猪瘟病毒野毒胶体金免疫层析检测方法的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪瘟是由猪瘟病毒引起猪的一种高度接触性和致死性传染病。病猪的主要临床特征是高热和出血常呈急性、慢性和亚临床经过。猪瘟病毒同边界病毒、牛病毒性腹泻病毒1型、牛病毒性腹泻病毒2型、长颈鹿瘟病毒一个暂定种同属于黄病毒科瘟病毒属的成员。猪瘟的暴发可以导致养猪业的巨大经济损失且影响国际贸易,被世界动物卫生组织列为报告疾病名录。对于猪瘟的预防尽管弱毒疫苗很有效,但是由于缺乏血清学标志鉴别诊断的方法,通过抗体检测很难区分免疫弱毒和野毒感染。现有的检测猪瘟病毒的方法主要包括病毒分离、抗原捕捉ELISA、聚合酶链式反应等。这些方法需要几小时到几天才能完成,且有的需要熟练的操作者和特殊的仪器。因此对于猪瘟病毒的检测急需要一种快速、可靠、廉价的检测方法。本研究使用了抗猪瘟病毒E2蛋白的单克隆抗体,研发了一个可以鉴别诊断猪瘟病毒野毒和兔化弱毒的免疫层析试纸条。本研究的内容及结果如下:
     1.为建立一种快速、简便检测猪瘟病毒野毒的胶体金免疫层析方法,采用柠檬酸三钠还原法制备胶体金颗粒,标记纯化的抗猪瘟病毒E2蛋白的单克隆抗体6E10作为捕捉抗体,将纯化的抗猪瘟病毒E2蛋白的单克隆抗体HQ06和兔抗鼠IgG抗体包被在硝酸纤维素膜上,分别作为检测线和质控线,进行条件优化,然后组装成胶体金免疫层析试纸条。结果表明,所制备的试纸条用于检测猪瘟病毒野毒感染的PK15细胞培养物,在检测线和质控线处均出现红色条带,未感染病毒的细胞培养物仅在质控线出现红色条带;试纸条检出病毒培养物的最低限为103.5 TCID50;用不同批次的试纸条重复检测,结果无差异;该试纸条不与猪瘟兔化弱毒、牛病毒性腹泻病毒、猪繁殖与呼吸综合征病毒、传染性胃肠炎病毒、猪流行性腹泻病毒、猪轮状病毒、伪狂犬病病毒、猪细小病毒和猪圆环病毒2型反应。所制备的试纸条具有一定的特异性和敏感性,重复性良好,初步达到了区分检测猪瘟野毒和弱毒的目的。
     2.应用病毒分离、胶体金免疫层析试纸条、抗原捕捉ELISA、反转录-聚合酶链式反应、TaqMan荧光定量RT-PCR和反转录-环介导等温扩增方法等6种方法,分别对50份疑似猪瘟病料中的猪瘟病毒进行检测。结果表明:TaqMan荧光定量RT-PCR方法和反转录-环介导等温扩增方法检出阳性样品数为13份,反转录-聚合酶链式反应为11份,病毒分离为10份,抗原捕捉ELISA为9份,胶体金试纸条为8份;6种方法均检测为阳性8份,均为阴性37份。结果提示,在对猪瘟病毒进行检测时,TaqMan荧光定量RT-PCR方法、反转录-环介导等温扩增方法和反转录-聚合酶链式反应由于其灵敏性高,可作为首选检测方法,但操作时需要避免假阳性的出现;病毒分离方法虽然操作繁琐,但结果准确,是确诊猪瘟必不可少的检测方法;抗原捕捉ELISA和胶体金试纸条检测时间较短,操作简单,结果易判断,不足之处是敏感性较低。
     本研究使用了特异性识别猪瘟病毒野毒的单克隆抗体,研发了可以鉴别诊断猪瘟病毒野毒和兔化弱毒的胶体金免疫层析试纸条,对于猪瘟的诊断具有一定的指导意义。
Classical swine fever virus (CSFV) is the causative agent of classical swine fever, a highly contagious and often fatal disease of domestic pigs. It is characterized by fever and hemorrhages and can run an acute, chronic, or even subclinical course. CSFV, together with Border disease virus (BDV), Bovine viral diarrhea virus 1 (BVDV-1), Bovine viral diarrhea virus 2 (BVDV-2) and a tentative species Pestivirus of giraffe, is classified within the genus Pestivirus in the family Flaviviridae .CSF outbreaks can result in large economic losses in pig production and affect international trade and therefore CSF is a notifiable disease to The World Organization for Animal Health (OIE). Although effective live-attenuated vaccines are available, vaccinated and infected pigs are serologically indistinguishable. Current methods for detection CSFV include virus isolation, antigen-capture ELISA, reverse transcription polymerase chain reaction and others. These methods, however, take a few hours to several days to accomplish, and require skilled personnel and specialized equipment. There is, therefore, an urgent need for rapid, reliable, and inexpensive tests for detection of CSFV. In this study, an immunochromatographic test strip using anti-E2 monoclonal antibodies for rapid diagnosis of CSFV was developed. This strip makes discrimination between wild-type virus and C-strain vaccine of classical swine fever virus. The results were as follows:
     1. A colloidal gold immunochromatographic strip was developed for the rapid detection of the wild-type classical swine fever virus (CSFV) antigen using two monoclonal antibodies (mAbs), 6E10 and HQ06, against the E2 protein. The wild-type CSFV-specific 6E10 mAb was labeled with colloidal gold prepared by reduction of sodium citrate as capture antibody and the HQ06 mAb was immobilized on the test line as detection antibody, while a rabbit anti-mouse IgG antibody was blotted on the control line of the nitrocellulose membrane. PK15 cell cultures infected with CSFV and non-infected were detected by the strips. The results showed that two red lines appeared in the test line and control line region only when detecting the CSFV-infected cells, while only a red line appeared in the control line region when detecting the non-infected cells. The detection limit of the immunochromatographic strip was 103.5 TCID50 CSFV, and the results of different batches were reproducible. The test strip did not react with hog cholera lapinized virus (HCLV), bovine viral diarrhea virus (BVDV), porcine reproductive and respiratory syndrome virus (PRRSV), transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine rotavirus (PRV), pseudorabies virus (PrV), porcine parvovirus (PPV) and porcine circovirus type 2 (PCV2). Taken together, the test strip has good specificity, sensitivity and reproducibility, and can be used to differentiate cells infected with wild-type CSFV from those infected with HCLV.
     2. Six methods, including the virus isolation, colloidal gold immunochromatographic assay (CGIA), antigen-capture ELISA (AC-ELISA), reverse transcription polymerase chain reaction(RT-PCR),TaqMan real-time RT-PCR(RT-qPCR) and reverse transcription loop mediated isothermal amplification assay (RT-LAMP), were used to detect CSFV in 50 samples in parallel. The results showed that 13 samples were detected positive by RT-qPCR and RT-LAMP, 11 by PCR, 10 by virus isolation, 9 by AC-ELISA and 8 by CGIA, and 8 samples were detected positive and 37 samples negative by the six methods. These results indicated that the 3 RNA-amplification assays could be used as the first choice for detection of CSFV due to the high sensitivity, while they were vulnerable to false positive results arising from sample to sample contaminations or from other contaminated sources. Although the virus isolation was time-consuming, it was still considered the“gold standard”and was indispensable for confirming CSF outbreaks. The rest two methods, AC-ELISA and CGIA, yielded the results in a short time yet their performance was hampered by a low sensitivity. Therefore, they were mainly used for herd diagnosis.
     In this study, the wild-type CSFV-specific mAb was used to develop a colloidal gold immunochromatographic strip. This strip, which makes discrimination between wild-type virus and C-strain vaccine of classical swine fever virus, might contribute to diagnosis of CSFV.
引文
陈龙宾,王爱华,苏小庚,孙继国, 2007.猪瘟病毒胶体金免疫层析检测方法的建立及应.中国兽医科学, 37(06):496~499
    崔尚金,姜建宏,周艳君,仇华吉,童光志. 2005.猪繁殖与呼吸综合征胶体金抗体检测技术的建立和初步应用.中国预防兽医学报, 27(3): 213~216
    陈应杰,冉敏. 2009.猪蓝耳病与猪瘟的临床症状及病理变化比较分析.贵州畜牧兽医,33(6):34
    侯强. 2006.猪瘟病毒E2蛋白主要抗原区的表达及其单克隆抗体的制备. [硕士学位论文].北京:中国农业科学院
    胡思顺,郑兴华,蔡开妹,彭伏虎,张文泽,李自力,肖运才,刘梅,毕丁仁. 2009.禽流感病毒感染与疫苗免疫鉴别诊断试纸条的研制及应用.中国农业科学, 42(2):694~700
    蒋涛,梁仲,陈涓,何继军,吕律,马维民,刘在新,刘湘涛. 2008.口蹄疫病毒O、A、AsiaI型定型诊断胶体金免疫层析方法的建立.中国农业科学, 41(11):3801~3808
    李国新,李娜,仇华吉,朱庆虎,李艳,王明杰,李继昌,童光志. 2006.猪瘟病毒石门株基因组全长cDNA的克隆与序列分析.中国预防兽医学报, 28(3):275~278
    刘建文,余兴龙,张丽颖,涂长春. 2006.单克隆抗体捕捉猪瘟病毒抗原ELISA方法的建立.畜牧兽医学报,37(5):474~479
    李云飞,邢海红,冯晓东,黄素珍. 2009.免疫胶体金技术在兽医检验中的应用.上海畜牧兽医通讯, 6:77~79
    吕宗吉,李红卫,涂长春,余兴龙,吴健敏,李月红,殷震. 2000.我国部分地区猪瘟病毒流行株的基因差异.中国兽医学报,20(4): 313~316
    彭伍平. 2007.利用噬菌体展示技术鉴定猪瘟病毒E2蛋白抗原表位[硕士学位论文].北京:中国农业科学院
    仇华吉,童光志,沈荣显. 2005.猪瘟兔化弱毒疫苗??半个世纪的回顾.中国农业科学,38(8):1675~1685
    孙元,夏照和,梁冰冰,彭伍平,仇华吉. 2008.基于重组E2蛋白的猪瘟病毒抗体间接ELISA检测方法的建立.中国兽医科学,38(04):315~319
    涂长春. 2004.中国猪瘟流行病学现状与防制研究. [博士学位论文].北京:中国农业大学童光志. 2008.动物传染病学.北京,中国农业出版社: 308~322
    王琴. 2006.猪瘟病毒流行病学、病原致病特性及猪瘟综合防制研究.中国农业科技导报, 8(5): 13~18.
    王新卫,何宏轩,王泽霖,吴艳云,王承民. 2009.单抗介导的银加强金标免疫技术检测传染性支气管炎病毒.中国兽医学报. 29(4): 394~398
    王自良. 2006.苯巴比妥残留免疫学快速检测技术研究[博士学位论文].杨凌:西北农林科技大学尹双辉,尚佑军,刘艳红,蔺芳,才学鹏,刘湘涛. 2009.可溶性E2蛋白作为抗原检测猪瘟病毒血清抗体间接ELISA方法的建立.中国兽医学报, 29(12):1529~1533
    殷震,刘景华. 1997.动物病毒学.第二版.科学出版社,北京:科学出版社:652~664
    张长弓,黄印尧,郑海明,方莹,孔繁德,沈浩龙,何琼,黄雅萍,文芳. 2007.猪瘟病毒抗原胶体金快速检测试纸的研究.福建畜牧兽医, 29(6):1~3.
    张朝红,张彦明,张永国,郭抗抗,魏中锋,孙裴. 2007.猪瘟病毒4种检测方法的比较,西北农林科技大学学报(自然科学版),35(5):24~28
    张改平,李学伍,杨艳艳,邓瑞广,李青梅. 2004.鸡传染性法氏囊病快速诊断试纸条的研制及特性测定.畜牧兽医学报,35(1):89~92
    赵建军. 2007.鉴别猪瘟病毒野毒株和兔化弱毒疫苗株的复合实时荧光定量RT-PCR方法的建立与评价[硕士学位论文.].北京:中国农业科学院
    赵建军,成丹,李娜,史子学,孙元,赵和平,朱庆虎,涂长春,仇华吉. 2007.猪瘟病毒实时荧光定量RT-PCR的建立及其对人工感染猪体内猪瘟病毒的检测.畜牧兽医学报. 38(7): 685~693
    张建武,庄金山,刘长龙,王小敏,袁世山. 2009. 2007年中国部分地区猪圆环病毒2型分子流行病学分析.中国农业科学,42(8):2949~2957
    张淑霞,杨增岐,张卫军,赵余放. 2006.猪瘟荧光抗体的制备及其在自然感染病例中的应用.中国兽医学报,26(3):251~253
    
    周泰冲. 1956.用兔化猪瘟弱毒疫苗消灭猪瘟.农业科学通讯, 11: 569~571
    张兴娟,孙元,刘大飞,仇华吉. 2009.猪瘟病毒野毒株RT-LAMP可视化检测方法的建立.中国预防兽医学报. 31(11):864~868
    朱妍,李素,王文成,涂长春. 2008.猪瘟病毒石门株与兔化弱毒疫苗株之间抗原差异的单克隆抗体分析.中国兽医科学, 38(04):293~296
    Aguero M, Fernandez J, Romero LJ, Zamora MJ, Sanches C, Belak S, Arias M, Sanches-Vizcaino JM. 2004. A highly sensitivity and specific gel-based multiplex RT-PCR assay for the simultaneous and differential diagnosis of African swine fever and Classical swine fever in clinical samples. Vet Res, 35(5):551~563
    Anna S, Rocca L, Rebecca H, 2005. Loss of interferon regulatory factor 3 in cells infected with classical swine fever virus involves the N-terminal protease, Npro. J Virol. 79(11):7239~7247
    Anonymous. Classical swine fever diagnostic manual, Document No. C (2002)381. Commission Decision 2002/106/EC. Official Journal 2002; L039:0071~0081
    Beer M, Reimann I, Hoffmann B, Depner K. 2007. Novel marker vaccines against classical swine fever. Vaccine. 25(30):5665~5670
    Biront P, Leunen J, Vandeputte J. 1987. Inhibition of virus replication in the tonsils of pigs previously vaccinated with a Chinese strain vaccine and challenged oronasally with a virulent strain of classical swine fever virus. Veterinary Microbiology, 14(2):105~113
    Bruschke CJ, Hulst MM, Moormann RJ, Van Rijn PA, Van Oischot JT. 1997. Glycoprotein Erns of pestiviruses induces apoptosis in lymphocytes of several species. J Virol, 71(9):6692~6699
    Chen X, Zehnbauer B, Gnirke A, Kwok PY. 1997. Fluorescence energy transfer detection as a homogeneous DNA diagnostic method. Proc Natl Acad Sci USA. 94(5):10756~10761
    Chiao DJ, Shyu RH, Hu CS, Chiang HY, Tang SS. 2004. Colloidal gold-based immunochromatographic assay for detection of botulinum neurotoxin type B. Journal of Chromatography B. 809(1): 37~41
    Deng R. Brock, KV. 1993. 5′and 3′untranslated regions of pestivirus genome: primary and secondary structure analyses. Nucleic Acids Res, 21(8), 1949~1957
    Dewulf J, Koenen F, Mintiens K, Denis P, Ribbens S, de Kruif A. 2004. Analytical performance of several classical swine fever laboratory diagnostic techniques on live animals for detection of infection. Journal of Virological methods. 119(2):137~143
    Diaz-de-Arce H, Nunez JI, Ganges L, Barreras M, Frias MT. 1998. An RT-PCR assay for the specific detection of classical swine fever virus in clinical samples.Vet Res, 29(5):431~440
    Elbers K, Becher P, Stoll D, Rumenapf T, Thiel HJ, Tautz N. 1996. Processing in the pestivirus E2-NS2 region: Identification of proteins p7 and E2p7. J Virol, 79(6): 4131~4135
    Faulk W, Taylor G. 1971. An immunocolloid method for electron microscrope. Immunochemistry, 8(11):1081~1083
    Floegel-Niesmann G, Bunzenthal C, Fischer S, Moennig V. 2003. Virulence of recent and former classical swine fever virus isolates evaluated by their clinical and pathological signs. J Vet Med B Infect Dis Vet Public Health. 50(5):214~220
    Fritzemeier J, Teuffert J, Greiser-Wilke I, Staubach C, Schlüter H, Moennig V. 2000. Epidemiology of classical swine fever in Germany in the Nineties. Vet Microbiol , 77: 29~41
    Gallei A, Orlich M, Thiel HJ, Becher P. 2005. Noncytopathogenic pestivirus strains generated by nonhomologous RNA recombination: alterations in the NS4A/NS4B coding region. J Virol, 79(22):14261~14270
    Greiser-Wilke I, Blome S, Moennig V. 2007. Diagnostic methods for detection of Classical swine fever virus—Status quo and new developments. Vaccine, 25:5524~5530
    Grummer B, Fischer S, Depner K, Riebe R, Blome S, Greiser-Wilke I. 2006. Replication of classical swine fever virus strains and isolates in different porcine cell lines, Dtsch Tierarztl Wochenschr, 113(4): 138~142
    Heid CA, Stevens J, Livak KJ, Williams PM. 1996. Real time quantitative PCR. Genome Res, 6(10):986~994
    Hiyoshi M, Hosoi S. 1994. Assay of DNA denaturation by polymerase chain reaction-driven fluorescent label incorporation and fluorescent resonance energy transfer. Anal Biochem, 221(2):306~311
    Hulst MN, Panoto FE, Hoekman A, Van-Gennip HG, Moormann RJ. 1998. Inactivation of the Rnase activity of glycoprotein Erns of classical swine fever results in a cytopathogenic virus. J Virol, 72(1):151~157
    ICTV. 2008. The International Committee on Taxonomy of Virus Online. http://www. ncbi.nlm. nih.gov/ICTVdb/Ictv/fs_flavi.htm [2010-03-27]
    Kaden V, Ziegler U, Lange E. Dedek J. 2000. Classical swine fever virus:clinical, virological, serological and hematological findings after infection of demestic pigs and wild boars with the field isolate "Spante" originating from wild boar. Berl Munch Tierarztl Wochenschr ,113(11-12):412~416
    Kameyama K, Sakoda Y, Tamai K, Igarashi H, Tajima M, Mochizuki T, Namba Y. Kida H. 2006. Development of an immunochromatographic test kit for rapid detection of bovine viral diarrhea virus antigen. Journal of Virological Methods. 138(1-2):140~146
    Katz JB, Ridpath JF, Bolin SR. 1993. Presumptive diagnostic differentiation of hog cholera virus from bovine viral diarrhea and border disease viruses by using a cDNA nested-amplification approach. J Clin Microbio, 31(3):565~568
    Liu JJ, Wong ML, Chang TJ. 1998. The recombinant nucleocapsid protein of classical swine fever virus can act as a transcriptional regulator. Virus Research, 53(1): 75~80
    Liu ST, Li SN, Wang DC, Chang SF, Chiang SC, Ho WC, Chang YS, Lai SS. 1991. Rapid detection of hog cholera virus in tissue by the polymerase chain reaction. Journal of Virological methods, 35(2):227~236
    Li Y, Zhao JJ, Li N, Shi Z, Chen D, Zhu QH, Tu C, Tong GZ, Qiu HJ.2007. A multiple nested RT-PCR for detection and differentiation of wild-type viruses from C-strain vaccine of classical swine fever virus. J Virol Methods, 143(1): 16~22
    Mackay IM, Arden KE, Nitsche A. 2002. Real-time PCR in virology. Nucleic Acids Res, 30(6):1292~1305
    Marusawa H, Hijikata M, Chiba T, Shimotohno K. 1999. Hepatitis C virus core protein inhibits Fas- and tumor necrosis factor alpha-mediated apoptosis via NK-kappa B activation. J Virol, 73(6): 4713~4720
    Mayer DM, Hofmann A, Tratschin JD. 2004. Attenuation of classical swine fever virus by deletion of the viral Npro gene. Vaccine, 22(3-4):317~328
    Meyers G, Rumenapf T. Thiel HJ. 1989. Molecular cloning and nucleotide sequence of the genome of hog cholera virus. Virology, 171(2), 555~567
    Meyers G. Thiel H J. Rumenapf T. 1996. Classical Swine Fever Virus: Recovery of Infectious Viruses from cDNA Constuts and Generation of Re-combinant Cytopathogenic Defective Interfering Particles. J. Virol. 70(3), 1588~1595
    Mittelholzer C, Moser C, Tratchin JD, Hofmann MA.2000. Analysis of classical swine fever virus replication kinetics allows differentiation of highly virulent from avirulent strains. Vet Microbiol, 74(4):293~308
    Moenning V. 1990. Pestiviruses: a review. Vet. Microbiol, 23(1-4), 35~54
    Moennig V, Floegel-Niesmann G, Greiser-Wilke I. 2003. Clinical signs and epidemiology of classical swine fever: a review of new knowledge. Vet J, 165(1):11~20
    Moser C, Stettler P, Tratschin JD, Hofmann MA.1999. Cytopathogenic and noncytopathogenic RNA replicons of classical swine fever virus. J Virol,73 (9):7787~7794
    Nooki N, Teruko Y, Miyuki C, Kagan K, Tatsuro E. Yoshitomo K, Masayuki T, Hiroyuki K, Mikio N,Hiromi U, Yuzuru T, Eiichi T. 2006. A sensitive immunochromatographic assay using gold nanoparticles for the semiquantitative detection of prostste-specific antigen in serum. Nano Biotechnology. (2):79~86
    OIE. 2004. Classical swine fever (Hog Cholera). In: Manual of diagnostic tests and vaccines for terrestrial animals (mammals, birds and bees). 5th, Pairs, France: Office International des Epizooties; 244~252
    OIE. 2010. Office International des Epizooties. Diseases notifiable to the OIE. http :// www. oie.int /eng/ maladies/en_classification2010.htm [2010-03-27]
    Oliver C. 1999. Conjugation of colloidal gold to proteins. Methods in Molecular Biology, 115:331~334
    Paisarn S, Sombat R, Nilawan P, Pornthip S. Siwaporn L, Parin C, Weerawan S. 2007. A simple and rapid immunochromatographic test strip for detection of pathogenic isolates of Vibrio harveyi. Journal of Microbiological Methods. 71(3):256~264
    Poole TL, Wang C, Popp RA, Potgieter LN, Siddiqui A, Collett MS. 1995. Pestivirus translation occurs by internal ribosome entry. Virology. 206(1): 750~754.
    Risatti GR., Borca MV , Kutish G.F, Lu Z, Holinka LG., French R.A, Tulman E R, Rock1 DL. 2005a. The E2 Glycoprotein of Classical Swine Fever Virus Is a Virulence Determinant in Swine. J. Virol. 79(6): 3787~3796
    Risatti GR., Holinka LG., Fernandez SI, Carrillo C, Lu Z, Borca MV. 2007. N–Linked Glycosylation Status of Classical Swine Fever Virus Strain Brescia E2 Glycoprotein Influences Virulence in Swine. J. Virol. 81(2): 924~933.
    Risatti GR., Holinka LG., Lu Z, Kutish G F, Tulman ER., French RA, Sur JH, Rock DL, Borca MV. 2005b. Mutation of E1 glycoprotein of classical swine fever virus affects viral virulence in swine. Virology. 343(1): 116~127
    Ruggli N, Tratschin JD, Schweizer M, Mcculloufh KG,Hofmann MA, Summerfield A. 2003.Classical swine fever virus interferes with cellular antiviral defense: evidence for a novel function of Npro. J Virol,77(13):7645~7654
    Roeche PM, Woodward MJ, 1991 Polymerase chain reaction amplification of segments of pestivirus genomes. Arch Virol, 3: 231~238
    Rumenapf T, Unger G, Strauss JH, Thiel H J. 1993. Processing of the envelope glycoproteins of pestiviruses. J Virol, 67(6), 3288~3294
    Shannon AD, Morrissy C, Mackintosh SG, Westbury HA. 1993. Detection of hog cholera virus antigens in experimentally-infected pigs using an antigen-capture ELISA. Vet Microbiol, 34(3): 233~248.
    Solt JW, Geuze HJ. 1985. A new method of preparing gold probes for multiple-belling cytochemistry. Eur J Cell Biol, 38(1):87~93
    Tanaka R, Yuhi T, Nagatani N. 2006. A novel enhancement assay for immunochromatographic test strips using gold nanoparticles. Anal Bioanal Chem, 385(8): 1414~1420
    Thiel HJ, Stark R, Weiland E, 1991. Hog cholera virus molecular composition of virions from a pestivirus. J Virol, 65(9):131~150
    Tong GZ, Zhou YJ, Hao XF, Tian ZJ, An TQ, Qiu HJ.2007. Highly pathogenic porcine reproductive and respiratory syndrome, China Emerging infectious diseases, 13(9):1434~1436
    Tratschin JD, Moser C, Ruggli N, Hofmann MA.1998. Classical swine fever virus leader proteinase Npro is not required for viral replication in cell culture. J Virol,72(9):7681~7684
    Uttenthal A, Storgaard T, Oleksiewicz MB, de-Stricker K. 2003. Experimental infection with the Paderborn isolated of classical swine fever virus in 10-week-oid pigs: determination of viral replication kinetics by quantitative RT-PCR, virus isolation and antigen ELISA. Vet Microbiol, 92(3):197~212
    Vilcek S, Herring AJ, Nettleton PF, Lowings JP, Paton DJ. 1994. Pestivirus isolated from pigs, cattle and sheep can be allocated into at least three genogroups using polymerase chain reaction and restriction endonuclease analysis. Arch Virol, 136:309~323
    Welland E, Stark R, Haas B, 1900. Pestivirus glycoprotein which induces neutralizing antibodies forms part of disulfide-linked heterodimer. J Virol, 64(3):3563~3569
    Wensvoort GC, Terpstra C, Bloemmraad, 1986. Production of monoclonal antibodies against swine fever virus and their use in laboratory diagnosis. Vet Microbiol, 12(2):101~108
    Zhang GP, Wang XN, Yang JF, Yang YY, Xing GX. Li QM, Zhao D, Chai SJ, Guo JQ. 2006. Development of an immunochromatographic lateral flow test strip for detection ofβ-adrenergic agonist Clenbuterol residues. Journal of Immunological Methods. 312(1-2):27~33
    Zhao JJ, Chen D, Li N, Sun Y, Shi ZX, Zhu QH, Tu CC, Tong GZ, Qiu HJ. 2008. Evaluation of a multiplex real-time RT-PCR for quantitative and differential detection of wild-type viruses and C- strain vaccine of classical swine fever virus. Veterinary Microbiology. 126(1-3):1~10