草间钻头蛛体内Wolbachia的分子检测及对宿主生殖的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草间钻头蛛Hylyphantes graminicola是棉田中数量最多的蜘蛛。本论文首次进行了Wolbachia感染对蜘蛛生殖及适合度的影响研究,并通过草间钻头蛛的交配行为检测到Wolbachia可以通过交配方式进行传播,为以后进一步开展蜘蛛Wolbachia的研究提供了理论与实验依据。本论文的主要研究结果如下:
     1草间钻头蛛体内Wolbachia的感染检测及遗传多样性分析
     所检测的14个地理种群(新乡、菏泽、五指山、洛阳、高陵、陵水、西双版纳、武鸣、石家庄、太谷、南京、肥东、兴山、武汉)的草间钻头蛛均有Wolbachia感染,其中河南新乡草间钻头蛛Wolbachia的感染率最高,达到52.94%,山东菏泽的次之,为45.45%,Wolbachia感染率较低的草间钻头蛛主要分布在安徽肥东(8.62%)、湖北兴山(8.1%)和湖北武汉(7.69%)。
     对测序得到的7个地理种群共69个wsp基因片段用软件DnaSP4.10进行多态性位点分析,结果表明,总有效位点数565个,不变位点数380个,可变位点数185个。遗传距离分析显示同一地理种群Wolbachia品系的wsp基因遗传距离并不全都接近零或等于零,不同地理种群的Wolbachia品系之间也会出现遗传距离极小或为零。对7个地理种群Wolbachia wsp序列的单倍型进行遗传多样性分析结果显示,五指山(WZS)种群的单倍型多样度最高(0.90000),平均核苷酸差异度最大(83.70000),核苷酸多样性最高(0.45243)。AMOVA(Analysis of Molecular Variance)分子方差分析的结果表明,84.96%的遗传变异存在于种群内个体间,遗传分化是极显著的(Fst=0.15042,P<0.01)。
     2草间钻头蛛体内Wolbachia的多位点序列分型
     Wolbachia多位点序列分型结果显示,11个地理种群的Wolbachia品系分别属于10个不同的Wolbachia ST (sequence type),且这10个ST是Wolbachia MLST数据库中新出现的序列类型。其中洛阳(LY)和菏泽(HZ)具有完全相同的ST。Wolbachia系统发育分析(GarliML.MP和Bayesian分析)结果显示,8个ST(ST-177,ST-178,ST-179,ST-180,ST-181,ST-182,ST-183 and ST-184)属于Wolbachia B组,2个ST属于Wolbachia A组(ST185和ST186)。
     通过ARLEQUIN 3.1中的Mantel软件对不同地理种群草间钻头蛛COI遗传距离和相应的Wolbachia两两遗传距离的相关性分析结果显示,Wolbachia品系的两两遗传距离与宿主的COI遗传距离间相关性显著(r2=0.394,p=0.013,p<0.05)。而宿主的地理距离与Wolbachia品系遗传距离之间相关性分析结果显示二者没有明显的相关性(r2=0.027,p=0.665,p>0.05),宿主地理距离与宿主的线粒体COI遗传距离相关性分析显示二者相关性不显著(r2=0.027,p=0.135,p>0.05)。
     3 Wolbachia对草间钻头蛛生殖及适合度的影响
     对草间钻头蛛4种交配方式的研究结果表明,♀+×(?)-、♀-×(?)+、♀+×(?)+和♀-×(?)-4种不同交配形式的各个交配对都能正常地交配和产卵(♀+表示感染Wolbachia的雌蛛;(?)-表示未感染的雄蛛;♀-代表未感染的雌蛛;(?)+代表感染的雄蛛),而且产的卵都能正常发育,即♀-×(?)+之间没有发生细胞质不亲合性。对感染与未感染Wolbachia的草间钻头蛛产卵量、卵历期和卵孵化个体数的统计分析结果显示,感染与未感染Wolbachia的草间钻头蛛第一个卵袋卵孵化历期有显著差异(P<0.01)。
     两种方法去除草间钻头蛛体内Wolbachia的结果显示,浓度为1 Omg/ml四环素盐酸盐的水溶液饲喂草间钻头蛛50d后,40%的草间钻头蛛去除了Wolbachia共生菌。浓度为3.75mg/ml的草间钻头蛛人工饲料喂养草间钻头蛛50d后,50%的被处理蜘蛛个体去除了体内共生菌Wolbachia。
     4 Wolbachia水平传递方式的研究
     未感染Wolbachia的草间钻头蛛捕食感染有Wolbachia的果蝇,Wolbachia感染检测结果表明:捕食后2h、12h、24h、48h、72h的草间钻头蛛均未检测出Wolbachia感染。以感染Wolbachia的单雌系果蝇为饲料,把草间钻头蛛从二龄喂养至成熟,50头草间钻头蛛的Wolbachia感染检测结果均显示未感染。这一结果表明草间钻头蛛通过捕食Wolbachia阳性的果蝇不可能获得Wolbachia感染。水稻田节肢动物群落Wolbachia的感染检测结果也未获得关于捕食传播的生态学及分子生物学证据。
     通过设置两组草间钻头蛛交配对♀+×(?)-、♀-×(?)+,Wolbachia交配传播研究的结果显示,通过宿主的交配行为,Wolbachia既可由感染的雌性草间钻头蛛传递给未感染的雄性草间钻头蛛,也可由感染的雄性传递给未感染的雌性。
Hylyphantes graminicola is one of the most prevalent spiders in the cotton field. In this study, the effect of Wolbachia on host's reproduction and fittness were analysed, and the routine for Wolbachia horizontal transmission were also conducted. We firstly detected that CI(cytoplasmis incompatibility) was not happened in H. graminicola, and Wolbachia can be transmitted by mating of H. graminicola in this study. All these results will provide useful theoretical and empirical foundation for later studys. The followings are the main results of this study.
     1 Wolbachia infection and genetic divergence analyses of Wolbachia wsp gene in different Hylyphantes graminicola populations
     The result of Wolbachia detecting in 14 geogrophical populations (XX, HZ, WZS, LY, GL, LS, BN, WM, SJZ, TG, NJ, FD, XS, WH) of Hylyphantes graminicola indicated that Wolbachia infection existed in all 14 populations of H. graminicola. The infection frequency of XX (Henan Province) popuation was the highest (52.94%), then the HZ (Shandong Province) population (45.45%). The lower infection frequency of Wolbachia existed in FD population (8.62%), XS population (8.1%) and WH population (7.69%).
     The result for DNA polymorphic sites analyses of Wolbachia wsp gene (69 sequences from 7 populations) by DnaSP4.10 indicated that total number of sites was 560. Invariable (monomorphic) sites was 380, and variable (polymorphic) sites was 185. The result of genetic distance analyses showed that genetic distances within a same population of H, graminicola were not always near or equal to 0, and genetic distances of Wolbachia wsp gene between different populations will be equal to 0 sometimes. The result of wsp gene haplotype showed that the haplotype diversity of WZS population was the highest (0.90000). The mean number of pairwise differences of WZS population was the highest (83.70000), and the the nucleotide diversity of WZS population was the highest (0.45243). Through AMOVA analyses,84.96% genetic variation happened within population, and the genetic differentiation within popultion was so significant (Fst=0.15042, P<0.01).
     2 Wolbachia MLST typing of Hylyphantes graminicola
     A total of 10 STs, new to the MLST database, were found in 11 H. graminicola geographic populations, and the STs from LY and HZ are identical. The 10 STs were assigned to supergroup A and supergroup B respectively based on the phylogenies of concatenated MLST data. Based on the ML, MP and BI analyses, eight STs (ST-177, ST-178, ST-179, ST-180, ST-181, ST-182, ST-183 and ST-184) were assigned to supergroup B, and two STs (ST185 and ST 186) to supergroup A.
     The result of Mantel test indicated the correlation was significant between pairwise distance of H. graminicola COI and associated Wolbachia MLST concatenated data (r2=0.394,p=0.013,p<0.05). We also checked the correlation between Wolbachia MLST concatenated data and host's geographic distance, and the result showed that no correlation was found between Wolbachia divergence and host's geographic distance (r2=0.027,p=0.665, p>0.05). No correlation was found between pairwise distance of H. graminicola COI and its geographic distance (r2=0.027,p=0.135, p>0.05).
     3 The effect of Wolbachia on the reproductive and fittness of H. graminicola
     The result shows that 4 types of mating pairs in H. graminicola((?)+×(?)-、(?)-×(?)+(?)+×(?)+和(?)-×(?)-) all have normal mating behavior and can produce valid egg sacs, and CI was not found within mating pair(?)-×(?)+. Through analysing the number of egg sacs, developmental duration of eggs and decendents of each egg sacs between Wolbachia positive H. graminicola and Wolbachia negative H. graminicola, the significance was found in developmental duration of the first eggs sacs(P<0.01).
     The result of Wolbachia removing from its host showed that 40% Wolbachia positive H. graminicola lost Wolbachia through feeding on l0mg/ml antibiotics solution for 50 days, and 50% Wolbachia positive H. graminicola also lost Wolbachia through feeding on 3.75mg/ml antibiotics artificial feed (the density of antibiotics in artificial feed) for 50 days.
     4 Wolbachia horizontal transmission
     Through Wolbachia negative H. graminicola predating Wolbachia positive Drosophila melangastor, the result of Wolbachia detecting showed that no Wolbachia infection was detected in H. graminicola (who have predated Wolbachia positive Drosophila melangastor).
     Two mating groups between Wolbachia positive individuals ((?)+or (?)+) and negative individuals (()?-or(?)-) were assigned in this study, and the molecular evidence was detected by sequencing wsp (Wolbachia surface protein) gene fragments. The results shows that through mating, positive spiders ((?)+or(?)+) can transmit Wolbachia to negative spiders ((?) or(?)-), and this is the first report about Wolbachia horizontal transfer through mating behavior in intraspecific level.
引文
常瑾,赵敬钊.稻田生态系统中3种蜘蛛对白背飞虱的捕食效应研究.蛛形学报,2000,9:116-121
    陈玉俊,张古忍,陈东,等.海南稻田蜘蛛群落的结构和动态.蛛形学报,2000,9:29-32
    池仕运,彭宇,王晓霞,等.亚致死浓度农药对草间钻头蛛生长发育的影响.中国生物防治,2006,22:21-24
    董鹏,王进军.沃尔巴克氏体Wolbachia对宿主的生殖调控作用及其研究进展.昆虫知识,2006,43:288-294
    冯涛,彭宇,刘凤想,等.2007.不同地理种群草间钻头蛛对杀虫剂的敏感性及抗、感种群的相对适合度.生态学报,27:5093-5097
    李剑泉,赵志模,侯建筠.稻田蜘蛛研究进展.蛛形学报,2001,10:58-63
    苗慧,洪晓月,谢霖,等.二斑叶螨体内感染的Wolbachia的wsp基因序列测定与分析.昆虫学报,2006,49:146-153
    潘雪红,何余容,陈科伟,等. Wolbachia感染对拟澳洲赤眼蜂寿命、生殖力和嗅觉反应的影响.昆虫学报,2007,50:207-214
    施婉君,程家安,祝增荣,等.昆虫共生细菌Wolbachia的研究进展.生态学报,2002,22:409-419
    谭耀庚,赵敬钊.蜘蛛的寄生蜂初报.蛛形学报,1999,8:70-72
    王振宇,杨芸,彭宇.蜘蛛内共生菌沃尔巴克氏体的研究进展.中国生物防治,2007,23:274-278
    王振宇,云月利,彭宇,等.黄金肥蛛体内Wolbachia的wsp基因测定及系统发育分析.蛛形学报,2008,17:48-51
    张永强,Ahmed Diriye Aden,韦绥概,等.香蕉园害虫和捕食性节肢动物群落结构及动态研究.生态学报,2001,21:639-649
    张永,韦绥概,Ahmed Diriye Aden.香蕉园蜘蛛群落研究.蛛形学报,2000,9:101-106
    张征田,彭宇,陈建,等.食物对草间钻头蛛生长发育和耐药性的影响研究.湖北大学学报(自科版),2004,26:63-70
    赵敬钊,周汉春.草间钻头蛛人工饲料研究初报.昆虫天敌,1983,5:27-28
    赵敬钊.中国棉田蜘蛛.武汉:武汉出版社,1993,169-177
    Arakaki N, Miyoshi T, Noda H. Wolbachia mediated parthenogenesis in the predatory thrips Franklinothrips vespiformis (Thysanoptera: Insecta). Proc R Soc Lond B,2001, 268:1011-1016
    Baehr B M. Welche Spinne ist das? Stuttgart:Kosmos naturfuhrer,1987
    Baldo L, Ayoub N A, Hayashi C Y, et al. Insight into the routes of Wolbachia invasion: high levels of horizontal transfer in the spider genus Agelenopsis revealed by Wolbachia strain and mitochondrial DNA diversity. Mol Ecol,2008,17:557-569
    Baldo L, Dunning Hotopp J C, Jolley K A, et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol,2006,72: 7098-7110
    Baldo L, Lo N, Werren J H. Mosaic nature of the Wolbachia surface protein. J Bacteriol, 2005,187:5406-5418
    Baldo L, Prendini L, Corthals A, et al. Wolbachia are present in Southern African Scorpions and cluster with supergroup F. Curr Microbiol,2007a,55:367-373
    Baldo L, Werren J H. Revisiting Wolbachia supergroup typing based on WSP:spurious lineages and discordance with MLST. Curr Microbiol,2007b,55:81-87
    Bandi C, Anderson T J C, Genchi C, et al. Phylogeny of Wolbachia-like bacteria in flarial nematodes. Proc R Soc London Ser B,1998,265:2407-2413
    Bazzocchi C, Mortarino M, Grandi G, et al. Combined ivermectin and doxycycline treatment has microfilaricidal and adulticidal activity against Dirofilaria immitis in experimentally infected dogs. Int J Parasitol,2008,38:1401-1410
    Binnington K L, Hoffmann A A. Wolbachia-like organisms and cytoplasmic incompatibility in Drosophila simulans. J Invertebr Pathol,1989,54:344-352
    Bordenstein S R, Marshall M L, Fry A J, et al. The tripartite associations between bacteriophage, Wolbachia, and arthropods. PloS Pathog,2006,2:e43
    Bordenstein S R, Wernegreen J J. Bacteriophage flux in endosymbionts(Wolbachia): infection frequency, lateral transfer, and recombination rates. Mol Biok Evol,2004, 21:1981-1991
    Bouchon D, Rigaud T, Juchault P. Evidence for wide spread Wolbachia infection in isopod crustaceans:molecular identification and host feminization. Proc R Soc London Ser B,1998,265:1081-1090
    Bourtzis K, Dobson S L, Braig H R, et al. Rescuing Wolbachia have been overlooked. Nature,1998,391:852-853
    Bourtzis K. Wolbachia-based technologies for insect pest population control. Adv Exp Med Biol,2008,627:104-113
    Braig H R, Zhou W, Dobson S, et al. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J Bacteriol, 1998,180:2373-2378
    Breeuwer J A J, Jacobs G. Wolbachia intracellular manipulators of mitereproduction. Exp Appl Acarol,1996,20:421-434
    Breeuwer J A J, Stouthamer R, Barns S M, et al. Phylogeny of cytoplasmic incompatibility microorganisms in the parasitoid wasp genus Nasonia based on 16S ribosomal DNA sequences. Insect Mol Biol,1992,1:25-36
    Breeuwer J A J, Werren J H. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature,1990,346:558-560
    Breeuwer J A J. Wolbachia and cytoplasmic incompatibility in the spider mites Tetranychus urticae and T. turkestani. Heredity,1997,79:41-47
    Brower J H. Cytoplasmic incompatibility:occurrence in a stored-product pest Ephestia cautella. Ann Entomol Soc Am,1975,69:1011-1015
    Brownstein J S, Hett E, O'Neill S. The potential of virulent Wolbachia to modulate disease transmission by insects. J Invertebr Pathol,2003,84:24-29
    Callaini G, Riparbelli M G, Dallai R. The distribution of cytoplasmic bacteria in the early Drosophila embryo is mediated by astral microtubules. J Cell Sci,1994, 107:673-682
    Casiraghi M, Bordenstein S R, Baldo L, et al. Phylogeny of Wolbachia pipientis based on glt A, groEL and ftsZ gene sequences:clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology,2005,151:4015-4022
    Charlat S, Reuter M, Dyson E A, et al. Male-killing bacteria trigger a cycle of increasing male fatigue and female promiscuity. Curr Biol,2007,17:273-277
    Cooper T F. Recombination speeds adaptation by reducing competition between beneficial mutations in populations of Escherichia coli. PLoS Biol,2007,5:e225
    Cordaux R, Michel-Salzat A, Bouchon D. Wolbachia infection in crustaceans:novel hosts and potential routes for horizontal transmission. J Evol Biol,2001,14:237-243
    Debrah A Y, Mand S, Marfo-Debrekyei Y, et al. Macrofilaricidal effect of 4 weeks of treatment with doxycycline on Wuchereria bancrofti. Trop Med Int Health,2007,12: 1433-1441
    Debrah A Y, Mand S, Specht S, et al. Doxycycline reduces plasma VEGF-C/sVEGFR-3 and improves pathology in lymphatic filariasis. PLoS Biol,2006,2:e92
    Dedeine F, Bouletreau M, Vavre F. Wolbachia requirement for oogenesis:occurrence within the genus Asobara (Hymenoptera, Braconidae) and evidence for intraspecific variation in A tabida. Heredity,2005,95:394-400
    Dev V. Non-reciprocal fertility among species of the Aedes (Stegomyia) scutellaris group. Experientia,1986,42:803-806
    Dobson S L, Fox C W, Jiggins F M. The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems. Proc R Soc Lond B,2002,269:437-445
    Dyer K A, Jaenike J. Evolutionarily stable infection by a male-killing endosymbiont in Drosophila innubila:molecular evidence from the host and parasite genomes. Genetics,2004,168:1443-1455
    Engelstadter J, Telschow A. Cytoplasmic incompatibility and host population structure. Heredity,2009,103:196-207
    Fallon A M. Cytological properties of an Aedes albopictus mosquito cell line infected with Wolbachia strain wA1bB. In Vitro Cell Dev Biol Anim,2008,44:1071-2690
    Fenn K, Blaxter M. Wolbachia genomes:revealing the biology of parasitism and mutualism. Trends Parasitol,2006,22:60-65
    Foster J, Ganatra M Kamal I, et al. The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol,2005,3: el21
    Fry A J, Palmer M R, Rand D M. Variable fitness effects of Wolbachia infection in Drosophila melanogaster. Heredity,2004,93:379-389
    Frydman H M, Li J M, Robson D N, Wieschaus E. Somatic stem cell niche tropism in Wolbachia. Nature,2006,441:509-512
    Funk D J, Helbling L, Wernegreen J J, et al. Intraspecific phylogenetic congruence among multiple symbiont genomes. Proc Biol Sci,2000,267:2517-2521
    Ghelelovitch S. Surled le determinisme genetique de la sterilite dans le croisement entre differentes souches de Culex autogenicus Roubaud. C R Acad Sci Paris,1952,24: 2386-2388
    Giordano R, Jackson J J, Robertson H M. The role of Wolbachia bacteria in reproductive incompatibilities and hybrid zones of Diabrotica beetles and Gryllus crickets. Proc Natl Acad Sci USA,1997,94:11439-11444
    Goodacre S L, Martin O Y, Thomas C F G, et al. Wolbachia and other endosymbiont infections in spiders. Mol Ecol,2006,15:517-527
    Gottlieb Y, Zchori-Fein E, Werren J H, et al. Diploidy restoration in Wolbachia-infected Muscidifurax uniraptor (Hymenoptera:Pteromalidae). J Invertebr Pathol,2002,81: 166-174
    Hertig M, Wolbach S B. Studies on rickettsia-like microorganisms in insects. J Med Res, 1924,44:329-374
    Hertig M. The rickettsia, Wolbachia pipientis (gen.etsp.n.) and associated inclusions of the mosquito Culex pipiens. Parasitology,1936,28:453-86
    Hilgenboecker K, Hammerstein P, Schlattmann P, et al. How many species are infected with Wolbachia?-a statistical analysis of current data. FEMS Microbiol Lett,2008, 281:215-220
    Hiroki M, Kato Y, Kamito T, et al. Feminization of genetic males by a symbiotic bacterium in a butterfly, Eurema hecabe (Lepidoptera: Pieridae). Naturwissenschaften,2002,89:167-170
    Hoffman A A, Turelli M, Simmons G M. Unidirectional incompatibility between populations of Drosophila simulans. Evolution,1986,40:692-701
    Hoffman A A, Turelli M. Unidirecional incompatibility in Drosophila simulans: inheritance, geographic variation and fittness effects. Genetics,1988,119:435-44
    Hoffmann A A. Partial cytoplasmic incompatibility between two Australian populations of Drosophila melanogaster. Entomol Exp Appl,1988,48:61-67
    Hornett E A, Charlat S, Duplouy A M, et al. Evolution of male-killer supression in a natural population. PLoS Biol,2006,4:e283
    Hornett, E A, Duplouy A M, Davies N, et al. You can't keep a good parasite down: evolution of a male-killer suppressor uncovers cytoplasmic incompatibility. Evolution,2008,62:1258-1263
    Hsiao C, Hsiao T H. Rickettsia as the cause of cytoplasmic incompatibility in the alfalfa weevil, Hypera postica. J Invertebr Pathol,1985,45:244-246
    Huigens M E, Luch R F, Klaasen R G, et al. Infectious parthenogenesis. Nature,2000, 405:178-179
    Hurst G D D, Schilthuizen M. Selfish genetic elements and speciation. Heredity,1998, 80:2-8
    Hurst G D, Johnson A P, Schulenburg J H, et al. Male-killing Wolbachia in Drosophila: a temperature-sensitive trait with a threshold bacteria density. Genetics,2000,156: 699-709
    Hurst L D, McVean G T. Clade selection, reversible evolution and the persistence of selfish elements:the evolutionary dynamics of cytoplasmic incompatibility. Proc R Soc London Ser B,1996,263:97-104
    Hyun Woo Oh, Mi Gwang Kim, Sang Woon Shin, et al. Ultrastructural and molecular identification of a Wolbachia endosymbiont in a spider, Nephila clavata. Insect Mol Biol,2000,9:539-543
    Jaenike J. Spontaneous emergence of a new Wolbachia phenotype. Evolution,2007,61: 2244-2252
    Jeyaprakash A, Hoy M A. Long PCR improves Wolbachia DNA amplification: wsp sequence found in 76% of sixty-three arthropod species. Insect Mol Biol,2000,9: 393-405
    Jiggins F M, Hurst G. D, Schulenburg J H, et al. Two male-killing Wolbachia strains coexist within a population of the butterfly Acraea encedon. Heredity,2001a,86: 161-166
    Jiggins F M, von Der Schulenburg J H, Hurst G D, et al. Recombination confounds interpretations of Wolbachia evolution. Proc Biol Sci,2001b,268:1423-1427.
    Johanowicz D L, Hoy M A. Experimental induction and termination of nonreciprocal reproductive incompatibilities in a parahaploid mite. Entomol Exp Appl,1998, 87:51-58
    Johanowicz D L, Hoy M A. Molecular evidence for a Wolbachia endocytobiont in the predatory mite Metaseiulus occidentalis. J Cell Biochem Suppl,1995,21A:198
    Johanowicz D L, Hoy M A. Wolbachia in a predator-prey system:16S ribosomal DNA analysis of two phytoseiids (Acari:Phytoseiidae) and their prey (Acari: Tetranychidae) Ann Entomol Soc Am,1996,89:435-441
    Kageyama D, Nishimura G, Hoshizaki S. et al. Ishikawa, Y. Feminizing Wolbachia in an insect, Ostrinia furnacalis (Lepidoptera:Crambidae). Heredity,2002,88:444-449
    Kageyama D, Traut W. Opposite sex-specific effects of Wolbachia and interference with the sex determination of its host Ostrinia scapulalis. Proc R Soc Lond B,2004,271: 251-258
    Kose H, Karr T L. Organization of Wolbachia pipientis in the Drosophila fertilized egg and embryo revealed by anti-Wolbachia monoclonal antibody. Mech Dev,1995, 51:275-288
    Koukou K, Pavlikaki H, Kilias G, et al. Influence of antibiotic treatment an Wolbachia curing on sexual isolation among Drosophila melanogaster cage populations. Evolution,2006,60:87-96
    Kramer L, Tamarozzi F, Morchon R, et al. Immune response to and tissue localization of the Wolbachia surface protein (WSP) in dogs with natural heartworm(Dirofilaria immitis) infection. Vet Immunol Immunopathol,2005,106:303-308
    Kumm S, Moritz G. First detection of Wolbachia in arrhenotokous populations of thrips species (Thysanoptera:Thripidae and Phlaeothripidae) and its role in reproduction. Environ Entomol,2008,37:1422-1428
    Landmann F, Orsi G A, Loppin B,et al. Wolbachia-mediated cytoplasmic incompatibility is associated with impaired histone deposition in the male pronucleus. PLoS Pathog, 2009,5:e1000343
    LaSalle J. Tetrastichninae (Hymenoptera: Eulophidae) associated with spider egg sacs. J Nat Hist,1990,24:1377-1389
    Lassy C W, Karr T L. Cytological analysis of fertilization and early embryonic development in incompatible crosses of Drosophila simulans. MechDev,1996,57: 47-58
    Laven H. Crossing experiments with Culex strains. Evolution,1951,5:370-375
    Laven H. Speciation and evolution in Culex pipiens. In Genetics of Insect Vectors of Disease, ed. JW Wright, R pal,1967, pp.251-275. Holland: Elsevier
    Laven H. Speciation by cytoplasmic isolation in the Culex pipiens complex. Cold Spring Harbor Symp Quant Biol,1959,24:166-173
    Legner E F. Effects of scheduled high temperature on male production in thelytokous Muscidifurax uniraptor. Can Entomol,1985,117:383-389
    Legner E F. Transfer of thelytoky to arrhentokous Muscidifurax raptor Girault and Sanders (Hymenoptera:Pteromalidae). Can Entomol,1987,119:265-271
    Legrand J J, Legrand-Hamelin E, Juchault P. Sex determination in Crustacea. Biol Rev, 1987,62:439-470
    Leu S-JC, Li JK-K, HsiaoT H. Characterization of Wolbachia postica, the cause of reproductive incompatibility among alfalfa weevil strains. J Invertebr Pathol,1989, 54:248-259
    Louis C, Nigro L. Ultrastructural evidence of Wolbachia Rickettsiales in Drosophila simulans and their relationships with unidirectional cross-incompatibility. J Invertebr Pathol,1989,54:39-44
    Magnin M, Pasteur N, Raymond M. Multiple incompatibilities within populations of Culex pipiens in southern France. Genetica,1987,74:125-130
    Maiden M C J, Bygraves J A, Feil E, et al. Multilocus sequence typing:A portable approach to the identification of clones within populations of pathogenic microorganisms. P Natl Acad Sci USA,1998,95:3140-3145
    Maiden M C J. Multilocus sequence typing of bacteria. Annu Rev Microbiol,2006,60: 561-588
    Masui S, Sasaki T, Ishikawa H. GroE-homologous operon of Wolbachia, an intracellular symbiont of arthropods:a new approach for their phylogeny. Zool Sci,1997,14: 701-706
    Montchamp-Moreau C, Ferveur J-F, Jacques M. Geographic distribution and inheritance of three cytoplasmic incompatibility types in Drosophila simulans. Genetics,1991, 129:399-407
    Narita S, Kageyama D, Nomura M, et al. Unexpected mechanism of symbiont-induced reversal of insect sex:feminizing Wolbachia continuously acts on the butterfly Eurema hecabe during larval development. Appl Environ Microbiol,2007,73: 4332-4341
    Negri I, Pellecchia M, Mazzoglio P J, et al. Feminizing Wolbachia in Zyginidia pullula (Insecta, Hemiptera), a leafhopper with an XX/XO sex determination system. Proc R Soc Lond B,2008,273:2409-2416
    Noda H. Cytoplasmic incompatibility in allopatric field populations of the small brown planthopper, Laodelphax striatellus, in Japan. Entomol Exp Appl,1984,35:263-267
    Noda H. Further studies on cytoplasmic incompatibility in local populations of Laodelphax striatellus in Japan (Homoptera:Delphacidae). Appl Entomol Zool,1987, 22:443-448
    O'Neill S L, Karr T L. Bidirectional incompatibility between conspecific populations of Drosophila simulans. Nature,1990,348:178-180
    O'Neill S L, Giordano R, Colbert A M E, et al.16SrRNA phylogenetic analysis of the bacterial endosymbionts as sociated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci USA,1992,89:2699-2702
    O'Neill S L, Hoffman A A, Werren J H, eds. Influential Passenger: Inherited Microorganisms and Arthropod Reproducion,1997, pp.1-214. New York: Oxford Univ. Press
    O'Neill S L, Hoffman A A, Werren J H, et al. Influential passenger: inherited microorganisms and arthropod reproduction,1997, pp.1-214, NewYork: Oxford Univ. Press
    O'Neill S L. Cytoplasmic symbionts in Tribolium confusum. JInvertebr Pathol,1989,53: 132-134
    Oh H W, Kim M G, Shin S W, et al. Ultrastructural and molecular identification of a Wolbachia endosymbiont in a spider, Nephila clavata. Insect Mol Biol,2000,9: 539-543
    Pan X, Luhrmann A, Satoh A, et al. Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science,2008,320:1651-1654
    Pannebakker B A, Loppin B, Elemans C P H, et al. F. Parasitic inhibition of cell death facilitates symbiosis. Proc Natl Acad Sci USA,2007,104:213-215
    Pannebakker B A, Pijnacker L P, Zwaan B J, et al. Cytology of Wolbachia-induced parthenogenesis in Leptopilina clavipes (Hymenoptera: Figitidae). Genome,2004,47: 299-303
    Peng Y, Nielsen J E, Cunningham J P, et al. Wolbachia infection alters olfactory cued locomotion in Drosophila. Appl Environ Microbiol,2008,74:3943-3948
    Pfarr K M & Hoerauf A M. Antibiotics which target the Wolbachia endosymbionts of filarial parasites:a new strategy for control of filariasis and amelioration of pathology. Mini Rev Med Chem,2006,6:203-210
    Platnick N I. The world spider catalog, version 10.5.2010. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html
    Prout T. Some evolutionary possibilities for a microbe that causes incompatibility in its host. Evolution,1994,48:909-911
    Rasgon J L, Gamston C, Ren X. Survival of Wolbachia pipientis in cell-free medium. Appl Environ Microbiol,2006,72:6934-6937
    Raychoudhury R, Baldo L, Oliveira D C, et al. Modes of acquisition of Wolbachia: horizontal transfer, hybrid introgression, and codivergence in the Nasonia species complex. Evolution,2009,63:165-83
    Reed K M, Werren J H. Induction of paternal genome loss by the paternal sex-ratio chromosome and cytoplasmic incompatibility bacteria (Wolbachia):a comparative study of early embryonic events. Mol Reprod Dev,1995,40:408-418
    Richards F O, Amann J, Arana B, et al. No depletion of Wolbachia from Onchocerca volvulus after a short course of rifampin and/or azithromycin. Am J Trop Med Hyg, 2007,77:878-882
    Richardson P M, Holmes W P, Saul G B II. The effect of tetracycline on reciprocal cross incompatibility in Mormoniella [= Nasonia] vitripennis. J Invertebr Pathol,1987,50: 176-183
    Rigaud T, Rousset F. What generates the diversity of Wolbachia-arthropod interactions? Biodivers Conserv,1996,5:999-1013
    Rigaud T, Souty-Grosset C, Raimond R, et al. Feminizing endocytobiosis in the terrestrial crustacean Armadillidium vulgare Latr. (Isopoda):recent acquisitions. Endocytobiosis Cell Res,1991,7:259-273
    Rousset F, Bouchon D, Pintureau B, et al. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc R Soc London Ser B,1992,250: 91-98
    Rousset F, Bouchon D, Pintureau B, et al. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc R Soc London Ser B,1992,250: 91-98
    Rousset F, Solignac M. Evolution of single and double Wolbachia symbioses during speciation in the Drosophila simuans complex. Proc Natl Acad Sci USA,1995,92: 6389-6393
    Rousset F, Vauhin D, Solignac M. Molecular identification of Wolbachia, the agent of cytoplasmic incompatibility in Drosophila simulans, and variability in relation to host mitochondrial type. Proc R Soc London Ser B,1992,247:163-168
    Rowley S M, Raven R J, McGraw E A. Wolbachia pipientis in Australian Spiders. Curr Microbiol,2004,49:208-214.
    Russell J A, Goldman-Huertas B, Moreau C S, et al. Specialization and geographic isolation among Wolbachia symbionts from ants and lycaenid butterflies. Evolution, 2009,63:624-640
    Ryan S L, Saul G B II, Conner G W. Aberrant segregation of R-locus genes in male progeny from incompatible crosses in Mormoniella. JHered,1985,76:21-26
    Ryan S L, Saul G B II, Conner G W. Separation of factors containing R-locus genes in Mormoniella stocks derived from aberrant segregation following incompatible crosses. JHered,1987,78:273-275
    Salzberg S L, Hotopp J C, Delcher A L, et al. Serendipitous discovery of Wolbachia genomes in multiple Drosophila species. Genome Biol,2005,6:R23
    Sasaki T, Ishikawa H. Transinfection of Wolbachia in the mediterranean flour moth, Ephestia kuehniella, by embryonic microinjection. Heredity,2000,85:130-135
    Schilthuizen M, Gittenberger E. Screening mollusks for Wolbachia infecion.J Invert Pathol,1998a,71:268-270
    Schilthuizen M, Honda J, Stouthamer R. Parthenogenesis inducing Wolbachia in Trichogramma kaykai (Hymenoptera:Trichogrammatidae) originates from a single infection. Ann Entomol Soc Am,1998b,91:410-414
    Simon F, Kramer L H, Roman A, et al. Immunopathology of Dirofilaria immitis infection. Vet Res Commun.,2007,31:161-171
    Sinkins S P, Walker T, Lynd A R, et al. Wolbachia variability and host effects on crossing type in Culex mosquitoes. Nature,2005,436:256-260
    Solignac M, Vautrin D, Rousset F. Widespread occurrence of the proteobacteria Wolbachia and partial cytoplasmic incompatibility in Drosophila melanogaster. C R Acad Sci III Paris,1994,317:461-470
    Starr D J, Cline T W. A host parasite interaction rescues Drosophila oogenesis defects. Nature,2002,418:76-79
    Stouthamer R, Breeuwer J A J, Hurst G D D. Wolbachia Pipientis:Microbial Manipulator of Arthropod Reproduction. Annu Rev Microbiol,1999,53:71-102
    Stouthamer R, Breeuwer J A J, Luck R F, et al. Molecular identification of microorganisms associated with parthenogenesis. Nature,1993a,361:66-68
    Stouthamer R, Kazmer D J. Cytogenetics of microbe associated parthenogenesis and its consequences for gene flow in Trichogramma wasps. Heredity,1994,73:317-327
    Stouthamer R, Luck R F, Hamilton W D. Antibiotics cause parthenogenetic Trichogramma (Hymenoptera/Trichogrammatidae) to revert to sex. Proc Natl Acad Sci USA,1990,87:2424-2427
    Stouthamer R, Luck R F. Influence of microbe-associated parthenogenesis on the fecundity of Trichogramma deion and T. pretiosum. Entomol Exp Appl,1993b, 67:183-192
    Stouthamer R, Werren J H. Microbes associated with parthenogenesis in wasps of the genus Trichogramma. J Invertebr Pathol,1993c,61:6-9
    Tamas I, Klasson L, Canback B, et al.50 million years of genomic stasis in endosymbiotic bacteria. Science,2002,296:2376-2379
    Taylor M J, Hoerauf A. Wolbachia bacteria of filarial nematodes. Parasitol Today,1999, 15:437-442
    Tram U, Fredrick K, Werren J H. et al. Paternal chromosome segregation during the first mitotic division determines cytoplasmic incompatibility phenotype. J Cell Sci,2006, 119:3655-3663
    Tram U, Sullivan W. Role of delayed nuclear envelope breakdown and mitosis in Wolbachia-induced cytoplasmic incompatibility. Science,2002,296:1124-1126
    Trpis M, Perrone J B, Reissig M, Parker K L. Control of cytoplasmic incompatibility in the Aedes scuttelaris complex. J Hered,1981,72:313-317
    Turelli M. Evolution of incompatibility-inducing microbes and their hosts. Evolution, 1994,48:1500-1513
    Turner J D, Mand S, Debrah A Y, et al. A randomized, double-blind clinical trial of a 3-week course of doxycycline plus albendazole and ivermectin for the treatment of Wuchereria bancrofti infection. Clin Infect Dis,2006,42:1081-1089
    Vandekerckhove T T M, Watteyne S, Bonne W. et al. Evolutionary trends in feminization and intersexuality in woodlice (Crustacea, Isopoda) infected with Wolbachia pipientis (a-Proteobacteria). Belg J Zool,2003,133:61-69
    Vavre F, Fleury F, Lepetit D et al. Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Mol Biol Evol,1999,16:1711-1723
    Veneti Z, Clark M E, Karr T L, et al. Heads or tails:host-parasite interaction in the Drosophila-Wolbachia system. Appl Environ Microbiol,2004,70:5366-5372
    Verne S, Johnson M, Bouchon D, et al. Evidence for recombination between feminizing Wolbachia in the isopod genus Armadillidium. Gene,2007,397:58-66
    Wade M J, Stevens L. Microorganism mediated reproductive isolation in flour beetles (genus Tribolium). Science,1985,227:527-528
    Walker T, Klasson L, Sebaihia M, et al. Ankyrin repeat domain-encoding genes in the wPip strain of Wolbachia from the Culex pipiens group. BMC Biol,2007,5:39
    Wang Z, Deng C, Yun Y, et al. Molecular detection and the phylogenetic of Wolbachia in Chinese spiders (Araneae). JArachnol,2010,38:237-241
    Weeks A R, Breeuwer J A. Wolbachia-induced parthenogenesis in a genus of phytophagous mites. Proc R Soc Lond B,2001,268:2245-2251
    Wenseleers T, Ito F, van Borm S, et al. Widespread occurrence of the microorganism Wolbachia in ants. Proc R Soc London Ser B,1998,265:1447-1452
    Werren J H & Beukeboom L W. Sex determination, sex ratios and genetic conflict. Ann Rev Ecol Syst,1998,29:233-261
    Werren J H, Baldo L, Clark M E. Wolbachia: master manipulators of invertebrare biology. Microbiology,2008,6:741-751
    Werren J H, Bartos J D. Recombination in Wolbachia. Curr Biol.2001,11:431-435
    Werren J H, O' Neill S L. The Evolution of Heritable Symbionts. Oxford University Press, 1997, Oxford, pp.1-41.
    Werren J H, Windsor D, Guo L. Distribution of Wolbachia among neotropical arthropods. Proc R Soc London Ser B,1995a,262:197-204
    Werren J H, Zhang W, GuoL R. Evolution and phylogeny of Wolbachia:reproductive parasites of arthropods. Proc R Soc London Ser B,1995b,261:55-63
    Werren J H. Biology of Wolbachia. Annu.Rev.Entomol,1997,42:587-609
    West S A, Cook M, Werren J H, et al. Wolbachia in two insect host -parasitoid communities. Mol Evol,1998,7:1457-1465
    Wu M, Sun L V, Vamathevan J et al. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel:a streamlined genome overrun by mobile genetic elements. PloS Biol,2004,2:327-341
    Xi Z, Khoo C C, Dobson S L. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science,2005,310:326-328
    Yen J H, Barr A R. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens. Nature,1971,232:657-658
    Zabalou S, Apostolaki A, Pattas S, et al. Multiple rescue factors within a Wolbachia strain. Genetics,2008,178:2145-2160
    Zabalou S, Riegler M, Theodorakopoulou M, et al. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA,2004,101:15042-15045
    Zchori-Fein E, Faktor O, Zeidan M, et al. Parthenogenesis-inducing microorganisms in Aphytis (Hymenoptera: Aphelinidae). Insect Mol Biol,1995,4:173-178
    Zchori-Fein E, Pelrlman S J, Kelly S E et al. Characterization of a'Bacteroidetes' symbiont in Encarsia wasps (Hymenoptera: Aphelinidae):proposal of'Candidatus Cardinium hertigii'. Int J Syst Evol Microbiol,2004,54:961-968
    Zeh D W, Zeh J A, Bonilla M M. Wolbachia, sex ratio bias and apparent male killing in the harlequin beetle riding pseudoscorpion. Heredity,2005,95:41-49
    Zhou W, Rousset F, O'Neill S L. Phylogeny and PCR based classification of Wolbachia strain using wsp gene sequences. Proc R Soc London Ser B,1998,265:509-515