RAD21基因多态性与宫颈癌发生相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:
     在世界范围内,宫颈癌是妇女癌症中仅次于乳腺癌而位居第二的恶性肿瘤。在我国宫颈癌是最常见的妇科恶性肿瘤,且发生率有继续增加和年轻化趋势。持续性的高危型HPV感染是宫颈癌的发病的主要病因,而环境因素和人体的基因易感性在宫颈癌的发生中起着十分重要的作用。近年来,随着分子遗传学方面的进展,与生物进程有关的基因单核苷酸多态性(SNP)及其特定的组合被认为参与了致癌过程,已成为宫颈癌病因学的研究热点。
     SNP系第三代遗传标记,是涉及到DNA序列单个核苷酸变异的一类基因的多态性。是人类基因组遗传变异中最常见一种涉及的形式,占人类基因组遗传多态性的90%以上。标签SNP (tag SNP)是在基因组中具有高度连锁不平衡区域内具有代表性的一个SNP。不需对一染色体区域的所有SNP进行基因型分析而是通过检测tag SNPs即可确定其遗传学变异,从而极大的提高检出效率,大大提高关联分析的有效性。
     RAD21基因是与粟酒裂殖酵母RAD21(S.Pombe RAD21)高度相似的人类同系物,其编码的蛋白质是一种参与DNA的双链断裂修复及在有丝分裂期间确保染色单体的粘合的核磷蛋白。目前已证实,RAD21基因是从酿酒酵母到人类都高度保守的粘连蛋白复合体Cohesin的一个组成部分,并且在有丝分裂过程中RAD21的缺失可以导致染色体非整倍性的发生。众所周知,宫颈癌是一个对放、化疗治疗都十分敏感的恶性肿瘤,同时放化疗是宫颈癌患者的标准治疗之一已有研究发现,RAD21基因表达沉默可提高乳腺癌等恶性肿瘤的化疗敏感性和放疗敏感性。这为恶性肿瘤包括宫颈癌在内的治疗开辟了新的思路。最新的研究表明RAD21基因的多态性与乳腺癌和胰腺癌的发生危险性及预后有关。
     我们前期的研究已经表明RAD21基因在宫颈癌中呈现高表达,随着宫颈上皮内瘤变程度的加深,RAD21基因表达量增高。虽然RAD21基因在宫颈癌中呈现高表达,然而目前国内外关于RAD21基因位点多态性与宫颈癌发生之间的相关性研究尚未曾发现有报道。本研究以常规病理确诊的宫颈癌患者和同期经检查排除了宫颈病变的妇女为研究对象,采用病例对照研究方法,从遗传学角度上,检测RAD21基因多态性(SNP)在汉族妇女宫颈癌患者的分布特点,探索RAD21基因多态性与宫颈癌发生之间的关联性,以便进一步发现与宫颈癌发病相关的因素,为宫颈癌的治疗及易感人群的筛查提供更多的生物学手段。
     材料与方法:
     采用以医院为基础的病例对照研究。选取2010年3月~2011年9月在郑州大学第二附属医院就诊并经病理确诊的120例宫颈癌患者作为研究对象的病例组,同时选择经宫颈细胞学或阴道镜检查等排除了宫颈恶性肿瘤或癌前病变的120例患者作为研究对象的对照组。所有研究对象均为汉族妇女。收集其外周血2m1作为研究标本。所有研究对象采血前均未行手术、放疗或化疗,临床资料完整。病例组中鳞癌106病,腺癌14例,年龄30~71岁,平均年龄为48.9岁;对照组,年龄28-68岁,平均年龄为47.5岁。2组患者年龄经统计学比较无显著性差异。
     收集的全部血液标本在经过抗凝剂(柠檬酸钠)处理后,置于-20℃冰箱保存备用。血液基因组小量DNA提取试剂盒提取抗凝血标本的DNA。应用基质辅助激光解吸附电离飞行时间质谱(MALDI-TOF)检测技术对RAD21基因tagSNP位点进行检测。Haploview和SPSS17.0统计软件包统计分析正常宫颈和宫颈癌妇女中RAD21基因多态性的分布特点,从而初步筛选与宫颈癌相关的RAD21基因的SNP位点。
     结果:
     1、本研究所检测的所有SNP位点其观察值和期望值吻合良好(P>0.001),符合Hardy-Weinberg平衡定律。
     2、RAD21基因中,单个SNP位点rs2289937等位基因C在病例组中出现的频率为93.2%,显著高于对照组中的86.7%(χ2=5.637,P=0.0176,OR=2.115,95%CI=1.127-3.969):
     3、在对危险型基因型和非危险型基因型进行频数比较时,病例组rs4570的危险等位基因型(CC+CT)频率(χ2=5.042,P=0.025,OR=1.810,95%C1=1.076-3.043)和rs4579555的危险等位基因型(CC+CT)频率(χ2=5.042,P=0.025,OR=1.810,95%CI=1.076-3.043)显著高于对照组;
     4、根据本研究样本数据绘制RAD21基因SNP的连锁不平衡(LD)布局图,并推算出一个连锁不平衡相关区域和该相关区域内的6个单体型。其中,单体型1(H1, TTTCAGGCGC)和单体型6(H6, TTTTAGGCGC)的分布频率在宫颈癌组和正常对照组之间存在显著性差异(P<0.05)。
     结论:
     RAD21基因遗传多态性与汉族妇女宫颈癌的发生有关;rs4570的等位基因型(CC+CT)和rs4579555的等位基因型(CC+CT)可增加汉族妇女患宫颈癌的风险;单体型H1(TTTCAGGCGC)和单体型H6(TTTTAGGCGC)增加宫颈癌发生的危险性。
Background and Purpose:
     Cervical cancer is the second most common type of cancer in women worldwide, after breast cancer, and the most common gynecologic malignant tumor in our country. Persistent HPV infection is considered as a major cause of cervical cancer, and however, environmental factors and human genetic susceptibility also play an important role in the occurrence of cervical cancer. In recent years, along with the progress in molecular genetics, gene single nucleotide polymorphisms(SNPs) and their specific combinations related to biological processes are widely thought to participate in the carcinogenic process, becoming a hot subject of research in etiology of cervical cancer.
     Single nucleotide polymorphisms (SNPs), the third generation of genetic markers, are a type of polymorphisms involving variation of a single base pair of DNA sequence, which are the most common form of the human genome genetic variation and account for more than90%of the human genome polymorphism. A tag SNP is a representative SNP in a region of the genome with high linkage disequilibrium. It is possible to identify genetic variation without genotyping every SNP in a chromosomal region, thereby greatly improving the effectiveness of the correlation analysis.
     The RAD21gene is a gene that involved in the repair of DNA double-strand breaks, as well as in chromatid cohesion during mitosis. The protein encoded by the RAD21gene is highly similar to the gene product of Schizosaccharomyces pombe rad21. It has been demonstrated that the RAD21gene is an integral part of cohesion protein complex which is highly conserved from Saccharomyces cerevisiae to human beings. Moreover, the absence of RAD21gene can lead the occurrence of chromosomal aneuploidy in the process of mitosis. As we know, cervical cancer is one of malignant tumors which are sensitive to radiotherapy and chemotherapy, while the radiotherapy and chemotherapy is one of the standard treatments for patients with cervical cancer.Studies have found that the RAD21gene silencing can increase sensitivity to radiotherapy and chemotherapy in breast cancer and other malignant tumors. This opens a new approach for the treatment of malignancies including cervical cancer. The latest research shows that the RAD21gene polymorphism is related to risk and prognosis of breast cancer and pancreatic cancer.
     Our previous studies have shown that RAD21gene in cervical carcinoma exhibits significantly higher expression. Nevertheless, the association study on the RAD21gene polymorphism and cervical cancer has not been reported around the world. Accordingly, by using a method of case-control study, this study detected the distribution characteristics of RAD21tag SNPs in Chinese Han women with cervical cancer and genetically explored the correlation of the RAD21gene polymorphisms and cervical cancer. The final goal of current study was to provide more valuable methods for the treatment of cervical cancer and screening susceptible populations.
     Materials and Methods:
     Using a hospital-based case-control study, we selected120cases of cervical cancer patients confirmed by conventional pathology as case group and120cases of patients with benign uterine diseases as control group. All research subjects came from the department of gynecology and obstetrics of the Second Affiliated Hospital of Zhengzhou University. All of the subjects were women of Han nationality. The specimens of2ml peripheral blood were collected from the research subjects. All of the subjects with complete clinical data were not received operation, radiotherapy or chemotherapy before blood sampling. Case group included106cases of squamous cell carcinoma and14cases of adenocarcinoma, with an average age of48.9years old from30to71; the average age of control group was47.5years old from28to68; no significant difference of women's age was observed between the two groups.
     All blood specimens were treated with an anticoagulant (Sodium citrate) and stored at-20℃. Genome DNAs were extracted by using DNA extraction kit and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF) was applied to detect the RAD21gene SNP sites. Haploview and SPSS17.0statistical software were used to analyze the distribution characteristics of RAD21gene polymorphisms in case and control women, thus initially screening RAD21gene SNP sites which are associated with the occurrence of cervical cancer.
     Results:
     1、The observed and expected values of all SNP alleles tested in this study are well fitted and conformed to Hardy-Weinberg equilibrium law (P>0.001)
     2、In RAD21gene, the frequency of risk allele C of SNP rs2289937in the case group (93.2%) was significantly higher than that in the control group of86.7%(χ2=5.637, P=0.0176, OR=2.115,95%CI=1.127-3.969).
     3、When comparing the frequencies of risk genotypes of SNPs, the risk genotype frequencies of both rs4570(CC+CT,χ2=5.042, P=0.025, OR=1.810,95%CI=1.076-3.043) and rs4579555(CC+CT,χ2=5.042, P=0.025, OR=1.810,95%CI=1.076-3.043) were significantly higher in the case group than those in the control group.
     4、Based on our data, linkage disequilibrium plot was produced, and1hyplotype block with6its haplotypes were generated. Among6haplotypes, the frequencies of both hyplotype1(HI, TTTCAGGCGC) and hyplotype6(H6, TTTTAGGCGC) were significantly different between the case group and the control group (all P<0.05).
     Conclusions:
     The SNPs of RAD21gene might be associated with the occurrence of cervical cancer in Han women; the risk genotypes of rs4570(CC+CT) and rs4579555(CC+CT) may increase the risk of cervical cancer; haplotype H1(TTTCAGGCGC) and hyplotype H6(TTTTAGGCGC) may increase the risk of cervical cancer.
引文
[1]Zhang SL, Wang YS, Zhou T,et al. Isolation and characterization of cancer stem cells from cervical cancer HeLa cells.Cytotechnology.2012,
    [2]张春玲,韩存芝,何传泰.山西省宫颈癌的病因学研究及防治.中国肿瘤,2001,10(5):280.
    [3]丰有吉,沈铿.妇产科学(供八年制及七年制临床医学等专业用),人民卫生出版社.2005:316.
    [4]Bosch FX,Manos M.Munoz N,et al. Prevalence of human papillomavirus on cervical cancer:a worldwide perspective. International biological study on cervical cancer(IBSCC) study group. J Natl Cancer Inst,1995,87:796-802.
    [5]Vlla LL.Human papillomaviruses and cervical cancer. Adv Cancer Res,1997,71:321-341.
    [6]Munoz N, Bosch F X, Sanjose S, etal. Epidemiologicclassification of human papillomavirus types associated with cervical cancer[J]. N Engl J Med,2003,348(6):518-527.
    [7]Couto,E.and Hemminki,K.Heritable and environmental components in cervical tumors.Int J Cancer,2006,119:2699-2701.
    [8]Edward M,Smith,Jack Littrel,Michael Olivier.Automated SNP Genotype Clustering Algorithm to Improve Data Completeness in High-Throughput SNP Genotyping Datasets from Custom Arrays.Geno Prot Bioinfo,2007,5(3-4):256-259.
    [9]Michaelis C, Ciosk R, Nasmyth K. Cohesins:chromosomal proteins that prevent premature separation of sister chromatids. [J] Cell 1997,91:35-45.
    [10]李宏英.RAD21基因在宫颈癌组织中的表达及意义.郑州大学硕士学位论文,2011.
    [11]俞顺章.子宫颈癌危险因素的流行病学研究[J].实用肿瘤杂志,1998,13(3):138.
    [12]Munger K,Baldwin A,Edwards KM,et al.Mechanisms of human papillomavirus-induced oncogenesis[J].J Virol,2004,78(21):11451-11460.
    [13]Rao PH,Arias—Pulido H,Lu XY,et al.Chromosomal amplifications,3q gain and deletions of 2q33-q37 are the frequent genetic changes in cervical carcinoma[J].BMC cancer,2004,4:5.
    [14]Yang YC,Shyong WY,Chang MS,et al.Frequent gain of copy number on the long arm of Chromosome 3 in human cervical adenocarcinoma[J].Cancer Genet Cytogenet,2001,131(1): 48-53.
    [15]Allen DG,White DJ,Hutchins AM,et al.Progressive genetic aberrations detected by comparative genomic hybridization in squamous cell cervical cancer[J].Br J Cancer, 2000,83(12):1659-1663.
    [16]Guacci V, D Koshland, A Strunnikov. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 1997,91:47-57.
    [17]Losada A,T Yokochi,R Kobayashi,et al.Tdentification and characterization of SA/Scc3p subunits in the Xenopus and human cohesion complexes.J.Cell Biol.2000,150:405-416.
    [18]Michaelis C, R Ciosk, K. Nasmyth. Cohesins:chromosomal proteins that prevent premature separation of sister chromatids. Cell 1997,91:35-45.
    [19]Sumara I, E Vorlaufer, C Gieffers. Characterization of vertebrate cohesin complexes and their regulation in prophase. J. Cell Biol 2000,151:749-762.
    [20]Nasmyth K, C H Haering. Cohesin:its roles and mechanisms. Annu. Rev. Genet.2009,43: 525-558.
    [21]Matuo R, Sousa FG, Escargueil AE, et al. DNA repair pathways involved in repair of lesions induced by 5-fluorouracil and its active metabolite FdUMP. [J]Biochem Pharmacol 2010, 79:147-153.
    [22]Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA:DNA repair pathways as targets for cancer therapy. [J]Nat Rev Cancer 2008,8:193-204.
    [23]Treszezamsky AD, Kachnic LA, Feng Z, Zhang J, Tokadjian C, Powell SN:BRCA1-and BRCA2-deficient cells are sensitive to etoposide-induced DNA double-strand breaks via topoisomerase Ⅱ. [J]Cancer Res 2007,67:7078-7081.
    [24]Vasquez KM:Targeting and processing of site-specific DNA interstrand crosslinks [J].Environ Mol Mutagen 2010,51:527-539.
    [25]Birkenbihl RP, Subramani S (1995) The rad21 gene product of Schizosaccharomyces pombe is a nuclear, cell cycle-regulated phosphoprotein. [J]Biol Chem 270:7703-7711.
    [26]Hirano T (2000) Chromosome cohesion, condensation, and separation. [J]Annu Rev Biochem 69:115-144.
    [27]Hoque MT, Ishikawa F (2001) Human chromatid cohesin component RAD21 is phosphory-lated inMphase and associated with metaphase centromeres. [J] Biol Chem 276:5059-5067.
    [28]Nasmyth K, Peters JM, Uhlmann F (2000) Splitting the chromosome:cutting the ties that bind sister chromatids. [J]Science 288:1379-1385.
    [29]Uhlmann F, Lottspeich F, Nasmyth K (1999) Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Sccl. [J] Nature 400:37-42.
    [30]Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. [J]Nature 2001;411:366-74.
    [31]Pierce AJ, Stark JM, Araujo FD, Moynahan ME, Berwick M, Jasin M. Double-strand breaks and tumorigenesis. [J]Trends Cell Biol 2001;11:S52-9.
    [32]Birkenbihl RP, Subramani S:Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA doublestrand-break repair. [J] Nucleic Acids Res 1992,20:6605-6611.
    [33]Birkenbihl RP, Subramani S (1995) The rad21 gene product of Schizosaccharomyces pombe is a nuclear, cell cycle-regulated phosphoprotein. [J]Biol Chem 270:7703-7711.
    [34]Nasmyth, K., Peters, J. M., and Uhlmann, F. (2000) Splitting the chromosome.:cutting the ties that bind sister chromatids. [J]Science 288,1379-1385.
    [35]Hirano, T. (2000) Chromosome cohesion, condensation, and separation.[J]Annu. Rev. Biochem.69,115-144.
    [36]Chen F, Kamradt M, Mulcahy M.,et al.Caspase proteolysis of the cohesin component RAD21 promotes apoptosis. [J]Biol. Chem.2002,277:16775-16781
    [37]Pati D, Zhang N, Plon S E. Linking sister chromatid cohesion and apoptosis:role of Rad21. Mol. Cell. Biol 2002.22:8267-8277.
    [38]Hauf S, Waizenegger IC, Peters JM.2001. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells[J].Scie-nce 293:1320-1323.
    [39]Nasmyth K, Haering CH. Cohesin:Its Roles and Mechanisms. [J]Annu Rev Genet 2009, 43:525-558.
    [40]Rhodes DR, Yu J, Shanker K, et al.Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. [J] Proc Natl Acad Sci USA 2004,101:9309-9314.
    [41]Atienza JM, Roth RB, Rosette C, et al.Suppression of RAD21 gene expression decreases cell growth and enhances cytotoxicity of etoposide and bleomycin in human breast cancer cells. [J] Mol Cancer Ther 2005,4:361-368.
    [42]Porkka KP, Tammela TL, Vessella RL, et al. RAD21 and KIAA0196 at 8q24 are amplified and overexpressed in prostate cancer. [J]Genes Chromosomes Cancer 2004,39:1-10.
    [43]van't Veer LJ, Dai H, van de Vijver MJ,et al. Gene expression profiling predicts clinical outcome of breast cancer. [J]Nature 2002,415:530-536.
    [44]Hauf S, Waizenegger IC, Peters JM.2001. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells[J].Scie-nce 293:1320-1323.
    [45]Hirano T.Chromosome cohesion, condensation, and separation. [J]Annu Rev Biochem 2000,69:115-144.
    [46]Porkka KP, Tammela TL, Vessella RL, et al.RAD21 and KIAA0196 at 8q24 are amplified and overexpressed in prostate cancer. [J]Genes Chromosomes Cancer 2004,39:1-10.
    [47]Gou Yamamoto. Tarou Irie. Tadateru Aida Correlation of invasion and metastasis of cancer cells,and expression of the RAD21 gene in oral squamous cell carcinoma. [J]Virchows Arch (2006)448:435-441.
    [48]Li W.Sadler LA.Low nucleotide diversity in man.Genetics,1999,129:513-523.
    [49]Nickerson DA,Taylor SL,Weiss KM,et al.DNA sequence diversity in a 9.7 kb region of the human lipop rotein lipase gene.Nature Genetics,1998,19:233-240.
    [50]Nebert DW. Pharmacogenetics and pharmacogenomics:Why is this relevant to the clinical geneticist.Clin Genet,1999,56:247-58.
    [51]Cargill M,ARshuler D,Ireland J et al.Characterization of single-nucleotide polymorphisms in coding regions of human genes.Nature Genetics,1999,22:231-258.
    [52]Storey A,Thomas M,Kalita A,et al.Role of a p53 polymorphism in the development of human papillomvirus-associated cancer.Nature,1998,393:229-234.
    [53]Ho GY, Bierman R, Beardsley L,et al.Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med,1998,338:423-428.
    [54]Chadwick RB,Conrad MP,McGinnis MD,et al.Heterozygote and mutation detection by direct automated fluorescent DNA sequencing using a mutant Taq DNA polymerase. Biotechniques,1996,20(4):676-683.
    [55]Zaugg CA,Scott RJ,and Iggo R.Inhibition of Nonsense-Mediated Messenger RNA Decay in Clinical Samples Facilitates Detection of Human MSH2 Mutations with an in Vivo Fusion Protein Assay and Conventional Techniques.Cancer Res,1997,57:3288-3293.
    [56]李元昆hWAPL基因多态性与宫颈癌发生危险性研究.郑州大学硕士学位论文,2010.
    [1]Zhang SL, Wang YS, Zhou T,et al. Isolation and characterization of cancer stem cells from cervical cancer HeLa cells.Cytotechnology.2012,
    [2]张春玲,韩存芝,何传泰.山西省宫颈癌的病因学研究及防治.中国肿瘤,2001,10(5):280.
    [3]丰有吉,沈铿.妇产科学(供八年制及七年制临床医学等专业用),人民卫生出版社.2005:316.
    [4]粱东霞,张彦娜.宫颈癌与HPV关系的研究进展[J].实用癌症杂志,2010,25(2):202-205.
    [5]Mark R P,Trent H,Roger D P,et al.Selection of cervical keratinocytes containing integrated HPV16 associates with episome loss and an endogenous antiviral response[J]. PNAS,2006, 103(10):3822-3827.
    [6]刘光明,许廷贵.HPV感染与宫颈癌[J]Chinese Medical Science&Heath,2007,4(4):65.
    [7]Bosch FX, Manos M, Munoz N,et al. Prevalence of human papillomavirus on cervical cancer:a worldwide perspective. International biological study on cervical cancer(IBSCC) study group. J Natl Cancer Inst,1995,87:796-802.
    [8]Vlla LL.Human papillomaviruses and cervical cancer. Adv Cancer Res,1997,71: 321-341.
    [9]Munoz N, Bosch F X, Sanjose S, etal. Epidemiologicclassification of human papillomavirus types associated with cervical cancer[J]. N Engl J Med,2003,348(6):518-527.
    [10]Couto,E.and Hemminki,K.Heritable and environmental components in cervical tumors.Int J Cancer,2006,119:2699-2701.
    [11]Chowdhary, B. P. and Raudsepp, T. The horse genome derby:racing from map to whole genome sequence. Chromosome Res,2008,16:109-127.
    [12]Nasmyth K, Haering CH:Cohesin:Its Roles and Mechanisms. [J]Annu Rev Genet 2009, 43:525-558.
    [13]Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM:Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. [J] Proc Natl Acad Sci USA 2004,101:9309-9314.
    [14]Atienza JM, Roth RB, Rosette C, Smylie KJ, Kammerer S, Rehbock J, Ekblom J, Denissenko MF:Suppression of RAD21 gene expression decreases cell growth and enhances cytotoxicity of etoposide and bleomycin in human breast cancer cells. [J] Mol Cancer Ther 2005,4:361-368.
    [15]Porkka KP, Tammela TL, Vessella RL, Visakorpi T:RAD21 and KIAA0196 at 8q24 are amplified and overexpressed in prostate cancer. [J]Genes Chromosomes Cancer 2004,39:1- 10.
    [16]van't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH:Gene expression profiling predicts clinical outcome of breast cancer. [J]Nature 2002,415:530-536.
    [17]Phipps J, Nasim A, Miller DR. Recovery, repair, and mutagenesis in Schizosaccharomyces pombe. [J]Adv Genet 1985;23:1-72.
    [18]Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. [J]Nature 2001;411:366-74.
    [19]Pierce AJ, Stark JM, Araujo FD, Moynahan ME, Berwick M, Jasin M. Double-strand breaks and tumorigenesis. [J]Trends Cell Biol 2001; 11:S52-9.
    [20]Juarez J, Dela Pena A, Baraz R, et al. CXCR4 antagonists mobilize childhood acute lymphoblastic leukemia cells into the peripheral blood and inhibit engraftment. [J] Leukemia 2007;21:1249-1257.
    [21]Hubank M, Schatz DG.1994. Identifying differences in mRNAexpression by representational difference analysis of cDNA. [J] Nucleic Acids Res 22:5640-5648.
    [22]McKay MJ et al (1996) Sequence conservation of the rad21 Schizosa-ccharomyces pombe DNA double-strand break repair gene in human and mouse[J]. Genomics 36:305-315
    [23]Nasmyth K:Disseminating the genome:joining, resolving, and separating sister chromatids during mitosis and meiosis. [J]Annu Rev Genet 2001,35:673-745.
    [24]Peters JM, Tedeschi A, Schmitz J:The cohesin complex and its roles in chromosome biology. [J]Genes Dev 2008,22:3089-3114.
    [25]Gause M, Schaaf CA, Dorsett D:Cohesin and CTCF:cooperating to control chromosome conformation? [J]Bioessays 2008,30:715-718.
    [26]Birkenbihl RP, Subramani S:Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA doublestrand-break repair. [J] Nucleic Acids Res 1992,20:6605-6611.
    [27]Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC, Jarmuz A, Canzonetta C, Webster Z, Nesterova T, Cobb BS, Yokomori K, Dillon N, Aragon L, Fisher AG, Merkenschlager M:Cohesins functionally associate with CTCF on mammalian chromosome arms. [J] Cell 2008,132:422-433.
    [28]Wendt KS, Peters JM:How cohesin and CTCF cooperate in regulating gene expression. [J]Chromosome Res 2009,17:201-214.
    [29]Birkenbihl RP, Subramani S (1995) The rad21 gene product of Schizosaccharomyces pombe is a nuclear, cell cycle-regulated phosphoprotein. [J]Biol Chem 270:7703-7711.
    [30]Nasmyth, K., Peters, J. M., and Uhlmann, F. (2000) Splitting the chromosome.:cutting the ties that bind sister chromatids. [J]Science 288,1379-1385.
    [31]Hirano, T. (2000) Chromosome cohesion, condensation, and separation. [J]Annu. Rev. Biochem.69,115-144.
    [32]Hauf S, Waizenegger IC, Peters JM.2001. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells[J].Scie-nce 293:1320-1323.
    [33]Chen F, Kamradt M, Mulcahy M.,et al.Caspase proteolysis of the cohesin component RAD21 promotes apoptosis. [J]Biol. Chem.2002,277:16775-16781
    [34]Pati D, Zhang N, Plon S E. Linking sister chromatid cohesion and apoptosis:role of Rad21. Mol. Cell. Biol 2002.22:8267-8277.
    [35]Nasmyth K, Haering CH:Cohesin:Its Roles and Mechanisms. [J]Annu Rev Genet 2009, 43:525-558.
    [36]Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM:Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. [J] Proc Natl Acad Sci USA 2004,101:9309-9314.
    [37]Atienza JM, Roth RB, Rosette C, Smylie KJ, Kammerer S, Rehbock J, Ekblom J, DenissenkoMF:Suppression of RAD21 gene expression decreases cell growth and enhances cytotoxicity of etoposide and bleomycin in human breast cancer cells. [J] Mol Cancer Ther 2005,4:361-368.
    [38]Porkka KP, Tammela TL, Vessella RL, Visakorpi T:RAD21 and KIAA0196 at 8q24 are amplified and overexpressed in prostate cancer. [J]Genes Chromosomes Cancer 2004,39:1-10.
    [39]Hirano T.Chromosome cohesion, condensation, and separation. [J]Annu Rev Biochem 2000,69:115-144.
    [40]Porkka KP, Tammela TL, Vessella RL, et al.RAD21 and KIAA0196 at 8q24 are amplified and overexpressed in prostate cancer. [J]Genes Chromosomes Cancer 2004,39:1-10.
    [41]Gou Yamamoto. Tarou Irie. Tadateru Aida Correlation of invasion and metastasis of cancer cells,and expression of the RAD21 gene in oral squamous cell carcinoma. [J]Virchows Arch (2006)448:435-441.
    [42]UlfL,Nilsson M,Kwok PY.Reading Bits of Genetic Information:Methods for Single-Nucleotide Polymorphism Analysis.Genome Research,1998,8:769-776.
    [43]Li W,Sadler LA.Low nucleotide diversity in man.Genetics,1999,129:513-523.
    [44]Nickerson DA,Taylor SL,Weiss KM,et al.DNA sequence diversity in a 9.7 kb region of the human lipop rotein lipase gene.Nature Genetics,1998,19:233-240.
    [45]Wang DG,Fan JB,Siao C,et al.Large-Scale identification, Mapping,and Genotyping of Single Nucleotide Polymorphism in the Human Genome.Science,1998,280:1077-1082.
    [46]Nebert DW. Pharmacogenetics and pharmacogenomics:Why is this relevant to the clinical geneticist.Clin Genet,1999,56:247-58.
    [47]Cargill M,ARshuler D,Ireland J et al.Characterization of single-nucleotide polymorphisms in coding regions of human genes.Nature Genetics,1999,22:231-2
    [48]Chadwick RB,Conrad MP,McGinnis MD,et al.Heterozygote and mutation detection by direct automated fluorescent DNA sequencing using a mutant Taq DNA polymerase. Biotechniques,1996,20(4):676-683.
    [49]Zaugg CA,Scott RJ,and Iggo R.Inhibition of Nonsense-Mediated Messenger RNA Decay in Clinical Samples Facilitates Detection of Human MSH2 Mutations with an in Vivo Fusion Protein Assay and Conventional Techniques.Cancer Res,1997,57:3288-3293.
    [50]李元昆hWAPL基因多态性与宫颈癌发生危险性研究.郑州大学硕十学位论文,2010.
    [51]Evans WE,Relling MV.Pharmacogenmics:Translating Functional Genomics into Rational Therapeutics. Science,1999,286:487-491.
    [52]Sauna ZE,Sarfaty CK,Ambudkar SV,et al.Silent Polymorphisms Speak:How They Affect Pharmacogenomics and the Treatment of Cancer.Cancer Res,2007,67:9609-9612.
    [53]Oikawa K,Ohbayashi T,Kiyono T,et al.Expression of a novel human gene, human wings apart-like (hWAPL),is associated with cervical carcinogenesis and tumor progression [J].Cancer Res,2004,64(10):3545-3549.
    [54]Ueda M,Hung YC,Terai Y,et al.Fas gene promoter-670 polymorphism (A/G) is associated with cervical carcinogenesis.Gynecol Oncol,2005,98:129-133.
    [55]Martin S,Bruce AW,Jon MH,et al.The E6 oncoprotein encoded by human papillomavirus type 16 and 18 promotes the degradation of P53.Cell,1990,63:1129-1136.
    [56]Ho GY, Bierman R, Beardsley L, et al. Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med,1998,338:423-428.
    [57]Roh JW,Kim MH,Kim JW,et al.Polymorphism in codon 31 of p21 and cervical cancer susceptibility in Korean women.Cancer lett,2001; 165:59-62.
    [58]Hildesheim A, Wang SS. Host and viral genetics and risk of cervical cancer:A review [J]. Virus Res,2002;89(2):229-240.
    [59][59]Wood R.D,Mitchell M,Sgouros J, et al.Human DNA repair genes, Science,2001,291, 1284-9.
    [60]Niwa Y,Matsuo K,Ito H,Hirose K,et al.Association of XRCC I Arg399Gln and OGG1 Ser326Cys polymorphisms with the risk of cervical cancer in Japanese subjects.Gynecol Oncol,2005,99,43-9.
    [61]黄金阳,谢幸.DNA修复基因XRCC1和MGMT单核苷酸多态性与宫颈癌易感性.浙江大学博士学位论文.2006.
    [62]Madeleine MM, Brumback B, CushingHaugen KL, et al. Human leukocyte antigen class II and cervical cancer risk:A populationbased study [J]. Infect Dis,2002;186(11):1565-1574.
    [63]Wang SS, Wheeler CM, Hildesheim A, et al. Human leukocyte antigen class I and II alleles and risk of cervical neoplasia:Results from a populationbased study in Costa Rica [J]. Infect Dis,2001,184(10):1310-1314.
    [64]Krul ET, Schipper RF, Schreuder GT, et al. HLA and susceptibility to cervical neoplasia [J]. Hum Immunol,2000,60(3):337-342.
    [65]Beskow AH, Josefsson AM, Gyllensten UB. HLA class II alleles associated with infection by HPV16 in cervical cancer in situ [J]. Int J Cancer,2001;93(6):817-822.
    [66]Zoodsma M, Nolte IM, Schipper M, et al. Methylenetetrahydrofolate reductase (MTHFR) and susceptibility for(pre)neoplastic cervical disease. Hum Genet,2005,116(4):247-54.
    [67]马晓晨,王金桃,周溱,等.亚甲基四氢叶酸还原酶基因多态性与宫颈癌的易感性.中国公共卫生,2006,22(12):1427-1428.
    [68]Lai HC, Sytwu HK, Sun CA,et al. Single nucleotide imlymorphism at Fas promotor is associated with cervical carcinogenesis. Int J Cancer,2003; 103:221-5.
    [69]Engelmark MT,Renkema KY, Gyllensten UB. No evidence of the involvement of the Fas-670 promotor polymorphism in cervical cancer in situ. Int J Cancer.2004:112:1084-5.
    [70]Dybikowska A,Sliwinski W,Emerich J, et al. Evaluation of Fas gene promoter polymorphism in cervical cancer patients. Int J Mol Med,2004; 14:457-8.
    [71]Zoodsma M,Nolte IM.Schipper M,et al. Interleukin-lO and Fas polymorphisms and susceptibility for(pre)neoplastic cervical disease. Int J Gynecol Cancer.2005; 15(supple 3): 282-290.
    [72]Stanczuk GA., Sibanda EN, Tswana SA, et al.Polymorphism at the-308-promoter position of the tumor necrosis factor-alpha(TNF-alpha)gene and cervical cancer. Int J Gynecol Cancer,2003,13:148-153.
    [73]Govan VA, Constant, D, Hoffman, M, et al. The allelic distribution of-308 Tumor Necrosis Factor-alpha gene polymorphism in South African women with cervical cancer and control women. BMC Cancer,2006,6:24.
    [74]Jang WH, Yang YI, Yea SS, et al. The-238 tumor necrosis factor-alpha promoter polymorphism is associated with decreased susceptibility to cancers. Cancer Lett,2001,166: 41-46.