基于朊蛋白—核酸适配子相互作用的朊蛋白定量生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着生命科学的飞速发展及其与数学、物理学、化学等多种学科的交叉与融合,逐渐产生了一门新的学科-定量生物学。自此,科学家的目光从定性的描述性研究逐渐向定量的整体化方向转变,同时注重寻找生物系统的整体规律。定量生物学的发展对生命科学中的飞跃发展起着至关重要的作用。
     朊病毒病(Prion diseases)又称为传染性海绵状脑病(TSE),是一类人畜共患的神经退行性疾病。20世纪80年代欧洲爆发的“疯牛病”以及由此产生的人新型克雅氏病(nv-CJD),引发了世界范围的空前恐慌,给人类健康造成巨大的威胁。这类疾病具有相似的临床症状和组织病理学改变,都是由一种具有自我复制能力的蛋白感染粒子-朊病毒引起的。目前人们普遍认为朊病毒蛋白具有两种构象:细胞型朊蛋白(Cellular prion protein,PrPc)和致病型朊蛋白(scrapie of pathogenic isoform, Prp.sc)。朊病毒病的发生是由于PrPc发生错误折叠产生PrPSc,同时prpSc可以诱导更多的’PrPc发生构象转变,prpSc成指数型增加形成聚集体进而引发病变。但是TSE在宿主内的潜伏期很长,潜伏期内患病动物无明显临床症状,PrPsc含量极少;同时,不同毒株中朊病毒理化性质的差别非常大,导致TSEs的早期临床诊断和治疗都面临着巨大的挑战。本论文利用量子点(QDs)独特的发光性质及金银纳米颗粒的强等离子共振性质通过建立能量转移体系,从定量生物学的角度,将化学与生物学进行有机融合,实现了对朊蛋白的简单、快速、灵敏的定量检测,并根据朊蛋白的结构特点筛选出一种小分子多肽,对稳定朊蛋白的构象具有非常重要的作用。主要研究内容如下:
     1.基于朊蛋白-适配子相互作用实现朊病毒蛋白的灵敏检测SERS用于双核酸适配子与朊蛋白相互作用研究表面增强拉曼散射由于在分子水平上提供了比传统拉曼散射更丰富的物质结构信息,近年来得到了广大科学工作者的亲睐。有文献报道朊蛋白有两段DNA适配子,可以分别与其N末端23-90以及90-231两个表位结合,对朊蛋白具有更好地选择性。我们用考马斯亮蓝染料在对蛋白质-PrPc进行标记的同时作为拉曼信号分子,用于PrPc-aptamer之间的相互作用研究。实验过程中,我们将朊蛋白的适配子功能化修饰在Ag@Si NPs表面,因此,当PrPc与其适配子结合时,体系中形成Ag@Si聚集体,可以大大增强R-250的拉曼信号。该方法证明我们选用的两段朊蛋白适配子确实可以同时识别靶物的不同位点,形成PrPc-aptamer复合物,并结合纳米银增强的R-250拉曼信号用于朊蛋白的检测研究。对于进一步发展基于双核酸适配子策略的朊蛋白检测方法具有非常重要的作用。
     基于双适配子的金属增强荧光策略用于检测朊蛋白我们合成了一种表面易于生物功能化的硅包银纳米颗粒,利用该纳米银与荧光染料之间的金属增强荧光建立了可在溶液中进行的简单、快速的朊蛋白的分析方法。首先在硅包银纳米颗粒表面修饰抗朊蛋白核酸适配子(Apt1),另一段核酸适配子(Apt2)修饰Cy3染料。Apt1和Apt2可以同时识别PrPc的两个不同的结合位点,因此,当PrPc存在时适配子发生构象转变,分别与PrPc上相应的靶点进行结合,从而形成Ag@SiNPs-PrPc-Cy3三明治结构。通过控制核壳型纳米粒子硅壳的厚度调整该纳米探针与染料分子之间的距离。由于纳米银的强等离子共振性质,当纳米探针与染料分子之间的距离足够近时就会发生金属增强荧光,Cy3荧光强度的增加与PrPc浓度呈很好的线性关系,可用于灵敏检测PrPc。同时该方法也适用于复杂样品如小鼠脑组.织匀浆中PrPc的检测,及细胞内朊蛋白的实时成像分析。
     长程共振能量转移实现朊蛋白超灵敏检测我们进一步利用量子点和纳米金分别作为能量的供体和受体,量子点-金纳米粒子表面能量转移发展了一种长距离能量转移体系,实现了对朊蛋白的超灵敏检测。当体系中存在朊蛋白时,Ni2+与朊蛋白组氨酸标签的相互作用使得NTA-Ni2+修饰量子点和核酸适配子修饰的金纳米粒子因为距离拉近而发生表面能量转移,量子点的荧光被金纳米粒子猝灭,猝灭效率高达88.7%,能量转移距离9-22nm,据此建立的朊蛋白检测方法检测限可达33aM。由于量子点以及金纳米颗粒具有很好的生物稳定性,该能量转移体系不但可以用于复杂生物样品中PrPc的灵敏检测。同时,该长距离能量转移体系还可以用于标记活细胞内内源性朊蛋白,实时追踪其与细胞内物质相互作用及代谢反应途径,对于朊病毒病的致病机理及其临床监测都具有非常重要的作用。
     2.多肽与朊蛋白相互作用研究
     朊病毒病至今尚无有效的治疗方法,目前其首选治疗策略主要是稳定朊病毒蛋白中α-螺旋构象,抑制其向β-折叠的转化。朊蛋白180位的缬氨酸突变为异亮氨酸的180I突变蛋白的突变位点与其181位的糖基化位点非常接近,其生物化学性质对朊病毒病的影响非常重要。本文针对180I突变蛋白的182-190段序列设计了KNFTK、KTDVE、EMMKE和EVVKK等四种axyzβ型多肽。其中xyz由PrP序列中相关的疏水氨基酸组成,并嵌入碱性(α)和酸性(β)氨基酸之间,因此它可以通过静电作用力与PrP中相应的酸性和碱性氨基酸之间形成盐桥。盐桥的形成使得蛋白质的相对长度变短,对蛋白水解酶的敏感性降低,从而起到稳定α-螺旋的作用。研究发现,EVVKK能稳定朊病毒蛋白的构象,同时诱导p-折叠向α-螺旋的转变,因此这种多肽有望作为一种新的药物,用于朊病毒病的临床治疗。
During the last decade, with the rapid development of life sciences, and the integration of which with a variety of subjects such as mathematics, physics, chemistry, etc., a new discipline-termed "Quantitative Biology" generated, in which scientists gradually focused on the a precise, quantitative study, seeking the universal law of biological systems. And the development of quantitative biology is of vital importance on the rapid development of the life sciences.
     Transmissible spongiform encephalopathies (TSE), or prion diseases, is a group of infectious neurodegenerative disorders accompanied by cognitive impairments, extensive brain damage and neuronal dysfunction. Although these diseases are rare, their unique mechanism of transmission and the concerns generated by the recent appearance of a new variant form of CJD, which has been linked to consumption of meat contaminated with BSE, have put prions in the spotlight. Increasing evidence now supports the idea that the central event is the conformational change of PrP through a posttranslational process, from cellular form (PrPc) to disease-causing conformation (PrPSc). Prion diseases always have a long incubation period before an extremely rapid clinical stage, which makes erlay diagnosis of the diseases is far to achieve. Simple, fast, and sesitive detection strategy of the diseases related protein could be helpful for rational design of novel therapeutic and diagnostic methods.
     In this contribution, seval novel prion protein detection strategys are proposed based on prion-aptamer interaction, which is simple, fast, sensitive. Additionally, we designed a axyzβ type peptides, which show great potential for the stability of a-helix. The mainly issues of this contribution are as follows: 1. New methods for prion protein detection based on PrP-aptamer interaction
     Surface-Enhanced Raman Scattering Investigations on Prion Protein-dual Aptamer Interaction Surface-enhanced Raman scattering (SERS) spectra, which can provide large information on the chemical structure of the probed substances, have been successfully performed as a well-established tool in complex biological system. PrP is reported possessing two different distinct binding epitopes for two aptamers. One aptamer (Aptl) recognizes epitope23-90of the N-termina. while the other one (Apt2) specifically binds with the90-231of prion, which is corresponded to the β-sheet structure of PrP. Considering the strong Raman activity, Coomassie brilliant blue (R-250) was employed to label target proteins and probe protein-aptmer interactions, and an original quantitative study to investigate the interaction between PrPc and its two aptamers was develped based on SERS spectroscopy. Experimently, Aptl and Apt2are conjugated to silica coated silver (Ag@Si) NPs, followed by the addition of R-250labeled PrP. After well mixed with the target proteins, the aptamers undergo a conformational transition from an unfolded structure to a folded conformation, which possesses high affinity with the target, leading to the nanoparticles aggregation, sequentially inducing enhanced raman scattering. This strategy, which is addressing two aptamers recognizing distinct epitopes of the target, is simple, rapid, and high specificity to probe protein-aptamer recognition in the solution.
     Metal-enhanced fluorescence of nano-core-shell structure used for sensitive detection of prion protein with a dual-aptamer strategy. We developed a novel metal-enhanced fluorescence (MEF) and dual-aptamer-based strategy to achieve the prion detection in solution and intracellular protein imaging simultaneously, which shows high promise for nanostructure-based biosensing. In the prescence of prion protein, core-shell Ag@SiO2. which are functionalized covalently by single stranded aptamer (Aptl) of prions and Cyanine3(Cy3) decorated the other apater (Apt2) were coupled together by the specific interaction between prions and the anti-prion aptamers in solution. By adjusting shell thickness of particles, a dual-aptamer strategy combined MEF can be realized by the excitation and/or emission retes of Cy3. It was found that the enhanced fluorescence intensities followed a linear relationship in the range of50-300μM, which is successfully applied to the detection of PrP in the mice brain homegenates. as well as in the live cells.
     Ultra-sensitive detection of prion protein with a long range resonance energy transfer strategy. We developed an aptamer-mediated Long range Resonance Energy Transfer (LrRET) strategy to achieve the detection of cellular prion protein (PrPc) at attomolar level, which could be extended to the detection of other analogous proteins. Under optimal conditions,0.82-3.30fM of PrPccan be quantitatively detected with the limit of determination of33aM (3a). The strong fluorescence signals of QDs could be distinguished byconfocal imaging in vivo, and efficiently quenched with the addition of AuNPs-Apt conjugate. The visual LrRET system is promising to real-time trace the endogenous cellular prion protein.
     2. Interaction studies of the peptides and prion protein
     Until recently, no effective treatment strategy is avaliable for prion diseases, while the widely accepted therapautic method is. based on the stability of a-helical conformation, and the inhibition of transformation between a-helical and β-sheet Herein, we designed four axyzβ type peptides for sequence range of182-190of1801prion protein (a valine to isoleucine mutation), which plays an important role in the pathological prion disease, xyz is composed of hydrophobic amino acids (aa) that are found in the prion protein, while a/β stands for basic or acidic amino acids, which can interact with the relevant acidic or basic aa in prion protein to form salt briges. And the existence of salt briges lead to the shortening of protein length, and make it more stable.The results showed that only the sequence of EVVKK can bring a very good stability, and induce the conformation changes from β-sheet to a-helix, while the effect of other three peptides can be neglected, which can act as a reference for the development of peptide drugs, and further for the clinical treatment.
引文
[1]Prusiner, S. B., Novel proteinaceous infectious particles cause scrapie. Science 1982,216 (216), 136-144.
    [2]Chesebro, B., Introduction to the transmissible spongiform encephalopathies or prion diseases. Br Med Bull 2003,66,1-20.
    [3]Soto, C., Protein misfolding and disease; protein refolding and therapy. FEBS Lett 2001,498, 204-207.
    [4]Campana, V.; Sarnataro, D.; Zurzolo, C., The highways and byways of prion protein trafficking. Trends Cell Biology 2005,15 (2),102-111.
    [5]Will, R.; Ironside, J.; Zeidler, M., et al., A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 1996,347 (9006),921-925.
    [6]Gajdusek, D. C.; Zigas, V., Kuru: Clinical, pathological and epidemiological study of an acute progressive degenerative disease of the central nervous system among natives of the Eastern Highlands of New Guinea. Am J Med 1959,26 (3),442-469.
    [7]Gajdusek, D. C.; Zigas, V., Studies on kuru. I. The ethnologic setting of kuru. Am J Trop Med Hyg 1961,10,80-91.
    [8]Gajdusek, D.; Gibbs, C.; Asher, D.; David, E., Transmission of experimental kuru to the spider monkey (Ateles geoffreyi). Science 1968,162 (3854),693-694.
    [9]Hadlow, W. J., Scrapie and Kuru. Lancet 1959,2 (7097),289-290.
    [10]Prusiner, S.; Kingsbury, D., Prions--infectious pathogens causing the spongiform encephalopathies. CRC Crit Rev Clin Neurobiol 1985,1 (3),181-200.
    [11]Prusiner, S. B., Prions. Proc Natl Acad Sci USA 1998, 95,13363-13383.
    [12]Prusiner, S. B., Molecular Biology of Prion Diseases. Science 1991,252,1515-1522.
    [13]Ghaemmaghami, S.; Phuan, P.-W.; Perkins, B.; Ullman, J.; May, B. C. H.; Cohen, F. E.; Prusiner, S. B., Cell division modulates prion accumulation in cultured cells. Proc Natl Acad Sci USA 2007,104, 17971-17976.
    [14]Pan, T.; Li, R.; Wong, B.; Liu, T.; Gambetti, P.; Sy, M., Heterogeneity of normal prion protein in two-dimensional immunoblot: presence of various glycosylated and truncated forms. J Neurochem 2002, 81(5),1092-1101.
    [15]Lasmezas, C. I., Putative functions of PrPC. Br Med Bull 2003,66,61-70.
    [16]Brown, D. R.; Sassoon, J., Copper-Dependent Functions for the Prion Protein Mol Biotechnol 2002, 22,165-178.
    [17]Riek, R.; Hornemann, S.; Wider, G.; Billeter, M.; Glockshuber, R.; Wuthrich, K., NMR structure of the mouse prion protein domain PrP(121-231). Nature 1996,382 (6587),180-182.
    [18]Zahn, R.; Liu, A.; Liihrs, T., et al., NMR solution structure of the human prion protein. Proc Natl Acad Sci USA 2000,97 (1),145-150.
    [19]Sonati, T.; Reimann, R. R.; Falsig, J., et al., The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature 2013,501,102-106.
    [20]Billeter, M.; Riek, R.; Wider, G.; Hornemann, S.; Glockshuber, R.,Wuthrich, K., Prion protein NMR structure and species barrier for prion diseases. Proc Natl Acad Sci USA 1997,94,7281-7285.
    [21]James, T. L.; Liu, H.; Ulyanov, N. B., et al., Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc Natl Acad Sci USA 1997,94(19),10086-10091.
    [22]Liu, H.; Farr-Jones, S.; Ulyanov, N. B.; Llinas, M.; Marqusee, S.; Groth, D.; Cohen, F. E.; Prusiner, S. B.,James, T. L., Solution structure of Syrian hamster prion protein rPrP(90-231). Biochemistry 1999,38(17),5362-5377.
    [23]Garcia, F. L.; Zahn, R.; Riek, R.,Wuthrich, K., NMR structure of the bovine prion protein. Proc Natl Acad Sci USA 2000,97 (15),8334-8339.
    [24]Billeter, M.; Riek, R.; Wider, G.; Hornemann, S.; Glockshuber, R.,Wuthrich, K., Prion protein NMR structure and species barrier for prion diseases. Proc Natl Acad Sci USA 1997,94 (14),7281-7285.
    [25]Riek, R.; Hornemann, S.; Wider, G.; Billeter, M.; Glockshuber, R.,Wuthrich, K., NMR structure of the mouse prion protein domain PrP(121-231). Nature 1996,382,180-182.
    [26]Hornemann, S.; Schorn, C.,Wuthrich, K., NMR structure of the bovine prion protein isolated from healthy calf brains. EMBO Rep 2004,5(12),1159-1164.
    [27]Li, J.; Mei, F.-H.; Xiao, G-F.; Guo, C.-Y.,Lin, D.-H.,'H,13C and 15N resonance assignments of rabbit prion protein (91-228). J Biomol NMR 2007,38 (2),181.
    [28]Schatzl, H. M.; Costa, M. D.; Taylor, L.; Cohen, F. E.,Prusiner, S. B., Prion protein gene variation among primates. JMol Biol 1995,245,362-374.
    [29]Bendheim, P.; Brown, H.; Rudelli, R.; Scala, L.; Goller, N.; Wen, G.; Kascsak, R.; Cashman, N.,Bolton, D., Nearly ubiquitous tissue distribution of the scrapie agent precursor protein. Neurology 1992,42(1),149-156.
    [30]Chiesa, R.; Harris, D. A., Fishing for Prion Protein Function. PLoS Biology 2009,7 (3), el000075.
    [31]Pan, Y.; Zhao, L.; Liang, J., et al., Cellular prion protein promotes invasion and metastasis of gastric cancer.FASEB J 2006,20 (11),1886-1888.
    [32]Watarai, M.; Kim, S.; Erdenebaatar, J.; Makino, S.-i.; Horiuchi, M.; Shirahata, T.; Sakaguchi, S.,Katamine, S., Cellular prion protein promotes Brucella infection into macrophages. J Exp Med 2003,198(1),5-17.
    [33]Sakudo, A.; Ikuta, K.., Prion protein functions and dysfunction in prion diseases. Curr Med Chem 2009,16 (3),380-389.
    [34]Lauren, J.; Gimbel, D. A.; Nygaard, H. B.; Gilbert, J. W.; Strittmatter, S. M., Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 2009,457 (7233), 1128-1132.
    [35]Khosravani, H.; Zhang, Y.; Tsutsui, S., et al., Prion protein attenuates excitotoxicity by inhibiting NMDA receptors JCell Biol 2008,181 (3),551-565.
    [36]Genoud, N.; Behrens, A.; Miele, G.; Robay, D.; Heppner, F. L.; Freigang, S.; Aguzzi, A., Disruption of Doppel prevents neurodegeneration in mice with extensive Prnp deletions. Proc Natl Acad Sci USA 2004,101 (12),4198-4203.
    [37]Moore, R. C.; Mastrangelo, P.; Bouzamondo, E., et al., Doppel-induced cerebellar degeneration in transgenic mice. Proc Natl Acad Sci USA 2001,98 (26),15288-15293.
    [38]Yoshikawa, D.; Yamaguchi, N.; Ishibashi, D., et al., Dominant-negative effects of the N-terminal half of prion protein on neurotoxicity of prion protein-like protein/doppel in mice. J Biol Chem 2008 283 (35),24202-24211.
    [39]Brown, D. R.; Qin, K.; Herms, J. W., et al., The cellular prion protein binds copper in vivo. Nature 1997,390,684-687.
    [40]Walter, E. D.; Stevens, M. J.; Visconte, M. P.; Millhauser, G L., The Prion Protein is a Combined Zinc and Copper Binding Protein:Zn2+ Alters the Distribution of Cu2+ Coordination Modes. J Am ChemSoc 2007,129,15440-15441.
    [41]Jackson, G. S.; Murray, L; Hosszu, L. L. P.; Gibbs, N.; Waltho, J. P.; Clarke, A. R.,Collinge, J., Location and properties of metal-binding sites on the human prion protein. Proc Natl Acad Sci USA 2001,95(15),8531-8535.
    [42]Pauly, P. C.; Harris, D. A., Copper stimulates endocytosis of the prion protein. J Biol Chem 1998, 273 (50),33107-33110.
    [43]Siggs, O. M.; Cruite, J. T.; Du, X.; Rutschmann, S.; Masliah, E.; Beutler, B.; Oldstone, M. B. A., Disruption of copper homeostasis due to a mutation of Atp7a delays the onset of prion disease. Proc Natl Acad Sci USA 2004,101 (12),4198-4203.
    [44]Quaglio, E.; Chiesa, R.; Harris, D. A., Copper converts the cellular prion protein into a protease-resistant species that is distinct from the scrapie. J Biol Chem 2001,276 (14),11432-11438.
    [45]Brown, D. R.; Besinger, A., Prion protein expression and superoxide dismutase activity. Biochem J 1998,334,423-429.
    [46]Woftg, B.; Chen, S.; Colucci, M., et al., Aberrant metal binding by prion protein in human prion disease. JNeurochem 2001,78 (6),1400-1408.
    [47]Pantera, B.; Bini, C.; Cirri, P.; Paolo, P.; Camici, G.; Manao, G.; Caselli, A., PrPc activation induces neurite outgrowth and differentiation in PC 12 cells:role for caveolin-1 in the signal transduction pathway. JNeurochem 2009,110 (1),194-207.
    [48]Stuermer, C.; Langhorst, M.; Wiechers, M.; Legler, D.; Von Hanwehr, S.; Guse, A.; Plattner, H., PrPc capping in T cells promotes its association with the lipid raft proteins reggie-1 and reggie-2 and leads to signal transduction. FASEB J2004,75(14),1731-1733.
    [49]Fuhrmann, M.; Bittner, T.; Mitteregger, G.; Haider, N.; Moosmang, S.; Kretzschmar, H.; Herms, J., Loss of the cellular prion protein affects the Ca2+ homeostasis in hippocampal CA1 neurons. J Neumchem 2006,98 (6),1876-1885.
    [50]Jones, C. E.; Abdelraheim, S. R.; Brown, D. R.; Viles, J. H., Preferential Cu2+coordination by His96 and His 111 induces beta-sheet formation in the unstructured amyloidogenic region of the prion protein. J Biol Chem 2004,279 (31),32018-32027.
    [51]Leclerc, E.; Serban, H.; Prusiner, S. B.; Burton, D. R.; R. A. Williamson, Copper induces conformational changes in the N-terminal part of cellsurface PrP(C). Arch Virol 2006,151, 2103-2109.
    52] Stuermer, C.; Langhorst, M.; Wiechers, M.; Legler, D.; Von Hanwehr, S.; Guse, A.; Plattner, H., PrPc capping in T cells promotes its association with the lipid raft proteins reggie-1 and reggie-2 and leads to signal transduction. FASEB J2004,18 (14),1731-1733.
    [53]Younan, N. D.; Klewpatinond, M.; Davies, P.; Ruban, A. V.; Brown, D. R.; Viles, J. H., Copper(II)-induced secondary structure changes and reduced folding stability of the prion protein. J Mol Biol 2011,410 (3),369-382.
    [54]Choi, C. J.; Kanthasamy, A.; Anantharam, V.; Kanthasamy, A. G., Interaction of metals with prion protein:possible role of divalent cations in the pathogenesis of prion diseases. Neurotoxicology 2006 27 (5),777-787.
    [55]Davies, P.; Brown, D. R., The chemistry of copper binding to PrP:is there sufficient evidence to elucidate a role for copper in protein function? Biochem J 2008,410 (2),237-244.
    [56]Pan, K.-M.; Baldwin, M.; Nguyen, J., et al., Conversion of α-helices into,β-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA 1993,90,10962-10966.
    [57]Meyer, R.; McKinley, M.; Bowman, K.; Braunfeld, M.; Barry, R.; Prusiner, S., Separation and properties of cellular and scrapie prion proteins. Proc Natl Acad Sci USA 1986,83 (8),2310-2314.
    [58]Oesch, B.; Westaway, D.; Walchli, M., et al., A cellular gene encodes scrapie PrP 27-30 protein. Cell 1985,40 (4),735-746.
    [59]Mckinley, M. P.; Meyer, R. K.; Kenaga, L.; Rahbar, F.; Cotter, R.; Serban, A.; Prusineri, S. B., Scrapie prion rod formation in vitro requires both detergent extraction and limited proteolysis. J Virol 1991,65(3),1340-1351.
    [60]Prusiner, S. B.; McKinley, M. P.; Bowman, K. A.; Bolton, D. C.; Bendheim, P. E.; Groth, D. F.,Glenner, G. G., Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 1983,1983 (35),349-358.
    [61]Taraboulos, A.; Jendroska, K.; Serban, D.; Yang, S.; DeArmond, S.; Prusiner, S., Regional mapping of prion proteins in brain. Proc Natl Acad Sci USA 1992,89 (16),7620-7624.
    [62]Cohen, F. E.; Pan, K.-M.; Huang, Z.; Baldwin, M.; Fletterick, R. J.,Prusiner, S. B., Structural Clues to Prion Replication. Science 1994,264,530-531.
    [63]Westaway, D.; DeArmond, S. J.; Cayetano-Canlas, J.; Groth, D.; Foster, D.; Yang, S.-L.; Torchia, M.; Carlson, G. A.; Prusiner, S. B., Degeneration of skeletal muscle, peripheral nerves, and the central nervous system in transgenic mice overexpressing wild-type prion proteins. Cell 1994,76 (1), 117-129.
    [64]Prusiner, S. B., Nobel Lecture:Prions. Proc Natl Acad Sci USA 1998,95,13363-13383.
    [65]Soto, C.; Estrada, L. D., Protein Misfolding and Neurodegeneration. Arch Neural 2008,65 (2), 184-189.
    [66]Caughey, B.; Lansbury, P. T., Protofibrils, pores, fibrils, and neurodegeneration:separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 2003,26,267-298.
    [67]Solomon, I. H.; Huettner, J. E.,Harris, D. A., Neurotoxic mutants of the prion protein induce spontaneous ionic currents in cultured cells. J Biol Chem 2010,285 (34),26719-26726.
    [68]Hornemann, S.; Glockshuber, R., A scrapie-like unfolding intermediate of the prion protein domain PrP(121-231) induced by acidic pH. Proc Natl Acad Sci USA 1998,95 (11),6010-6014.
    [69]Swietnicki, W.; Petersen, R.; Gambetti, P.; Surewicz, W. K., pH-dependent stability and conformation of the recombinant human prion protein PrP(90-231). J Biol Chem 1997,272 (44), 27517-27520.
    [70]Choi, C. J.; Kanthasamy, A.; Anantharam, V.; Kanthasamy, A. G, Interaction of metals with prion protein:Possible role of divalent cations in the pathogenesis of prion diseases. NeuroToxicology 2006,27,777-787.
    [71]Aguzzi,. A., Recent developments in the pathogenesis, diagnosis, and therapy of prion diseases. Dialogues Clin Neurosci 2001,3(1),25-36.
    [72]Bartz, J. C.; Bessen, R. A.; Mckenzie, D.; Marsh, R. F.; Aiken, A. M., Adaptation and Selection of Prion Protein Strain Conformations following Interspecies Transmission of Transmissible Mink Encephalopathy. J Virol 2000,74 (12),5542-5547.
    [73]Bruce, M., Scrapie strain variation and mutation. Br Med Bull 1993,49 (4),822-838.
    [74]Bruce, M. E.; Boyle, A.; Cousens, S.; McConnell, I.; Foster, J.; Goldmann, W.; Fraser, H., Strain characterization of natural sheep scrapie and comparison with BSE. J Gen Virol 2002,83,695-704.
    [75]Lasmezas, C. I.; Deslys, J. P.; Demaimay, R.; Adjou, K. T.; Hauw, J.-J.; Dormont, D., Strain Specific and Common Pathogenic Events in Murine Models of Scrapie and Bovine Spongiform Encephalopathy. JGen Virol 1996,77,1601-1609.
    [76]Spraker, T.; Balachandran, A.; Zhuang, D.; O'Rourke, K., Variable patterns of distribution of PrP(CWD) in the obex and cranial lymphoid tissues of Rocky Mountain elk (Cervus elaphus nelsoni) with subclinical chronic wasting disease. Vet Rec 2004,155 (10),295-302.
    [77]Schoch, G.; Seeger, H.; Bogousslavsky, J.; Tolnay, M.; Janzer, R. C.; Aguzzi, A.,Glatzel, M., Analysis of prion strains by PrPSc profiling in sporadic Creutzfeldt-Jakob disease. PLoS Med 2006, 5 (2), e14.
    [78]Pattison, I.; Millson, G., Scrapie produced experimentally in goats with special reference to the clinical syndrome. J Comp Pathol 1961,71,101-109.
    [79]Morales, R.; Abid, K.; Soto, C, The prion strain phenomenon:molecular basis and unprecedented features. Biochim BiophysActa 2007,1772 (6),681-691.
    [80]Stahl, N.; Borchelt, D. F.; Hsiao, K.,Prusiner, S. B., Scrapie Prion Protein Contains a Phosphatidylinositol Glycolipid. Cell 1987,51,229-240.
    [81]Westaway, D.; Goodman, P. A.; Mirenda, C. A.; McKinley, M. P.; Carlson, G. A.; Prusiner, S. B., Distinct prion proteins in short and long scrapie incubation period mice. Cell 1987,51 (4),651-662.
    [82]Cunningham, C.; Deacon, R.; Chan, K.; Boche, D.; Rawlins, J.; Perry, V., Neuropathologically distinct prion strains give rise to similar temporal profiles of behavioral deficits. Neurobiol Dis 2005, 18 (2),258-269.
    [83]Frasera, H.; Dickinsona, A. G., Scrapie in mice:Agent-strain differences in the distribution and intensity of grey matter vacuolation. J Comp Pathol 1973,83 (1),29-40.
    [84]Budka, H.; Aguzzi, A.; Brown, P., et al., Neuropathological diagnostic criteria for Creutzfeldt-Jakob disease (CJD) and other human spongiform encephalopathies (prion diseases). Brain Pathol 1995,5 (4),459-466.
    [85]Bessen, R. A.; Marsh, R. F., Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. J Virol 1992,66 (4),2096-2101.
    [86]Parchi, P.; Castellani, R.; Capellari, S., et al., Molecular basis of phenotypic variability in sporadic Creutzfeldt-Jakob disease. Ann Neurol 1996,39 (6),767-778.
    [87]Wadsworth, J. D.; Hill, A. F.; Joiner, S.; Jackson, G. S.; Clarke, A. R.,Collinge, J., Strain-specific prion-protein conformation determined by metal ions Nat Cell Biol 1999,1(1),55-59.
    [88]Yuan, Z.; Zhao, D.; Yang, L., Decipher the mechanisms of rabbit's low susceptibility to prion infection. Acta Biochim Biophys Sin 2013 45 (11),899-903.
    [89]Fraser, H.; Bruce, M. E.; Chree, A.; McConnell, I.; Wells, G. A. H., Transmission of bovine spongiform encephalopathy and scrapie to mice. J Gen Virol 1992,73,1891-1897.
    [90]Hill, A.; Collinge, J., Prion strains and species barriers. Contrib Microbiol 2004,11,33-49.
    [91]Kirkwood, J.; Cunningham, A., Epidemiological observations on spongiform encephalopathies in captive wild animals in the British Isles. Vet Rec 1994,135 (13),296-303.
    [92]Bons, N.; Mestre-Frances, N.; Belli, P.; Cathala, F.; Gajdusek, D. C.; Brown, P., Natural and experimental oral infection of nonhuman primates by bovine spongiform encephalopathy agents. Proc Natl Acad Sci USA 1999,96,4046-4051.
    [93]Foster, J.; Hope, J.; Fraser, H., Transmission of bovine spongiform encephalopathy to sheep and goats. Vet Rec 1993,133 (14),339-341.
    [94]Ryder, S. J.; Hawkins, S. A. C.; Dawson, M.; Wells, G. A. H., The neuropathology of experimental bovine spongiform encephalopathy in the pig. J Comp Pathol 2000,122,131-143.
    [95]Collinge, J.; Clarke, A. R., A General Model of Prion Strains and Their Pathogenicity. Science 2007, 318,930-936.
    [96]Sigurdson, C.; Miller, M., Other animal prion diseases. Br Med Bull 2003,66,199-212.
    [97]Marsh, R. F.; Kincaid, A. E.; Bessen, R. A.; Bartz, J. C., Interspecies transmission of chronic wasting disease prions to squirrel monkeys (Saimiri sciureus). J Virol 2005,79 (21),13794-13796.
    [98]Llewelyn, C. A., Possible transmission of variant Creutzfeldt-Jakob disease by blood transfusion. Lancet 2004,363,417-421.
    [99]Hunter, N., Transmission of prion diseases by blood transfusion. J. Gen. Virol.2002,83,2897-2905.
    [100]Houston, F.; Foster, J. D.; Chong, A.; Hunter, N.; Bostock, C. J., Transmission of BSE by blood transfusion in sheep. Lancet 2000,356,999-1000.
    [101]Collinge, J., Variant Creutzfeldt-Jakob disease. Lancet 1999,354,317-323
    [102]Wadsworth, J. D. F.; Joiner, S.; Hill, A. F.; Campbell, T. A.; Desbruslais, M.; Luthert, P. J.; Collinge, J., Tissue distribution of protease resistant prion protein in variant Creutzfeldt-Jakob disease using a highly sensitive immunoblotting assay. The Lancet 2001,358 (9277),171-180.
    [103]Brown, P., Iatrogenic Creutzfeldt-Jakob disease at the millennium. Neurology 2000,55,1075-1081.
    [104]Aguzzi, A.; Nuvolone, M.,Zhu, C., The immunobiology of prion diseases. Nat Rev 2013,13, 888-902.
    [105]Grassi, J.; Maillet, S.; Simon, S.; Morel, N., Progress and limits of TSE diagnostic tools. Vet. Res. 2008,39,33-44.
    [106]Simmons, M. M.; Spiropoulos, J.; Hawkins, S. A. C.;.Bellworthy, S. J.; Tongue, S. C., Approaches to Investigating transmission of spongiform encephalopathies in domestic animals using BSE as an exemple. Vet Res 2008,39,34.
    [107]Telling, G C., Transgenic Mouse Models of Prion Diseases Methods Mol. Biol.2008,459,249-263.
    [108]Lukan, A.; Vranac, T.; Serbec, V. C., TSE Diagnostics:Recent Advances in Immunoassaying Prions. Clin Dev Immunol 2013,2013,360604.
    [109]Furukawa, H., A pitfall in diagnosis of human prion diseases using detection of protease-resistant prion protein in urine:contamination with bacterial outer membrane proteins. J Biol Chem 2004, 279,23661-23667
    [110]Hilton, D. A.; Fathers, E.; Edwards, P.; Ironside, J. W.; Zajicek, J., Prion immunoreactivity in appendix before clinical onset of variant Creutzfeldt-Jakob disease. Lancet 1998,352,703-704.
    [111]Brown, P.; Cervenakova, L.; Diringer, H., Blood infectivity and the prospects for a diagnostic screening test in Creutzfeldt-Jakob disease. J. Lab. Clin. Med.2001,137,5-13.
    [112]Sajnani, G; Silva, C. J.; Ramos, A., et al, PK-sensitive PrPSc Is Infectious and Shares Basic Structural Features with PK-resistant PrPsc. PLoS Pathog 2012,8 (3),e1002547.
    [113]Korth, C.; Streit, P.; Oesch, B., Monoclonal antibodies specific for the native, disease-associated isoform of the prion protein. Methods Enzymol.1999,309,106-122.
    [114]Zou, W. Q.; Zheng, J.; Gray, D. M.; Gambetti, P.; Chen, S. G., Antibody to DNA detects scrapie but not normal prion protein. Proc Natl Acad Sci USA 2004,101,1380-1385.
    [115]Soto, C., Diagnosing Prion diseases:Needs, Challenges and Hopes. Nat Rev Microbiol 2004,2, 809-819.
    [116]Maissen, M.; Roeckl, C.; Glatzel, M.; Goldmann, W.; Aguzzi, A., Plasminogen binds to disease-associated prion protein of multiple species. The Lancet 2001,357 (9273),2026-2028.
    [117]Fischer, M. B.; Roeckl, C.; Parizek, P.; Schwarz, H. P.; Aguzzi, A., Binding of disease-associated prion protein to plasminogen. Nature 2000,408 (6811),479-483.
    [118]Triantaphyllidou, I. E.; Sklaviadis, T.; Vynios, D. H., Detection, quantification, and glycotyping of prion protein in specifically activated enzyme-linked immunosorbent assay plate. Anal Biochem 2006,359(2),176-182.
    [119]Weiss, S.; Proske, D.; Neumann, M.; Groschup, M. H.; Kretzschmar, H. A.; Famulok, M.; Winnacker, E.-L., RNA Aptamers Specifically Interact with the Prion Protein PrP. J Virol 1997,71, 8790-8797.
    [120]Takemura, K.; Wang, P.; Vorberg, I.; Surewicz, W.; Priola, S. A.; Kanthasamy, A.; Pottathil, R.; Chen, S. G.; Sreevatsan, S., DNA Aptamers That Bind to PrPc and Not PrPSc Show Sequence and Structure Specificity. Exp. Biol. Med.2006,231,204-214.
    [121]Sayer, N. M.; Cubin, M.; Rhie, A.; Bullock, M.; Tahiri-Alaoui, A.; James, W., Structural determinants of conformationally selective prion-binding aptamers. J Biol Chem 2004,279 (13), 13102-13109.
    [122]Sekiya, S.; Noda, K.; Nishikawa, F.; Yokoyama, T.; Kumar, P. K. R.; Nishikawa, S., Characterization and application of a novel RNA aptamer against the mouse prion protein. J Biochem 2006,139,383-390.
    [123]Bibby, D. F.; Gill, A. C.; Kirby, L.; Farquhar, C. F.; Bruce, M. E.; Garson, J. A., Application of a novel in vitro selection technique to isolate and characterise high affinity DNA aptamers binding mammalian prion proteins. J Virol Methods 2008,151 (1),107-115.
    [124]Xiao, S. J.; Hu, P. P.; Wu, X. D., et al., Sensitive Discrimination and Detection of Prion Disease-Associated Isoform with a Dual-Aptamer Strategy by Developing a Sandwich Structure of Magnetic Microparticles and Quantum Dots. Anal Chem 2010,82,9736-9742.
    [125]Shaked, G. M.; Shaked, Y.; Kariv-Inbal, Z.; Halimi, M.; Avraham, I.; Gabizon, R., A protease-resistant prion protein isoform is present in urine of animals and humans affected with prion diseases. J Biol Chem 2001,276 (34),31479-31482.
    [126]Brown, P.; Cervenakova, L.; Diringer, H., Blood infectivity and the prospects for a diagnostic screening test in Creutzfeldt-Jakob disease. J Lab Clin Med 2001,137,1.
    [127]Holada, K.; Vostal, J. G; Theisen, P. W.; MacAuley, C.; Gregori, L.; Rohwer, R. G., Scrapie infectivity in hamster blood is not associated with platelets. J Virol 2002,76 (9),4649-4650.
    [128]Saborio, G. P.; Permanne, B.; Soto, C., Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 2001,411 (6839),810-813.
    [129]Chen, B.; Morales, R.; Barria, M. A.; Soto, C., Estimating Prion Concentration In Fluids and Tissues By Quantitative PMCA. Mat Methods 2010,7 (7),519-521.
    [130]Rubenstein, R.; Chang, B.; Gray, P.; Piltch, M.; Bulgin, M. S.; Sorensen-Melson, S.; Miller, M. W., A novel method for preclinical detection of PrPSc in blood. J Gen Virol 2010,91,1883-92.
    [131]Morales, R.; Duran-Aniotz, C.; Diaz-Espinoza, R.; Camacho, M. V.; Soto, C., Protein misfolding cyclic amplification of infectious prions. Nat Protoc 2012,7,1397-1409.
    [132]Tschampa, H. J.; Kallenberg, K.; Urbach, H.; Meissner, B.; Nicolay, C.; Kretzschmar, H. A.; Knauth, M.; Zerr, I., MRI in the diagnosis of sporadic Creutzfeldt-Jakob disease:a study on inter-observer agreement. Brain 2005,128,2026-2033.
    [133]Lodi, R.; Parchi, P.; Tonon, C., et al., Magnetic resonance diagnostic markers in clinically sporadic prion disease:a combined brain magnetic resonance imaging and spectroscopy study. Brain 2009 132,2669-2679.
    [134]Meissner, B.; Kallenberg, K.; Sanchez-Juan, P., et al., MRI and clinical syndrome in dura mater-related Creutzfeldt-Jakob disease. J Neurol 2009,256,355-363.
    [135]Barnard, G.; Helmick, B.; Madden, S.; Gilbourne, C; Patel, R., The measurement of prion protein in bovine brain tissue using differential extraction and DELFIA as a diagnostic test for BSE. Luminescence 2000,15 (6),357-362.
    [136]Schmerr, M.; Goodwin, K.; Cutlip, R., Capillary electrophoresis of the scrapie prion protein from sheep brain. J ChromatogrA 1994,680 (2),447-453.
    [137]Schmerr, M.; Jenny, A.; Bulgin, M.; Miller, J.; Hamir, A.; Cutlip, R.; Goodwin, K., Use of capillary electrophoresis and fluorescent labeled peptides to detect the abnormal prion protein in the blood of animals that are infected with a transmissible spongiform encephalopathy. J Chromatogr A 1999, 853,207-214.
    [138]Sobrova, P.; Ryvolova, M.; Adam, V.; Kizek, R., Capillary electromigration based techniques in diagnostics of prion protein caused diseases. Electrophoresis 2012,33,3644-3652.
    [139]Fujii, F.; Horiuchi, M.; Ueno, M.; Sakata, H.; Nagao, I.; Tamura, M.,Kinjo, M., Detection of prion protein immune complex for bovine spongiform encephalopathy diagnosis using fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy. Anal Biochem 2007,370, 131-141.
    [140]Bieschke, J.; Giese, A.; Schulz-Schaeffer, W.; Zerr, I.; Poser, S.; Eigen, M.,Kretzschmar, H., Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets. Proc Natl Acad Sci USA 2000,97 (10),5468-5473.
    [141]Chen, L. Q.; Xiao, S. J.; Peng, L.; Wu, T.; Ling, J.; Li, Y. F.,Huang, C. Z., Aptamer-Based Silver Nanoparticles Used for Intracellular Protein Imaging and Single Nanoparticle Spectral Analysis. J Phys Chem B 2010,114,3655-3659.
    [142]Lampe, M.; Briggs, J. A. G.; Endress, T.; Glass, B.; Riegelsberger, S.; Krausslich, H.-G.; Lamb, D. C.; Brauchle, C.,Muller, B., Double-labelled HIV-1 particles for study of virus-cell interaction. Virology 2007,360 (1),92-104.
    [143]Prusiner, S. B., Prion Diseases and the BSE Crisis. Science 1997,278,245-251.
    [144]Stahl, N.; Borchelt, D.; Hsiao, K., Prusiner, S., Scrapie prion protein contains a phosphatidylinositol glycolipid. Cell 1987,51 (2),229-240.
    [145]Prusiner, S., Prions. Proc NatlAcadSci USA 1998,95 (23),13363-13383.
    [146]Zhu, J.; Zhou, J.; Guo, J.; Cai, W.; Liu, B.; Wang, Z.; Sun, Z., Surface-enhanced Raman spectroscopy investigation on human breast cancer cells. Chem Cent J2013,7(1),37.
    [147]Stevenso, R.; Stokes, R. J.; MacMillan, D.; Armstrong, D.; Faulds, K..; Wadsworth, R.; Kunuthur, S.; Suckling, C. J.,Graham, D., In situ detection of pterins by SERS. Analyst 2009,134 (8), 1561-1564.
    [148]Han, X. X.; Zhao, B.; Ozaki, Y., Surface-enhanced Raman scattering for protein detection. Anal Bioanal Chem 2009,394 (7),1719-1727.
    [149]Manno, D.; Filippo, E.; Fiore, R.; Serra, A.; Urso, E.; Rizzello, A.; Maffia, M., Monitoring prion protein expression in complex biological samples by SERS for diagnostic applications. Nanotechnology 2010,21 (16),165502.
    [150]Alvarez-Puebla, R. A.; Agarwal, A.; Manna, P., et al., Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc Natl Acad Sci USA 2011,108(20),8157-8161.
    [151]Han, X. X.; Chen, L.; Guo, J.; Zhao, B.; Ozaki, Y., Coomassie Brilliant Dyes as Surface-Enhanced Raman Scattering Probes for Protein-Ligand Recognitions. Anal. Chem.2010,82 (10),4102-4106.
    [152]Congdon, R. W.; Muth, G. W.; Splittgerber, A. G., The binding interaction of Coomassie blue with proteins. Anal Biochem 1993,213 (2),407-413.
    [153]Merril, C. R., Gel-staining techniques. Methods Enzymol 1990,182,477-488.
    [154]Phillips, J. A.; Lopez-Colon, D.; Zhu, Z.; Xu, Y; Tan, W., Applications of aptamers in cancer cell biology. Anal Chim Acta 2008,621,101-108.
    [155]Chen, H. W.; Medley, C. D.; Sefah, K.; Shangguan, D.; Tang, Z. W.; Meng, L.; Smith, J. E.; Tan, W. H., Molecular recognition of small-cell lung cancer cells using aptamers. Chemmedchem 2008,3 (6),991-1001.
    [156]Huang, Y.-F.; Chang, H.-T.; Tan, W., Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal Chem 2008,80 (3),567-572.
    [157]Davis, J. J.; Tkac, J.; Humphreys, R.; Buxton, A. T.; Lee, T. A.; Ko Ferrigno, P., Peptide Aptamers in Label-Free Protein Detection:2. Chemical Optimization and Detection of Distinct Protein Isoforms. Anal Chem 2009,81 (9),3314-3320.
    [158]Bagalkot, V.; Jon, S.; Kantoff, P. W.; Langer, R.; Farokhzad, O. C., Quantum Dot-Aptamer Conjugates for Synchronous Cancer Imaging, Therapy,and Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer. Nano Lett 2007,7(10),3065-3070.
    [159]Hu, P. P.; Chen, L. Q.; Liu, C.; Zhen, S. J.; Xiao, S. J.; Peng, L.; Li, Y. F.,Huang, C. Z., Ultra-sensitive detection of prion protein with a long range resonance energy transfer strategy. Chem Commun 2010,46,8285-8287.
    [160]Madore, N.; L.Smith, K.; H.Graham, C.; Jen, A.; Brady, K.; Hall, S.,Morris, R., Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J 1999, 18 (24),6917-6926.
    [161]Ling, J.; Li, Y. F.; Huang, C. Z., Visual Sandwich Immunoassay System on the Basis of Plasmon Resonance Scattering Signals of Silver Nanoparticles.Anal Chem 2009,81,1707-1714.
    [162]Liu, S.; Zhang, Z.; Han, M., Gram-Scale Synthesis and Biofunctionalization of Silica-Coated Silver Nanoparticles for Fast Colorimetric DNA Detection. Anal Chem 2005,77,2595-2600.
    [163]Hu, P. P.; Peng, L.; Zhen, S. J.; Chen, L. Q.; Xiao, S. J.; Huang, C. Z, Homoehiral Expression of Proteins:a Discussion on the Natural Chirality related to the Origin of Life. Sci China Ser B-Chem 2010,53 (4),792-796.
    [164]Georgieva, D.; Kokerc, M.; Redecke, L.; Perbandt, M.; Clos, J.; Bredehorst, R.; Genov, N.; Betzel, C., Oligomerization of the proteolytic products is an intrinsic property of prion proteins. Biochem Bioph Res Co 2004,323,1278-1286.
    [165]Maier, S. A.; Kik, P. G; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Requicha, A. A. G, Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2003,2,229-232.
    [166]Chen, S.; Huang, P.; Wang, Z.; Wang, Z.; Swierczewska, M.; Niu, G; Cui, D.; Chen, X., Self-assembly of gold nanoparticles to silver microspheres as highly efficient 3D SERS substrates. Nanoscale Res Lett 2013,8(1),168.
    [167]Liu, S.; Zhang, Z.; Han, M., Gram-Scale Synthesis and Biofunctionalization of Silica-Coated Silver Nanoparticles for Fast Colorimetric DNA Detection. Anal. Chem.2005,77,2595-2600.
    [168]Xiao, S. J.; Hu, P. P.; Xiao, G. F.; Wang, Y.; Liu, Y.,Huang, C. Z., Label-free detection of prion protein with its DNA aptamer through the formation of T-Hg2+-T configuration. J Phys Chem B 2012,116 (32),9565-9569.
    [169]Zhang, J.; Fu, Y.,Lakowicz, J. R., Fluorescence Images of DNA-Bound YOYO between Coupled Silver Particles. Langmuir 2007,23,11734-11739.
    [170]Lakowicz, J. R.; Ray, K.; Chowdhury, M.; Szmacinski, H.; Fu, Y.; Zhang, J.; Nowaczyk, K., Plasmon-controlled fluorescence:a new paradigm in fluorescence spectroscopy. Analyst 2008,133 (10),1308-46.
    [171]Lakowicz, J. R.; Shen, Y.; D'Auria, S.; Malicka, J.; Fang, J.; Gryczynski, Z.; Gryczynski,I., Radiative decay engineering.2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal Biochem 2002,301 (2),261-277.
    [172]Malicka, J.; Gryczynski,I.; Kusba, J.; Shen, Y.; Lakowicz, J. R., Effects of metallic silver particles on resonance energy transfer in labeled bovine serum albumin. Biochem Bioph Res. Co 2002,294, 886-892.
    [173]Lakowicz, J. R., Radiative Decay Engineering:Biophysical and Biomedical Applications. Anal Biochem 2001,298,1-24.
    [174]Lakowicz, J. R.; Geddes, C. D.; Gryczynski, I., et al., Advances in Surface-Enhanced Fluorescence. J Fluoresc 2004,14 (4),425-441.
    [175]Fu, Y.,Lakowicz, J. R., Enhanced Fluorescence of Cy5-Labeled Oligonucleotides Near Silver Island Films:A Distance Effect Study Using Single Molecule Spectroscopy. J Phys Chem B 2006,110, 22557-22562.
    [176]Gersten, J.; Nitzan, A., Spectroscopic properties of molecules interacting with small dielectric particles. J Chem Phys 1981,75,1139-1152.
    [177]Zhang, J.; Lakowicz, J. R.; A Model for DNA Detection by Metal-Enhanced Fluorescence from Immobilized Silver Nanoparticles on Solid Substrate. J Phys Chem B 2006,110,2387-2392.
    [178]Sabanayagam, C. R.; Lakowicz, J. R., Increasing the sensitivity of DNA microarrays by metal-enhanced fluorescence using surface-bound silver nanoparticles. Nucleic Acids Res 2007,35 (2),e13.
    [179]Zhang, J.; Fu, Y.; Chowdhury, M. H.; Lakowicz, J. R., Metal-Enhanced Single-Molecule Fluorescence on Silver Particle Monomer and Dimer: Coupling Effect between Metal Particles. Nano Lett 2007,7 (7),2101-2107.
    [180]Sosa, I. O.; Noguez, C.; Barrera, R. G., Optical Properties of Metal Nanoparticles with Arbitrary Shapes. J Phys Chem B 2003,107 (26),6269-6275.
    [181]Haynes, C. L.; Duyne, R. P. V., Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. J Phys Chem B 2001,105 (24),5599-5611.
    [182]Pastoriza-Santos, I.; Serra-Rodriguez, C.; Liz-Marzan, L. M., Self-Assembly of Silver Particle Monolayers on Glass from Ag(+) Solutions in DMF. J Colloid Interface Sc.2000,221 (2), 236-241.
    [183]Geddes, C. D.; Cao, H.; Gryczynski, I.; Gryczynski, Z.; Fang, J.; Lakowicz, J. R., Metal-Enhanced Fluorescence (MEF) Due to Silver Colloids on a Planar Surface: Potential Applications of Indocyanine Green to in Vivo Imaging. J Phys Chem A 2003,107 (18),3443-3449.
    [184]Asian, K.; Leonenko, Z.; Lakowicz, J. R.; Geddes, C. D., Fast and Slow Deposition of Silver Nanorods on Planar Surfaces: Application to Metal-Enhanced Fluorescence. J Phys Chem B 2005, 109,3157-3162.
    [185]Asian, K.; Lakowicz, J. R.; Geddes, C. D., Rapid Deposition of Triangular Silver Nanoplates on Planar Surfaces: Application to Metal-Enhanced Fluorescence. J Phys Chem B 2005,109, 6247-6251.
    [186]Fu, Y.; Lakowicz, J. R., Single-Molecule Studies of Enhanced Fluorescence on Silver Island Films. Plasmonics 2007,2,1-4.
    [187]Asian, K.; Wu, M.; Lakowicz, J. R.; S.; Geddes, C. D., Metal enhanced fluorescence solution-based sensing platform. J Fluoresc 2004,14,677-679.
    [188]Xiao, S. J.; Hu, P. P.; Li, Y. F.; Huang, C. Z.; Huang, T.; Xiao, G. F., Aptamer-mediated turn-on fluorescence assay for prion protein based on guanine quenched fluophor. Talanta 2009,79, 1283-1286.
    [189]Morales, R.; Green, K. M.; Soto, C., Cross Currents in Protein Misfolding Disorders: Interactions and Therapy. CNS & Neurol Disord-Dr 2009,8,363-371.
    [190]Lessard-Viger, M.; Rioux, M.; Rainville, L.; Boudreau, D., FRET Enhancement in Multilayer Core-Shell Nanoparticles. Nano Lett 2009,9 (8),3066-3071.
    [191]Asian, K.; Wu, M.; Lakowic, J. R.; Geddes, C. D., Fluorescent Core-Shell Ag@SiO2 Nanocomposites for Metal-Enhanced Fluorescence and Single Nanoparticle Sensing Platforms. J Am Chem Soc.2007,129,1524-1525.
    [192]Skillman, D.C.; Berry, C. R., Effect of Particle Shape on the Spectral Absorption of Colloidal Silver in Gelatin JChem Phys 1968,48,3297-3304.
    [193]Yguerabide, J.; Yguerabide, E. E., Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications. Anal Biochem 1998,262,137-156.
    [194]Yu, S. L.; Jin, L.; Sy, M. S.; Mei, F. H.; Kang, S. L.; Sun, G. H.; Tien, P.; Wang, F. S.,Xiao, G. F., Polymorphisms of the PRNP gene in Chinese populations and the identification of a novel insertion mutation Eur J Hum Genet 2004,12,867-870.
    [195]De, M.; Rana, S.; Akpinar, H.; Miranda, O. R.; Arvizo, R. R.; Bunz, U. H. F.; Rotello, V. M., Sensing of Proteins in Human Serum using Nanoparticle-Green Fluorescent Protein Conjugates. Nat Chem 2009,1(6),461-465.
    [196]Tam, F.; Goodrich, G. P.; Johnson, B. R.,Halas, N. J., Plasmonic Enhancement of Molecular Fluorescence. Nano Lett 2007,7 (2),496-501.
    [197]Lakowicz, J. R.; Ray, K.; Chowdhury, M.; Szmacinski, H.; Fu, Y; Zhang, J.; Nowaczyk, K., Plasmon-Controlled Fluorescence:A New Paradigm in Fluorescence Spectroscopy. Analyst 2008, 133 (10),1308-1046.
    [198]Geddes, C. D.; Lakowicz, J. R., Metal-Enhanced Fluorescence. JFluoresc 2002,12 (2),121-129.
    [199]Asian, K.; Geddes, C. D., Microwave-Accelerated Metal-Enhanced Fluorescence:Platform Technology for Ultrafast and Ultrabright Assays. Anal Chem 2005,77 (24),8057-8067.
    [200]Ray, K.; Badugu, R;; Lakowicz, J. R., Metal-Enhanced Fluorescence from CdTe Nanocrystals:A Single-Molecule Fluorescence Study. J Am Chem Soc 2006,128,8998-8999.
    [201]Asian, K.; Badugu, R.; Lakowicz, J. R.; Geddes, C. D., Metal-enhanced fluorescence from plastic substrates. J Fluoresc 2005,152,99-104.
    [202]Vuorimaa, E.; Urtti, A.; Seppanen, R.; Lemmetyinen, H.; Yliperttula, M., Time-Resolved Fluorescence Spectroscopy Reveals Functional Differences of Cationic Polymer-DN A Complexes. JAm Chem Soc 2008,130 (35),11695-11700.
    [203]Yguerabide, J.; Yguerabide, E. E., Light-Scattering Submicroscopic Particles as Highly Fluorescent Analogs and Their Use as Tracer Labels in Clinical and Biological Applications. Anal Biochem 1998,262,157-176.
    [204]Bagalkot, V.; Zhang, L.; Levy-Nissenbaum, E.; Jon, S.; Kantoff, P. W.; Langer, R.; Farokhzad, O. C., Quantum Dot-Aptamer Conjugates for Synchronous Cancer Imaging, Therapy, and Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer. Nano Lett 2007,7(10), 3065-3070.
    [205]Yao, H.; Zhang, Y; Xiao, F.; Xia, Z.; Rao, J., Quantum Dot/Bioluminescence Resonance Energy Transfer Based Highly Sensitive Detection of Proteases. Angew Chem Int Ed 2007,46,4346-4349.
    [206]Liu, G. L.; Long, Y.-T.; Choi, Y; Kang, T.; Lee, L. P., Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nat Methods 2007,4(12),1015-1017.
    [207]Choi, Y; Park, Y.; Kang, T.; Lee, L. P., Selective and sensitive detection of metal ions by plasmonic resonance energy transfer-based nanospectroscopy. Nat Nanotech 2009,4,742-746
    [208]Stryer, L.; Haugland, R. P., Energy Transfer:A Spectroscopic Ruler. Proc Natl.lcadSci USA 1967, 55,719-726.
    [209]Alvarez-Curto, E.; Pediani, J. D.; Milligan. G.. Applications of fluorescence and bioluminescence resonance energy transfer to drug discovery at G protein coupled receptors. Anal Bioanal Chem 2010,595(1),167-180.
    [210]Liu, G. L.; Long, Y.-T.; Choi, Y.; Kang, T.:Lee, L. P., Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nat Methods 2007,4 (12),1015-1017.
    [211]Yun, C. S.; Javier, A.; Jennings, T.; Fisher. M.; Hira. S.; Peterson, S.; Hopkins, B.:Reich, N. O.; Strouse, G. F., Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier. J Am Chem Soc 2005,127,3115-3119.
    [212]Qu, L.; Martin, R. B.; Huang, W., et al.. Interactions of functionalized carbon nanotubes with tethered pyrenes in solution. J Chem Phys 2002,117,8089-8094.
    [213]Darbha, G. K.; Ray, A.; Ray, P. C. Gold Nanoparticle-Based Miniaturized Nanomaterial Surface Energy Transfer Probe for Rapid and Ultrasensitive Detection of Mercury in Soil, Water, and Fish. ACSNano 2007,1(3),208-214.
    [214]Sapsford, K. E.; Berti. L..Medintz, I. L.. Materials for Fluorescence Resonance Energy Transfer Analysis:Beyond Traditional Donor-Acceptor Combinations. Angew Chem Int Ed 2006,45. 4562-4588.
    [215]Dulkeith, E.; Morteani, A. C.; Niedereichholz. T.; Klar, T. A.; Feldmann, J., Fluorescence Quenching of Dye Molecules near Gold Nanoparticles:Radiative and Nonradiative Effects. Phys Rev Lett 2002,59.203002.
    [216]Mayilo. S.; Kloster, M. A.; Wunderlich, M.; Lutich, A.; Klar, T. A.:Nichtl, A.; Rzinger, K. K.: Stefani. F. D..Feldmann, J.. Long-Range Fluorescence Quenching by Gold Nanoparticles in a Sandwich Immunoassay for Cardiac Troponin T. Nano Lett 2009,9(12),4558-4563.
    [217]Anger. P.:Bharadwaj, R.Novotny. L., Enhancement and Quenching of Single-Molecule Fluorescence. Phys Rev Lett 2006,96 (11),113002.
    [218]Kuhn, S.; Hakanson, U.; Rogobete, L.; Sandoghdar, V., Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna. Phys Rev Lett 2006,97, 017402.
    [219]Pons, T.; Medintz, I. L.; Sapsford. K. E.:Higashiya, S.:Grimes, A. F.:English, D. S.:Mattoussi, H.. On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles. Nano Lett 2007,7 (10),3157-3164.
    [220]Mayilo, S.; Kloster, M. A.; Wunderlich, M.; Lutich. A.; Klar, T. A.; Nichtl, A.; Rzinger, K. K.: Stefani, F. D.,Feldmann, J., Long-Range Fluorescence Quenching by Gold Nanoparticles in a Sandwich Immunoassay for Cardiac Troponin T. Nano Lett 2009,9(12),4558-4563.
    [221]Algar. W. R.; Krull. U. J., Toward A Multiplexed Solid-Phase Nucleic Acid Hybridization Assay Using Quantum Dots as Donors in Fluorescence Resonance Energy Transfer. Anal Chem 2009,81 (10).4113-4120.
    [222]Liao, Q. G.; Li, Y. F.; Huang, C. Z., A light scattering and fluorescence emission coupled ratiometry using the interaction of functional CdS quantum dots with aminoglycoside antibiotics as a model system. Talanta 2007,7 (2),567-572.
    [223]Clapp, A. R.; Medintz, I. L.; Mauro, J. M.; Fisher, B. R.; Bawendi, M. G; Mattoussi, H., Fluorescence Resonance Energy Transfer Between Quantum Dot Donors and Dye-Labeled Protein Acceptors. J Am Chem Soc 2004,126,301-310.
    [224]Agarwa, A.; Lilly, G. D.; Govorov, A. O.; Kotov, N. A., Optical Emission and Energy Transfer in Nanoparticle-Nanorod Assemblies:Potential Energy Pump System for Negative Refractive Index Materials. J Phys Chem C 2008,112,18314-18320.
    [225]Bae, P. K.; Kim, K. N.; Lee, S. J.; Chang, H. J.; Lee, C. K.; Park, J. K., The modification of quantum dot probes used for the targeted imaging of his-tagged fusion proteins. Biomaterials 2009,30,836-842.
    [226]Xu, C.; Xu, K.; Gu, H.; Zhong, X.; Guo, Z.; Zheng, R.; Zhang, X.; Xu, B., Nitrilotriacetic Acid-Modified Magnetic Nanoparticles as a General Agent to Bind Histidine-Tagged Proteins. J Am Chem Soc 2004,126 (11),3392-3393.
    [227].Lee, P. C.; Meisel, D., Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols. J Phys Chem 1982,86,3391-3395.
    [228]Hill, H. D.; Mirkin, C. A., The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat Protoc 2006,1(1),324-336.
    [229]Liu, J. W.; Lu, Y., Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 2006,7(1),246-252.
    [230]Brown, P.; Cervenakova, L.; Diringer, H., Blood infectivity and the prospects for a diagnostic screening test in Creutzfeldt-Jakob disease. J Lab Clin Med 2001,137(1),5-13.
    [231]Schlegel, G.; Bohnenberger, J.; Potapova, I.; Mews, A., Fluorescence Decay Time of Single Semiconductor Nanocrystals. Phys Rev Lett 2002,88(13),137401.
    [232]Munishkina, L. A.; Fink, A. L., Fluorescence as a method to reveal structures and membrane-interactions of amyloidogenic proteins. Biochim Biophys Acta 2007,1768,1862-1885.
    [233]Scully, S. R.; Armstrong, P. B.; Edder, C.; Frechet, J. M. J.; McGehee, M. D., Long-Range Resonant Energy Transfer for Enhanced Exciton Harvesting for Organic Solar Cells. Adv Mater 2007,19,2961-2966.
    [234]Alivisatos, A. P.; Waldeck, D. H.; Harris, C. B., Nonclassical behavior of energy transfer from molecules to metal surfaces:Biacetyl(3nπ*)/Ag(111). J Chem Phys 1985,82,541-547.
    [235]Griffin, J.; Singh, A. K.; Senapati, D.; Rhodes, P.; Mitchell, K.; Robinson, B.; Yu, E.,Ray, P. C, Size-and Distance-Dependent Nanoparticle Surface-Energy Transfer (NSET) Method for Selective Sensing of Hepatitis C Virus RNA. Chem EurJ 2009,15,342-351.
    [236]Prusiner, S. B., Prion Biology and Diseases. Cold Spring Harbor Laboratory Press 1999,9-10.
    [237]Lima, K. H.; Nguyen, T. N.; Damo, S. M.; Mazur, T.; Balld, H. L.; Prusinerd, S. B.; Pines, A.; Wemmer, D. E., Solid-state NMR structural studies of the fibril form of a mutant mouse prion peptide PrP89-143(P101L). Solid State Nuclear Magnetic Resonance 2006,29,183-190.
    [238]Wang, Q.; Wang, H.; Lin, C.; Sharma, J.; Zou, S.; Liu, Y., Photonic interaction between quantum dots and gold nanoparticles in discrete nanostructures through DNA directed self-assembly. Chem Commun 2010,46,240-242.
    [239]韩俊;张瑾;姚海兰;王小凡;李锋;高晨;周伟;张宝云;董小平,微管相关蛋白tau与朊蛋白的相互作用.中国科学C辑生命科学2006,36(2),150-156.
    [240]Prusiner, S. B.; D Groth, A. S.; R Koehler, D. F.; Torchia, M.; Burton, D.; Yang, S. L., DeArmond, S. J., Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proc Natl Acad Sci USA 1993,90,10608-10612.
    [241]梁文婷;黄承志,马璐,多金属氧化物立方纳米晶体的可控合成及其与朊蛋白的特异性相互作用.中国科学B辑:化学2009,39(6)、495-500.
    [242]Kretzschmar, H. A.; Stowing, L. E.; Westaway, D.; Stubblebine, W. H.; Prusiner, S. B.; Dearmond, S. J., Molecular cloning of a human prion protein cDNA. DNA 1986,5,315-324.
    [243]Aguzzi, A.; Montrasio, F.; Kaeser, P. S., Prions:health scare and biological challenge Nat Rev Mol Cell Biol 2001,2,118-126.
    [244]史怀平;杨增岐;刘希成,朊病毒研究进展.动物医学进展2004,25(5),12-14.
    [245]Collinge, J.; Sidle, K. C.; Meads, J.; Ironside, J.; Hill, A. F., Molecular analysis of prion strain variation and the aetiology of 'new variant'CJD. Nature 1996,383,685-690.
    [246]Parchi, P.; Castellani, R.; Capellari, S., et al., Molecular basis of phenotypic variability in sporadic Creutzfeldt-Jakob disease. Ann Neurol 1996,39,767-778.
    [247]Yuil, H. M.; Ritchie, D. L.; Langeveld, J. P.; Zijderveld, F. G v.; Bruce, M. E.; Ironside, J. W.; Head, M. W., Detection of type 1 prion protein in variant Creutzfeldt-Jakob disease. Am J Pathol 2006,168,151-157.
    [248]Parchi, P.; Giese, A.; Capellari, S., et al., Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol 1999,46,224-233.
    [249]Kong, Q.; Surewicz, W. K.; Petersen, R. B.; Zou, W.; Chen, S. G; Gambetti, P., Inherited prion diseases, in:S.B. Prusiner (Ed), Prion Biology and Diseases.2004; p 673-775.
    [250]Manolakou, K.; Beaton, J.; McConnell, I.; Farquar, C.; Manson, J.; Hastie, N. D.; Bruce, M.; Jackson, I. J., Genetic and environmental factors modify bovine spongiform encephalopathy incubation period in mice. Proc NatlAcadSci USA 2001,98 (13),7402-7407.
    [251]Kelly, J. W., The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr Opin Struct Biol 1998,8,101-106.
    [252]Kelly, J. W., Alternative conformations of amyloidogenic proteins govern their behavior. Curr Opin Struct Biol 1996,(5,11-17.
    [253]Chabry, J.; Caughey, B.; Chesebro, B., Specific Inhibition of in Vitro Formation of Protease-resistant Prion Protein by Synthetic Peptides. J Biol Chem 1998,273 (21),13203-13207.
    [254]Kuroda, Y.; Maeda, Y.; Nakagawa, T., Oligopeptide-Mediated Stabilization of the a-Helix of a Prion Protein Peptide. J Am Chem Soc 2000,122,12596-12597.
    [255]Chasseigneaux. S.; Haik, S.; Laffont-Proust, I.; Marcoc, O. D.; Lenne, M.; Brandel, J.-P.; Hauw, J.-J.; Laplanche, J.-L.; Peoch, K., V180I mutation of the prion protein gene associated with atypical PrPSc glycosylation. Neurosci Lett 2006,408(165),165-169.
    [256]Bocharova, O. V.; Breydo, L; Parfenov, A. S.; Salnikov, V. V.; Baskakov, I. V., In vitro Conversion of Full-length Mammalian Prion Protein Produces Amyloid Form with Physical Properties of PrPSe. J Mol Biol 2005,346,645-659.
    [257]Colby, D. W.; Zhang, Q.; Wang, S.; Groth, D.; Legname, G.; Riesner, D.; Prusiner, S. B., Prion detection by an amyloid seeding assay. Proc Natl Acad Sci USA 2007,104 (52),20914-20919.
    [258]Vanik, D. L.; Surewicz, W. K., Disease-associated F198S Mutation Increases the Propensity of the Recombinant Prion Protein for Conformational Conversion to Scrapie-like Form. J Biol Chem 2002,277 (50),49065-49070.
    [259]http://www.mad-cow.org/stais.html.
    [260]Lasne, D.; Blab. G. A.; Berciaud, S. p.; Heine, M.; Groc, L.; Daniel Choquet, y.; Cognet, L.,Lounis, B., Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells. Biophys J 2006,91 (12),4598-4604.
    [261]Shiga, Y; Wakabayashi, H.; Miyazawa, K.; Kido, H.,Itoyama, Y.,14-3-3 protein levels and isoform .patterns in the cerebrospinal fluid of Creutzfeldt-Jakob disease patients in the progressive and terminal stages. J Clin Neurosci 2006,13 (6),661-665.
    [262]Coulthart, M. B.; Jansen, G H.; Olsen, E.; Godal, D. L.; Connolly, T.; Choi, B. C.; Wang, Z.; Cashman, N. R., Diagnostic accuracy of cerebrospinal fluid protein markers for sporadic Creutzfeldt-Jakob disease in Canada:a 6-year prospective study. BMC Neurol 2011,11,133.
    [263]Jimi, T.; Wakayama, Y.; Shibuya, S.; Nakata, H.; Tomaru, T.; Takahashi, Y; Kosaka, K.; Asano, T.; Kato, K., High levels of nervous system-specific proteins in cerebrospinal fluid in patients with early stage Creutzfeldt-Jakob disease. Clin Chim Acta 1992,211,37-46.