles W. Dolan, et al.“Design Recommendation for Concrete Structures Prestressedwith FRP Tendons”[J]. Federal Highway Administration,2001.8
    [22] Charles E. Bakis, Antonio Nanni, Thomas E. Boothby.“FRP Prestressing for HighwayBridges-Volume III”[J]. Federal Highway Administration,2000.2
    [23] ACI Committee440.“Guide for the Design and Construction of Concrete Reinforcedwith FRP bars(ACI440.1R-03)”[S]. Copyright2003
    [24]高丹盈,李趁趁,朱海堂.纤维增强塑料筋的性能与发展[J].纤维复合材料,2002,(4):37-40
    [25]吴海军,陆萍,周志祥. CFRP在新建桥梁中的应用与展望[J].重庆交通学院学报,2004,(1):1-5
    [26]孙杰,孙峙华,胡荣根.碳纤维复合材料在桥梁工程中的应用及其前景[J].公路交通技术,2004,(1):46-60
    [27]阮积敏,王柏生,张奕薇.纤维塑料筋在桥梁工程中的应用研究[J].中南公路工程,2004,(1):37-39
    [28]许贤敏编译.碳纤维增强塑料筋束预应力混凝土桥[J].国外公路,1996,(4):37-39
    [29]张强,朱华民编译. FRP材料在日本预应力混凝土桥梁及其它结构中的应用[J].国外桥梁,1996,(3):31-35
    [30]杨允表,石洞.复合材料在桥梁工程中的应用[J].桥梁建设,1997,(4):1-4
    [31]张元凯,肖汝诚. FRP材料在大跨度桥梁结构中的应用展望[J].公路交通科技,2004,(4):59-62
    [32]张锡祥,顾安邦.复合材料用于大跨斜拉桥发展展望[J].重庆交通学院学报,1995,(1):14-19
    [33] Mahmoud M. Reda Taha,Nigel G. Shrive.“Ultra High Performance Concrete (UHPC)Anchors for Post-tensioning CFRP Tendons: A Step Towards Metal-free Structures”[J].Concrete International, Vol.24, No.12,2002:1-18
    [34] Patrick X. W. Zou.“Theoretical Study on Short-Term and Long-Term Deflections ofFiber Reinforced Polymer Prestressed Concrete Beams”[J]. Journal of Composites forConstruction, Vol.7, No.4,2003:285-291
    [35]田启贤,谭莹编译. CFRP预应力混凝土斜交桥的试验研究[J].国外桥梁,2000,(4):31-37
    [36] Nik Winkler, Pascal Klein.“Carbon Fiber Products(CFP)-A Construction Material for theNext Century”[A]. Proceedings of the13th FIP Congress[C],1998:69-72.
    [37]“Building Better Bridges with CFRP”[J]. Reinforced Plastics, March,1998:44-47.
    [38] The Pedestrian Cable Stayed Bridge is Completely Fabricated From PolymerComposites.htm[Z]
    [39] Francesco Lanza di Scalea, Vistasp M. Karbhari, Frieder Seible.“The I-5/GilmanAdvanced Technology Bridge Project”[A]. Proceedings of SPIE[C],2000, Vol.3988:10~17
    [40]梅葵花. CFRP拉索斜拉桥的研究[D].南京:东南大学,2005
    [41]沈世钊,徐崇宝,赵臣,等.悬索结构设计[M].北京:中国建筑工业出版社,2005
    [42]何湘峰.大跨度悬索桥缆索系统分析与施工控制[D].西安:长安大学,2007
    [43] H.Max Irvine. Cable structures[M]. Cambridge:MIT Press,1981
    [44]黄平明,梅葵花,徐岳.大跨度悬索桥主缆系统施工控制计算[J].西安公路交通大学学报,2000,20(4):19-22,28
    [45]肖汝诚.桥梁结构分析及程序系统[M].北京:人民交通出版社,2002
    [46]唐茂林.大跨度悬索桥空间几何非线性分析与软件开发[D].成都:西南交通大学,2003
    [47]沈锐利.悬索桥主缆系统设计及架设计算方法研究[J].土木工程学报,1996,29(2):3-9
    [48]潘永仁.悬索桥结构非线性分析理论与方法[M].北京:人民交通出版社,2004
    [49]郑宏宇. CFRP缆索悬索桥基本性能及若干关键技术研究[D].南京:东南大学,2007
    [50]魏建东,刘忠玉.悬索桥结构分析中索鞍的精确模拟[J].工程力学,2006,23(7):114-118
    [51] Pugsley A. The Theory of Suspension Bridges[M].2nd. Ed.,1968
    [52] Saafan S. A. Theoretical analysis of suspension bridges[J]. ASCE,1966,92(4):252-279
    [53]小西一郎.钢桥(中译本第五分册)[M].北京:中国铁道出版社,1989
    [54]龚尧南,王寿梅.结构分析中的非线性有限元素法[M].北京:北京航空学院出版社,1986
    [55] Klaus-Jurgen B., Sald B.“Large Displacement Analysis of Three-Dimensional BeamStructures”[J]. International Joural for Numerical Methods in Engineering.1979,14
    [56]潘家英,程庆国.大跨度悬索桥有限位移分析[J].土木工程学报,1994,27(1)
    [57]陈正清,曾庆元.空间杆系结构大挠度问题内力分析的UL列式法[J].土木工程学报,1992,25(5):34-44
    [58]杨孟刚,陈政清.基于UL列式的两节点悬链线索元非线性有限元分析[J].土木工程学报,2003,36(8):63-68
    [59]刘书伟.大跨度悬索桥静动力特性分析[D].西安:长安大学,2007
    [60][日]伊藤学,川田忠树著.超长大桥梁建设的序幕——技术者的新挑战[M].刘建新,和丕壮译.北京:人民交通出版社,2002.
    [61]毕银博.超大跨径CFRP缆索悬索桥力学性能分析[D].西安:长安大学,2010
    [62]陈仁福.大跨悬索桥理论[M].成都:西南交通大学出版社,1994
    [63] Y.A.Rossikhin, M.V. Shitikova.“Analysis of Nonlinear Free Vibration of SuspensionBridges”[J]. Journal of Sound and Vibration,1995,186(3):369-393
    [64] M.Y.Kim, S.D.Kwon, N.I.Kim.“Analytical and Numerical Study on Free VerticalVibration of Shear-flexible Suspension Bridges”[J]. Journal of Sound and Vibration,2000,238(1):65-84
    [65] T.Hayashikawa.“Torsion Vibration Anslysis of Suspension Bridges with GravitionalStiffness”[J]. Journal of Sound and Vibration,1997,204(1):117-129
    [66]盛善定,袁万诚,范立础.悬索桥振动基频的实用估算公式[J].东北公路,1996(1):71-76,56
    [67]王浩,李爱群,杨玉冬,等.中央扣对大跨悬索桥动力特性的影响[J].中国公路学报,2006(11):49-52
    [68]鞠小华.大跨悬索桥基频近似计算研究[D].成都:西南交通大学,1999.
    [69] JTG/T D60-01-2004.公路桥梁抗风设计规范[S].北京:人民交通出版社,2004
    [70]宋一凡.公路桥梁动力学[M].北京:人民交通出版社,2000
    [71]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,1992
    [72]王福军.计算流体动力学分析CFD软件原理与应用[[M].北京:清华大学出版社,2004
    [73]张师帅.计算流体动力学及其应用[[M].武汉:华中科技大学出版社,2010
    [74]刘琳娜. CFD方法在大跨度桥梁气动控制措施研究中的应用[D].武汉:武汉理工大学,2007
    [75] H.K.Versteeg,W. Malalasekera. An Introduction to Computational Fluid Dynamics:TheFinite Volume Method[M]. New York: Wiley,1995
    [76] T.J. Coakley, Turbulence Modeling Methods for the Compressible Navier-StokesEquations[DB/OL]. AIAA paper.1983
    [77] F.R.Menter, Two-Equation Eddy-Viscosity Turbulence Models for EngineeringApplications[DB/OL]. AIAA Journal, Vol.32,1994
    [78]于伟.大跨度悬索桥静风稳定性非线性分析[D].成都:西南交通大学,2010
    [79]张海君. CFRP缆索承重桥的静风稳定性分析[D].西安:长安大学,2012
    [80]程进,江见鲸,肖汝诚等.大跨度桥梁空气静力失稳机理研究[J].土木工程学,2002,35(1):35-37
    [81]李文杰.大跨径悬索桥静风稳定性分析[D].西安:长安大学,2009
    [82]周颖,禹奇才,曹映私.大跨度桥梁非线性静力抗风研究[J].广州大学学报,2002,1(4):63-67
    [83]肖汝成,贾丽君,程进.静风荷载引起的超大跨度桥梁关键问题研究[J].公路交通科技,2001,18(6):34-38
    [84]向中富,徐君兰.各种缆索形式吊桥的挠度理论分析[J].国外桥梁,1989(4):1-17
    [85]刘健新,胡兆同.大跨度吊桥[M].北京:人民交通出版社,1996
    [86]严国敏.现代悬索桥[M].北京:人民交通出版社,2002
    [87]张志田,葛耀君.基于正交异性壳单元的悬索桥非线性静风稳定性分析[J].中国公路学报,2004,17(4):64-69
    [88]程进,肖汝诚,项海帆.大跨径斜拉桥非线性静风稳定性全过程分析[J].中国公路学报,2000,13(3):25-28
    [89]韩大建,邹小江.大跨度斜拉桥非线性静风稳定性分析[J].工程力学,2005,22(1):206-210
    [90]唐清华,曹言坤.大跨径桥梁的静风稳定性计[J].桥梁建设,2007,(S2):111-113
    [91]程进,消汝城,项海帆.大跨径桥梁静风稳定性分析方法的探讨与改进[[J].中国公路学报,2001,14(2):32-34
    [92]肖汝诚,贾丽君,程进.静风荷载引起的超大跨度桥梁关键问题研究[[J].公路交通科技,2001,18(6):34-38
    [93] JSCE “Recommendation for Design and Construction of Concrete Structures UsingContinuous Fiber Reinforcing Materials”[S]. Published by Research Committee onContinuous Fiber Reinforcing Materials. Japan. Oct,1997
    [94] Nik Winkler, Pascal Klein.“Carbon Fiber Products(CFP)-A Construction Material for theNext Century”[A]. Proceedings of the13th FIP Congress[C],1998:69-72.
    [95] Francesco Lanza di Scalea, Vistasp M. Karbhari, Frieder Seible.“The I-5/GilmanAdvanced Technology Bridge Project”[A]. Proceedings of SPIE[C],2000, Vol.3988:10~17
    [96] Johannes Fritz Noisternig.“Carbon Fiber Composites as Stay Cables for Bridges”[J].Applied Composite Materials,2000,(7):139-150
    [97]朱虹.新型FRP筋预应力混凝土结构的研究[D].南京:东南大学,2004
    [98]梅葵花,吕志涛,张继文,臧华. CFRP斜拉索锚具的试验研究[J].桥梁建设,2005,165(4):20-23
    [100]薛伟辰,康清梁.纤维塑料筋粘结锚固性能的试验研究[J].工业建筑,1999,(12):5-7
    [101]朱海堂,谢晶晶,高丹盈.纤维增强塑料筋锚杆锚固性能的数值分析[J].郑州大学学报(工学版),2004,(1):6-10
    [102] Burong Zhang, et al.“Tensile Behavior of FRP Tendons for Prestressed GroundAnchors”[J]. Journal of Composites for Construction, Vol.5, No.2, May,2001:85-93.
    [103] Brahim Benmokrane, Burong Zhang, Adil Chennouf.“Tensile Properties and PulloutBehavior of AFRP and CFRP Rods for Grouted Anchor Applications”[J]. Constructionand Building Materials,2000,14(3):157-170
    [104] Burong Zhang, Brahim Benmokrane, Adil Chennouf.“Prediction of Tensile Capacity ofBond Anchorages for FRP Tendons”[J]. Journal of Composites for Construction, Vol.4, No.2, May,2000:39-47
    [105] Burong Zhang, Brahim Benmokrane.“Pullout Bond Properties of Fiber-ReinforcedPolymer Tendons to Grout”[J]. Journal of Materials in Civil Engineering, Vol.14, No.5,October,2002:399-408
    [106] Patrick X. W. Zou.“Long-Term Properties and Transfer Length of Fiber-ReinforcedPolymers”[J]. Journal of Composites for Construction, Vol.7, No.1, February,2003:10-19
    [107] A. Al-Mayah, K. Soudki, A. Plumtree.“Mechanical Behavior of CFRP Rod Anchorsunder Tensile Loading”[J]. Journal of Composites for Construction, Vol.5, No.2, May,2001:128-135
    [108]梅葵花. CFRP粘结型锚具的受力性能分析[J].桥梁建设,2007,(3):80-83
    [109] Khin M,Harada T,Tokumitsu S,et al. The anchorage mechanism for FRP tendonsusing highly expansive materials for anchoring[A].Proceeding,2nd InternationalConference on Advanced Composite Material in Bridges and Structure[C].Montréal,1996:959-964.
    [110]张浩. CFRP粘结型锚具受力分析[D].西安:长安大学,2012
    [111]王力龙,刘华山,阳梅.碳纤维筋(CFRP)夹片式锚具的有限元分析[J].南华大学学报,2005(2):71-81
    [112]王富耻,张朝辉编著. ANSYS10.0有限元分析理论与工程应用[M].北京:电子工业出版社,2006.5:51-131
    [113]赵通,预应力锚固系统的有限元分析[D].成都:西南交通大学,2003
    [114]黄国权,《有限元法基础及ANSYS应用》[M],机械工业出版社,2004
    [115]方志,梁栋,蒋田勇.不同粘结介质中CFRP筋锚固性能的试验研究[J].土木工程学报,2006,39(6):47-51.