基于CFD的大棚微气候与通风调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塑料大棚种植技术是现代农业科技的重要组成部分,是重要的保护性栽培手段之一。塑料大棚与膜下微滴灌方法相结合,可在最大程度节约灌溉用水的基础上提供有利于作物生长的室内微气候环境,从而大幅提高产量。相关研究表明,即使不依赖任何辅助设备,结构最为简单的塑料大棚也比大田条件更为优越。进入21世纪以来,大棚和温室技术的重点已经不再是简单的高产,而在于尽可能在增产的同时不断提高作物特别是高附加值作物的品质。
     大棚微气候的显著特点是其空间分布的不均匀性。较大的温度梯度甚至可以使室内不同区域的温度相差近5℃。这样的温差不仅会造成作物产量和品质的参差不齐,也会导致病虫害的发生。事实上,过热的区域为害虫繁殖提供了条件;而在较冷处,相对湿度的上升有利于真菌的生长。充分和深入研究大棚微气候变化和分布,研究大棚内各个环境要素之间的相互耦合作用以及调控方法,是从根本上解决大棚微气候均匀性问题的必要前提和先决条件。为此,本文由大棚微气候产生的物理原理出发,在此基础上研究和发展得到了较为全面的机理型模型。利用计算流体动力学方法(Computational Fluid Dynamics,简写为CFD)进行模拟计算,对大棚室内微气候、通风过程中大棚作物的蒸腾规律进行了较为深入的研究。主要包括:
     第1章,在广泛阅读和深入分析大量国内外相关研究成果的基础上,对大棚微气候的形成机制和当前国内外对于大棚微气候的研究进展做了详尽综述;讨论了利用CFD进行模拟计算的数学建模和求解方法,是本文理论工作展开的基础。
     第2章,利用分形几何理论和方法,引入了两个用以定量描述作物叶冠部分多孔细微结构的统计分维参数。通过对作物的二维数字图像照片的处理和模式分析,得到了这些参数的具体数值。分析结果证明了理论假设的合理性,揭示了作物叶冠微结构具有分形性质。该性质的引入,为建立较为准确描述作物冠层结构及其分布的数学模型提供了新的启示和思路。
     第3章,研究并建立了大棚的室内微气候变化数学模型,该模型能够较准确地描述大棚内微气候变量的分布和相互耦合作用。模型以流体力学的基本方程(Navier-Stokes方程)为基础,在其中分别嵌入了两个子模型,包括一个用于描述墙壁、屋顶和覆盖材料表面相互耦合的对流热传递及太阳辐射能量交换的子模型;另一个为创新性地使用了分形渗透性理论发展得到的作物形态子模型。所建立的数学模型能够描述非线性大棚复杂环境系统的微气候变化规律。模型求解及计算结果表明,该模型是研究微气象特征和优化大结构棚设计的新的有效工具。
     第4章,根据所建立的微气候理论模型,基于CFD模拟研究了常见的扇形截面塑料大棚内的微气候变化规律。通过数值计算结果和实验数据的对比分析,证明所建模型是成功的。利用该模型探索了大棚中各种微气候变量的空间分布规律,揭示了扇形截面塑料大棚与地中海型多齿温室中的气流模式以及温湿度的不同特征。
     第5章,通过CFD模拟确定了我国使用的扇形截面塑料大棚的通风参数。在考虑了作物形态分形特征的前提下,提出了一种计算大棚通风率的简捷方法。该方法由于计算简单快捷,可用于在普通微机上根据外界环境变量的变化实现大棚环境的通风调控。模拟计算结果表明,相对于国外所使用温室而言,我国扇形截面塑料大棚在各种环境风速下能够保持较好的通风条件和室内通风气流流向,所得成果对大棚微气侯智能调控的发展具有一定的参考价值。
     第6章,利用通风参数确定的通风率,进一步预测了大棚作物的蒸腾率,验证了通风参数的结果和计算方法的正确性。模拟结果和试验数据的比较分析显示,采用CFD与均匀混合模型相结合的模型与方法能够有效描述通风特征和通风状态下的作物蒸腾规律。研究结果证明了该方法的有效性、合理性和实用性。
     第7章,对本文的研究工作和成果进行了总结,并提出了进一步研究工作的重点和展望。
     本文的研究表明,基于流体理论、辐射传输(Radiative Transfer)理论和分形理论所建立的大棚微气候模拟模型是有效的。利用计算流体动力学工具能够实现模型的模拟计算,可定性定量的描述塑料大棚内的微气候变化规律以及通风特征。研究工作取得的成果不仅能对制定塑料大棚的生产管理制度提供科学依据,也可作为进一步研究大棚内土壤-作物-环境连续系统(SPEC系统)的理论基础。
Plastic-film covered sunlight greenhouse technology is an indispensable part of modern agriculture, as well as an important protective cultivation method. Integrated with drip irrigation under soil covering plastic mulsh, modern polyhouse cultivation provides indoor microclimate favorable for crop growing with the minimum irrigation water requirement, greatly improving production. According to related research, the simplest polyhouse without any complemental conditioning devices provides better production than open field. Since the beginning of the21st century, the emphasis of polyhouse and greenhouse technology is no longer a simple pursuit of quanitity, but on improving crop quality, especially with high added value, under the premise of better production.
     The most notable aspect of microclimate in a plastic-film covered sunlight greenhouse is its heterogeneity. Large temperature gradient reportedly resulted up to5degrees celsius difference of two different areas in a same greenhouse. This heterogeneity not only leads to non-uniform in crop quality and production, but also be the reason for pest and disease. As a matter of fact, hot areas give rise to pest infestation, while at the cold areas relative humidity is relatively higher which causes fungi. Extensively in-depth studies on plastic-film covered sunlight greenhouse microclimate and the coupled interactions among environmental factors, as well as regulation method of this microclimate, are essential prerequiseites of solving the long-term plastic-film covered sunlight greenhouse microclimate heterogeneity problem. For this reason, a comprehensive mechanism microclimate model developed basing itself on basic physics laws is presented in this dissertation. Through Computational Fluid Dynamics (CFD) simulations, plastic-film covered sunlight greenhouse microclimate, its ventilation process and crop transpiration under this circumstances are throughly studied, summarising as follows:
     In chapter1, the mechanism of generating plastic-film covered sunlight greenhouse microclimate is introduced, as is the domestic and abroad research progress. Mathematic methodology used in our research is thoroughly discussed. Content in this chapter provides theoretical foundation for following studies.
     In chapter2, basing on fractal geometry theory and methods, two statistical fractal dimensions are introduced for the purpose of giving quantitative description of the microstructure within crop canopy. Using graphics processing and pattern recognition for2-D digital photo images of the crop, specific values of these parameters are acquired. Satisfactory analysis result shows consistency with hypothesis, porous structure of canopy thus revealed to be of fractal characteristics. This work improves methodology for detailed mathematic modeling of crop canopy structure and distributing density.
     In chapter3, an indoor microclimate model for plastic-film covered sunlight greenhouse is developed basing on basic fluid dynamics law of Navier-Stokes equation to give better description of climate heterogeneity and interactions among environmental factors. Two sub-models are included. One of which is A radiation sub-model added to describe the coupling of convective transfers and radiative exchanges at the cover and the roof, instead of using the usual coupling approach based on energy balance. The other is a fractal permeability sub-model innovatively adopted in the modelling of the crop canopy. Later study suggests that this deliberately developed nonlinear mechanism system model, along with its relatively steadier and quicker3-D CFD simulation, can be served as a useful tool in macroclimate research and polyhouse design investigating.
     In chapter4, a microclimate study is conducted using CFD simulation of our theoretical model for a typical plastic-film covered sunlight greenhouse (with a sector shape vertical cross-section) popularly used in central China, Compared the numerical results with measured experimental data, the model is proved to be successful; which then (with its simulations) is used to explore the microclimate variable distributions in the plastic-film covered sunlight greenhouse. It shows that different airflow pattern, temperature and humidity profiles from those in a sawtooth Mediterranean-type greenhouse can be found.
     In chapter5, the wind pressure coefficient and discharge coefficient of a same type plastic-film covered sunlight greenhouse are determined through3-D CFD simulation. Combining the popular ventilation formula and fractal permeability model which we have used in our microclimate study, our method provides a concise way in calculating ventilation rate. The result shows that this method gives ventilation characteristics, coefficients rather quick and easy under steady-state hypothesis. It is also found this Chinese plastic-film covered sunlight greenhouse provides good ventilation and constant indoor airflow direction. The calculating process is time-economical and simple thus can be in favor of robotizing using personal computer.
     In chapter6, crop transpiration is determind by ventilation rate calculated using the formula regarding wind pressure coefficient and discharge coefficient aquired both by CFD simulation. Checked by comparing with measured experimental data, the calculated transpiration rate is proved to be effective, thus validates the method itself. The best corresponding result comes in noon. This work not only gives good reference result for studying transpiration rate but also shows the mentioned method effective, reasonable and its results realizable and valuable for future robotized regulation system of a plastic-film covered sunlight greenhouse.
     In chapter7, issue by issue discussion is devoted for further studies on plastic-film covered sunlight greenhouse climate and its interdisciplinary expansion.
     Our study indicates the mechanism model based on fluid dynamics, radiative transfer equation and fractal theory valid. CFD simulation of this model gives qualitatively and quantatively results about microclimate and ventilation of plastic-film covered sunlight greenhouse. The results acquired provide guidance in daily plastic-film covered sunlight greenhouse management. The model itself serves as foundation for further studies on soil-plant-environment-coutinuum system and water saving effect of plastic-film covered sunlight greenhouse cultivation.
引文
[1]罗金耀,李少龙.我国设施农业节水灌溉理论与技术研究进展,节水灌溉,2003(3):11-13.
    [2]李远华,罗金耀.节水灌溉理论与技术(第二版),武汉大学出版社,2003.
    [3]李援农等.保护地节水灌溉技术[M].北京:中国农业出版社,1995.
    [4]杨启国,邱仲华等.甘肃旱作农业区发展节能日光温室蔬菜生产的可行性探讨[J].干旱地区农业研究,2002,20(2).
    [5]Harold C. Randall, Salvadore J. Locascio. Root Growth and Water Status of Trickle-irrigated Cucumber and Tomato[J]. Journal of the American Society for Horticultural Science.1988, 113(6):830-835.
    [6]Tindal 1, J. A., R. B. Beverly, D. E. Radcliffe,1991.Mulch effect on soil properties and tomato growth using micro-irrigation [J]. Agronomie. 83:1029-1034.
    [7]Mannini P, Gallina D. Effects of different irrigation regimes on two tomato cultivars grown in a cold greenhouse[J]. Horticulral Abstracts,1996, (61):641.
    [8]Allen R G., Pereira L S, Raes D,et al. Crop evapotranspiration:Guidelines for computing crop water requirements, FAO irrigation and drainage paper 56[R]. Rome, Italy:FAO. xxvi:300. 1998.
    [9]李毅,王文焰等.论膜下滴灌技术在干旱-半干旱地区节水抑盐灌溉中的应用[J].灌溉排水学报.2001,20(2).
    [10]Harmanto V M, Salokhe M.S, Babel et al. Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment [J]. Agricultural Water Management.2005,71(3).
    [11]Van der Veken L. Optimization of the water application in greenhouse tomato by introducing a tension meter-controlled drip-irrigation system [J]. Scientia Horticulture.1982,18:9-23.
    [12]水利部农田灌溉研究所,塑料大棚(温室)灌溉配套技术的研究与应用[M].北京:水利部科教司,1991.
    [13]王文元,董玉云等.温室大棚滴灌系统设计与管理中值得注意的问题[J].节水灌溉,2000(2):15-16.
    [14]高庆芳等.大棚辣椒需水量及灌溉技术研究[J].江苏农业科学,1992(1):46-47.
    [15]许贵民等.姜竣业等,塑料大棚黄瓜节水灌溉的研究[J].农业工程学报,1990,6(2):56-63.
    [16]于凤颖等.塑料大棚中番茄节水灌溉的研究[J].吉林农业科学,1996,(2):10-16.
    [17]张树森、雷勒明.日光温室蔬菜渗灌技术研究[J].灌溉排水学报,1994,13(2):30-32.
    [18]水利部等.节水灌溉发展规划纲要(2000-2015)[M].2000,9.
    [19]Zhang Z. Update development of protected cultivation in mainland China[J]. Chron. Hort.1999, 39(2):11-15.
    [20]Svanberg S. Atomic and Molecular Spectroscopy:Basic Aspects and Practical Applications(4th Edition)[M]. Berlin, Springer,2011.
    [21]Pozrikidis C. Fluid Dynamics:Theory, Computation, and Numerical Simulation(2nd Edition)[M]. New York, Springer,2009.
    [22]盛裴轩,毛节泰,李建国等.大气物理学[M].北京大学出版社,2003.
    [23]Chen J C. Physics of Solar Energy[M]. John Wiley & Sons,2011.
    [24]Kittel C, Introduction To Solid State Physic[M]. John Wiley & Sons,1996.
    [25]Greiner, Neise, Stoecker. Thermodynamics and Statistical Mechanics[M]. Springer,1997.
    [26]Campen J B, Bot G P A. New dehumidifying system for greenhouses[R]. ISHS Symposium on Sustainable Greenhouse Systems, Haifa, September 1999.
    [27]Teitel M, Zhao Y, Barak M, et al. Effect on energy use and greenhouse microclimate through fan motor control by variable frequency drives[J]. Energy Conversion and Management.2004,45: 209-223.
    [28]Teitel M, Barak M, Antler A. Effect of cyclic heating and a thermal screen on the nocturnal heat loss and microclimate of a greenhouse[J]. Biosystems Engineering.2009,102:162-170.
    [29]史密斯AM,库普兰特G,多兰L等.植物生物学[M].翟礼嘉,顾红雅,刘敬姑等,译.科学出版社,2012.
    [30]Dixon H H, Transpiration and the Ascent of Sap in Plants[M]. BiblioLife,2009.
    [31]汪小旵等.南方现代化温室黄瓜夏季蒸腾研究.[J]中国农业科学,2002,35(11):1390-1395
    [32]罗卫红等.南方现代化温室黄瓜冬季蒸腾量与模拟研究.[J]植物生态学报,2004,28(1):59-65
    [33]Boulard T and Wang S. Greenhouse crop transpiration simulation from external climate conditions [J]. Agricultural and Forest Meteorology,2000,100:25-34.
    [34]吴擎龙,雷志栋,杨诗秀.求解SPAC系统水热输移的耦合迭代计算方法[J].水利学报,1996(2):1-10
    [35]吴文勇,杨培岭,刘洪禄.日光温室土壤—植物—环境系统水热耦合运移动态模拟[J].灌溉排水学报,2003,22(3):49-53
    [36]Avisar R, Mahrer Y. Verification study of a numerical greenhouse microclimate model[J]. Transaction of the AS AE.1994,37(1):235-250.
    [37]X. Yang,T. H. Short, R. D. Fox, et al. The microclimate and transpiration of a greenhouse cucumber crop[J]. Transaction of the ASAE,1989,32(6):2143-2150.
    [38]X. Yang,T. H. Short, R. D. Fox, et al. Dynamic modeling of the microclimate of a greenhouse cucumber row crop part Ⅰ[J]. Transaction of the ASAE.1990,33(5):1701-1709.
    [39]Singh G, Singh P P, Lubana P P S, et al. Formulation and validation of a mathematical model of the microclimate of a greenhouse[J]. Renewable Energy.2006,31:1541-1560.
    [40]Maher M J, Flaherty T. An analysis of greenhouse climate[J]. Journal of Agricultural Engineering Research.1973,18:197-203.
    [41]Kindelan M. Dynamic modeling of greenhouse environment[J]. Transaction of the ASAE.1980, 23:1232-1237.
    [42]Pita G P A, Pontes M, Vargues A, et al. Mediterranean greenhouse energy balance[J]. Acta Horticulturae.1998,456:375-82.
    [43]Froehlich D P, Albright L D, Scott N R, et al. Steady-periodic analysis of glasshouse thermal environment[J]. Transaction of the ASAE.1979:387-399.
    [44]Chandra P, Albright L D, Scott N R. A time dependent analysis of greenhouse thermal environment[J]. Transaction of the ASAE 1981:442-449.
    [45]Seki H, Komori T, Takada T, et al. Mathematical modeling of greenhouse microclimate with combination of population dynamics and transport process analysis[J]. Acta Horticulturae.1995, 399:215-222.
    [46]Yang X. Greenhouse micrometeorology and estimation of heat and water vapor fluxes[J]. Journal of Agricultural Engineering Research.1995,61:227-238.
    [47]Zhang Y S, Mahrer Y, Margolin M, et al. Predicting the microclimate inside a greenhouse:an application of a one dimensional numerical model in an unheated greenhouse[J]. Agricultural and Forest Meteorology.1997,86(3):291-297.
    [48]Van Bavel C H M, Takakura T, Bot G P A. Global comparison of three greenhouse climate models[J]. Transaction of the ASAE.1985,174:21-33.
    [49]Takakura T. Technical models of the greenhouse environment[J]. Acta Horticulturae.1989,248: 49-53.
    [50]Teitel M, Tanny J. Natural ventilation of greenhouses:experiments and model[J]. Agricultural and Forest Meteorology.1999,96:59-70.
    [51]Tanny J, Haslavsky V, Teitel M. Airflow and heat flux through the vertical opening of buoyancy-induced naturally ventilated enclosures[J]. Energy and Buildings.2008,40:637-646.
    [52]Linden P F, Lane-Serf G F, Smeed D A. Emptying filling Boxes:the fluid mechanics of natural ventilation[J]. Journal of Fluid Mechanics.1990,212:309-335.
    [53]Jolliet O. Hortitrans, a model for predicting, a model for predicting and optimizing humidity and transpiration in greenhouse[J]. Journal of Agricultural Engineering Research.1994,57:23-37.
    [54]Stanghellini C, De Jong T. A model of humidity and its application in a greenhouse. Agricultural and Forest Meteorology.1995,76:129-148.
    [55]Teitel M, Shklyar A, Segal I, et al. Effects of nonsteady hot-water greenhouse heating on heat transfer and microclimate[J]. Journal of Agricultural Engineering Research.1996,65:297-304.
    [56]De Jong T, Stanghellini C. A model of greenhouse humidity suirable for control of crop processes[J]. Acta Horticulturae.1996,406:125-131.
    [57]Draoui B. Caracterisation et analyse du compotement thermohydrique d'une serre horticole[D]. Sophia Antipolis, France:Nice University,1994.
    [58]Boulard T, Baille A. Modelling of air exchange rate in a greenhouse equipped with continuous roof vents[J]. Journal of Agricultural Engineering Research.1995,61,37-48.
    [59]Walker I S, Wilson D J. Evaluating models for superposition of wind and stack effect in air infiltration[J]. Building and Environment.1993,28(2),201-210.
    [60]Monteith J L. Principles of Environmental Physics[M]. London, Edward Arnold,1973.
    [61]Medany M A, Fynn R P, Abou-Hadid A F, et al. A comparative study between actual and theoretical evapotranspiration of cucumber, (cucumis sativus) grown in rockwool[J]. Acta Horticulturae.1995,434:301-311.
    [62]Kreider J F, Rabl A. Heating and Cooling of Buildings, Design for Efficiency[M]. New York, McGraw-Hill,1994.
    [63]Papadakis G, Frangoudakis A, Kyritsis S. Soil energy balance analysis of a solar greenhouse[J]. Journal of Agricultural Engineering Research.1989,43:231-243.
    [64]Mills A F. Heat Transfer[M]. Boston, Irwin,1992.
    [65]Swinbank. Long wave radiation from clear skies[J]. Quarterly Journal of Royal Meteorological Society.1963,89:339.
    [66]Stanghellini C. Transpiration of greenhouse crops:an aid to climate management[D]. Wageningen, The Netherlands:Agricultural University of Wageningcn,1987.
    [67]Majdoubi H. Contribution a'la mode'lisation du microclimat des serres (Contribution to greenhouse microclimate modelling)[D]. Universite'Ibn Zohr, Faculte' des Sciences d'Agadir, 2007.
    [68]Roy J C, Boulard T, Kittas C, et al. Convective and ventilation transfers in greenhouses[J]. Part 1. The greenhouse considered as a perfectly stirred tank. Biosystem Engineering.2002,83(1):1-20.
    [69]Sacadura J F. Initiation aux Transferts Thermiques (Initiation to Thermal Transfers)[M]. CAST, INSA de Lyon Techniques et Documentation, Paris,1963,445.
    [70]Kittas C, Draoui B, Boulard T. Quantification of the ventilation of a greenhouse with a roof opening[J]. Agricultural and Forest Meteorology 1995,77(1-2):95-111.
    [71]Baptista F J, Bailey B J, Randall J M, et al. Greenhouse ventilation rate:theory and measurement with tracer gas techniques[J]. Journal of Agricultural Engineering Research.1999,72:363-374.
    [72]Perez Parra J, Baeza E, Montero J I, et al. Natural ventilation of parral greenhouses[J]. Biosystems Engineering.2004,873:355-366.
    [73]Sase S, Takakura T, Nara M. Wind tunnel testing on airflow and temperature distribution of a naturally ventilated greenhouse[J]. Acta Horticulturae 1984,148:329-336.
    [74]Kacira M, Sase S, Ikeguchi A, et al. Effect of vent configuration and wind speed on three-dimensional temperature distributions in a naturally ventilated multi-span greenhouse by wind tunnel experiments[J]. Acta Horticulturae.2008,801:393-400.
    [75]Okushima L, Sase S, Maekawa T, et al. Airflow paterns forced by wind effect in a Venlo type greenhouse[J]. Journal of Society on Agricultural Structure in Japan.1998,29(3):159-167.
    [76]Boulard T, Haxaire R, Lamrani M A, et al. Characterization and modelling of the air fluxes induced by natural ventilation in a greenhouse[J]. Journal of Agricultural Engineering Research. 1999,74:135-144.
    [77]Lee I B, Sase S, Okushima L, et al. A wind tunnel study of natural ventilation for multi-span greenhouse scale models using two-dimensional particle image velocimetry PIV[J]. Transaction of the ASAE.2003,46:763-772.
    [78]Molina-Aiz F D, Valera D L, Alvarez A J. Measurement and simulation of climate inside Almeria-type greenhouses using computational fluid dynamics[J]. Agricultural and Forest Meteorology.2004,125:33-51.
    [79]Wang S, Deltour J M. Lee-side ventilation-induced air movement in a largescale multi-span greenhouse[J]. Journal of Agricultural Engineering Research.1999,74:103-110.
    [80]Boulard T, Meneses J F, Mennier M, et al. The mechanisms involved in the natural ventilation of greenhouses[J]. Agricultural and Forest Meteorology.1996,79:61-77.
    [81]Boulard T, Wang S, Haxaire R. Mean and turbulent air flows and microclimatic patterns in an empty greenhouse tunnel[J]. Agricultural and Forest Meteorology.2000,100:169-181.
    [82]Heber A J, Boon C R, Peugh M W. Air patterns in an experimental livestock building[J]. Journal of Agricultural Engineering Research.1996,64:209-226.
    [83]Boulard T, Papadakis G, Kittas C, et al. Air flow and associated sensible heat exchanges in a naturally ventilation greenhouse[J]. Agricultural and Forest Meteorology.1997,88:111-119.
    [84]Bartzanas T, Kittas C, Sapounas A A, et al. Analysis of airflow through experimental rural buildings:sensitivity to turbulence models[J]. Biosystems Engineering.2007,97:229-239.
    [85]Shilo E, Teitel M, Mahrer Y, et al. Air flow patterns and heat fluxes in roof ventilated multi-span greenhouse with insect proof[J]. Agricultural and Forest Meteorology.2004,122:3-20.
    [86]Teitel M, Ziskind G, Liran O, et al. Effect of wind direction on greenhouse ventilation rate, airflow patterns and temperature distributions[J]. Biosystems Engineering.2008b,101:351-369.
    [87]Teitel M, Liran O, Tanny J, et al. Wind driven ventilation of a mono-span greenhouse with a rose crop and continuous screened side vents and its effect on flow patterns and microclimate[J]. Biosystems Engineering 2008a,101:111-122.
    [88]Nara M. Studies of air distribution in farm buildings[J]. The Journal of the Society of Agricultural Structures.1979,9(2):17-26.
    [89]Okushima L, Sase S, Nara M. A support system for natural ventilation design of greenhouse based on computational aerodynamics[J]. Acta Horticulturae.1989,248:129-136.
    [90]Mistriotis A, Arcidiacono C, Picuno P, Bot G P A, Scarascia-Mugnozza G. Computational analysis of ventilation in greenhouses at zero-and low-wind-speeds[J]. Agricultural and Forest Meteorology.1997,88:121-135.
    [91]Lee I B, Short T H. A CFD model of volumetric flow rates for a naturally ventilated multi-span greenhouse, Paper No 987011[R]. Orlando, FL, USA:92nd Annual International Meeting of ASAE,1998.
    [92]Lee I B, Short T H. Verification of computational fluid dynamic temperature simulations in a full-scale naturally ventilated greenhouse[J]. Transaction of the ASAE.2001,44(1):119-127.
    [93]Reichrath S, Davies T W. Using CFD to model the internal climate of greenhouses:past, present and future[J]. Agronomie. 2002,22:3-19.
    [94]Lee I B, Short T H, Sase S, et al. Evaluation of structural characteristics of naturally ventilated multi-span greenhouses using computer simulation[J]. Japan Agricultural Research Quarterly. 2000,34(4):247-256.
    [95]Kacira M, Short T H, Stowell R. A CFD evaluation of naturally ventilated multi-span, sawtooth greenhouses[J]. Transaction of the ASAE.1998,41(3):833-836.
    [96]Boulard T, Kittas C, Roy J C, Wang S. Convective and ventilation transfers in greenhouses, part 2:determination of the distributed greenhouse climate[J]. Biosystems Engineering.2002,83(2): 129-147.
    [97]Bot G P A. Developments in indoor sustainable plant production with emphasis on energy saving[J]. Computers and Electronics in Agriculture.2001,30(1-3):151-165.
    [98]Bailey B J. Robertson A P. Lockwood A G. The influence of wind direction on greenhouse ventilation[J]. Acta Horticulturae.2004,633:197-202.
    [99]Teitel M, Tanny J, Ben-Yakir D, et al. Airflow patterns through roof openings of a naturally ventilated greenhouse and their effect on insect penetration[J]. Biosystems Engineering.2005, 92:341-353.
    [100]Bartzanas T, Boulard T, Kittas C. Effect of vent arrangement on windward ventilation of a tunnel greenhouse[J]. Biosystems Engineering.2004,88:479-490.
    [101]Roy J C, Boulard T. CFD prediction of the natural ventilation in a tunnel-type greenhouse: influence of wind direction and sensibility to turbulence models[J]. Acta Horticulturae.2005, 691(1):457-464.
    [102]Fatnassi H, Boulard T, Poncet C, Chave M. Optimisation of greenhouse insect screening with computational fluid dynamics[J]. Biosystems Engineering.2006,93(3):301-312.
    [103]Campen J B. Ventilation of small multispan greenhouse in relation to the window openings calculated with CFD[J]. Acta Horticulturae.2006,718:351-356.
    [104]Ould Khaoua S A, Bournet P E, Migeon C, et al. Analysis of greenhouse ventilation efficiency based on computational fluid dynamics[J]. Biosystems Engineering.2006,95:83-98.
    [105]Brugger M, Montero J, Baezz E, et al. Computational fluid dynamic modeling to improve the design of the Spanish parral style greenhouse[J]. Acta Horticulturae.2005,691:425-431.
    [106]Kim K S, Yoon J Y, Kwon H J, et al.3-D CFD analysis of relative humidity distribution in greenhouse with a fog cooling system and refrigerative dehumidifiers[J]. Biosystems Engineering.2008,100:245-255.
    [107]H. Majdoubi, T. Boulard, H. Fatnassi, L. Bouirden. Airflow and microclimate patterns in a one-hectare Canary type greenhouse:An experimental and CFD assisted study[J]. Agricultural and Forest Meteorology.2009,149:1050-1062.
    [108]Gan G H. CFD modelling of transparent bubble cavity envelopes for energy efficient greenhouses[J]. Building and Environment.2009,44:2486-2500.
    [109]Molina-Aiz F D, Fatnassi H, Boulard T, et al. Comparison of finite element and finite volume methods for simulation of natural ventilation in greenhouses[J]. Computers and Electronics in Agriculture.2010,72:69-86.
    [110]Bournet P E, Boulard T. Effect of ventilator configuration on the distributed climate of greenhouses:A review of experimental and CFD studiesfJ]. Computers and Electronics in Agriculture.2010,74:195-217.
    [111]Sun H W, Yang J Z. CFD based determination of crop transpiration in local greenhouses in eastern China[R]. Beijing:4th International Conference on Bioinformatics and Biomedical Engineering,2010.
    [112]Franco A, Valera D L, Pena A, et al. Aerodynamic analysis and CFD simulation of several cellulose evaporative cooling pads used in Mediterranean greenhouses[J]. Computers and Electronics in Agriculture.2011,76:218-230.
    [113]Nebbali R, Roy J C, Boulard T. Dynamic simulation of the distributed radiative and convective climate within a cropped greenhouse[J]. Renewable Energy.2012,43:111-129.
    [114]Kichah A, Bournet P E, Migeon C, et al. Measurement and CFD simulation of microclimate characteristics and transpiration of an Impatiens pot plant crop in a greenhouse[J]. Biosystems Engineering.2012,112:22-34.
    [115]Piscia D, Montero J I, Baeza E, et al. A CFD greenhouse night-time condensation model[J]. Biosystems Engineering.2012,111:141-154.
    [116]陈义成.非线性物理(理论基础及应用)讲义[M],华中师范大学物理系,2005.
    [117]颜庆津.数值分析(第3版)[M],北京航空航天大学出版社,2006.
    [118]孙俊.大棚环境要素的变化规律与模拟研究[D],湖北武汉:武汉大学,2007.
    [119]刘惠婷.大棚环境要素的变化规律与模拟研究[D],湖北武汉:武汉大学,2011.
    [120]孙宁宁.大棚作物需水规律与灌溉制度的试验研究[D],湖北武汉:武汉大学,2006.
    [121]罗金耀,李小平.大棚作物需水规律的试验研究[C].第七次全国微灌大会论文集,2007:7.
    [122]孙俊,罗金耀,李小平,等.大棚茄子滴灌试验需水量研究[J].中国农村水利水电.2008,2:11-13.
    [123]葛建坤,罗金耀,李小平.Water-saving Effect of Different Areas of Film-covering in Greenhouse[C]. PROCEEDINGS OF THE 4TH INTERNATIONAL YELLOW RIVER FORUM ON ECOLOGICAL CIVILIZATION AND RIVER ETHICS, VOL V,2010:403-408.
    [124]孙宁宁,董斌,罗金耀.大棚温室作物需水量计算模型研究进展[J].节水灌溉.2006,3:16-19.
    [125]温耀华,罗金耀,李小平,等.基于BP神经网络的大棚作物腾发量预测模型[J].中国农村水利水电.2008,2:20-21.
    [126]Ge Jiankun, Luo Jinyao. Forecast Model for Water Requirement of Eggplant in Greenhouse based on GA-BP ANN[C]. ORIENT ACADEMIC FORU,2009,419-423.
    [127]葛建坤,罗金耀等.越冬大棚番茄蒸腾速率变化规律及PLS模型研究[J].武汉大学(工学版),2009,2.
    [128]葛建坤,罗金耀等.滴灌大棚茄子需水量计算模型的定量分析比较[J].灌溉排水学报,2009,5.
    [129]葛建坤.大棚番茄膜下滴灌需水规律及环境调控效应研究[D],湖北武汉:武汉大学,2011.
    [130]邓雯.大棚环境调控效应与温湿度模拟研究[D],湖北武汉:武汉大学,2012.
    [131]葛建坤,罗金耀,李小平,等.基于ANFIS的温室气温模糊控制仿真[J].农业工程学报.2010,8:26-31.
    [132]韩力群.人工神经网络理论、设计及应用[M].化学工业出版社,2007.
    [133]Mandelbrot B B. Fractals:Form, Chance, and Dimension[M]. W. H. Freeman and Company, 1977.
    [134]Mandelbrot B B. Getting Snowflakes into Shape[J]. New Scientist.1978,808-810.
    [135]Mandelbrot B B. The Fractal Geometry of Nature[M]. W. H. Freeman and Company,1982.
    [136]Feder J. Fractals[M]. Plenum Press,1988.
    [137]Kenneth F. Fractal Geometry:Mathematical Foundations and Applications[M]. John Wiley & Sons,2007.
    [138]Pitchumani R, Ramakrishnan B. A fractal geometry model for evaluating permeabilities of porous performs used in liquid composite molding[J]. International Journal of Heat and Mass Transfer.1999,42:2219-2232.
    [139]Yu B, Cheng P. A fractal permeability model for bi-dispersed porous media[J]. International Journal of Heat and Mass Transfer.2002,45:2983-2993.
    [140]Born M, Wolf E. Principles of Optics(7th Edition) [M]. Cambridge University Press,2003.
    [141]Koschan A, Abidi M. Digital Color Image Processing[M]. Wiley-Interscience,2008.
    [142]Sankar D, Thomas T. Fractal Features based on Differential Box Counting Method for the Categorization of Digital Mammograms[J]. International Journal of Computer Information Systems and Industrial Management Applications.2010,2:11-19.
    [143]Li J, Du Q, Sun C X. An improved box-counting method for image fractal dimension estimation[J]. Pattern Recognition.2009,42:2460-2469.
    [144]Boulard T, Wang S. Experimental and numerical studies on the heterogeneity of crop transpitation in a plastic tunnel [J]. Computers and Electronics in Agriculture.2002,173: 190-234.
    [145]Molina-Aiz F D, Valera D L, Alvarez A J, et al. A wind tunnel study of air flow through horticultural crops:determination of the drag coefficient[J]. Biosystems Engineering.2006b,93: 447-457.
    [146]Haxaire R. Caracterisation et modelisations des ecoulements d'air dans une serre[D]. Ph.D. Thesis. Sophia Antipolis, France:Faculte des Sciences, Universite de Nice,1999.
    [147]Haxire R, Boulard T, Mennier M. Greenhouse natural ventilation by wind forces[J]. Acta Horticulturae.2000,534:31-40.
    [148]FLUENT 6.3. User's Guide[M]. Fluent Inc, USA,2006.
    [149]Patankar S V. Numerical Heat Transfer and Fluid Flow[M]. Hemisphere, Washington,1980.
    [150]Kim J J, Baik J J. A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k-epsilon turbulence model[J]. Atmospheric Environment.2004,38:3039-3048.
    [151]Hafez K A, Elsamni O A, Zakaria K Y. Numerical investigation of the fully developed turbulent flow over a moving wavy wall using k-epsilon turbulence model[J]. Alexandria Engineering Journal.2011,50:145-162.
    [152]S.S. Sazhin, E.M. Sazhina, O.Faltsi-Saravelou, P. Wild. The P-1 model for thermal radiation transfer:advantages and limitations[J]. Fuel.1996,75(3):289-294.
    [153]Siegel R, Howell J R. Thermal Radiation Heat Transfer Volume 3:Radiation Transfer With Absorbing, Emitting, and Scattering Media[M]. U.S.Government Printing Office, Washington, USA,1971.
    [154]Planck M. Uber eine Verbesserung der Wienschen Spektralgleichung[J]. Verhandlungen der Deutschen Physikalischen Gesellschaft.1900a,2:202-204.
    [155]Teitel M. Using computational fluid dynamics simulations to determine pressure drops on woven screens[J]. Biosystems Engineering.2011,105:172-179.
    [156]Teitel M. On the applicability of the Forchheimer equation in simulating flow through woven screens[J]. Biosystems Engineering.2011,109:130-139.
    [157]Brundrett E. Prediction of pressure drop for incompressible flow through screens[J]. Journal of Fluids Engineering.1993,115:239-242.
    [158]Boulard T, Baille A, Mermier M, et al. Mesures et modelisation de la resistance stomatique foliaire et de la transpiration d'un couvert de tomates de serre[J]. Agronomie. 1991,11(4): 259-274.
    [159]Richards P J, Hoxey R P. Appropriate boundary conditions for computational wind engineering models using the k-epsilon turbulence model. Journal of Wind Engineering and Industrial Aerodynamics.1993,47:145-153.
    [160]Takahashi K, Yoshida H, Tanaka Y, et al. Measurement of thermal environment in Kyoto city and its prediction by CFD simulation[J]. Energy and Buildings.2004,36:771-779.
    [161]Bennet C O, Myers J E. Momentum, Heat and Mass Transfer[M]. McGraw-Hill, New York, USA,1995.
    [162]Baptista F J, Bailey B J, Meneses J F. Natural ventilation of greenhouses:Comparison of measured and predicted ventilation rates[C]. Agribuilding 2001 Proceedings, Campinas, SP, Brazil:Embrapa Suinos e Aves,2001:137-151.
    [163]Tanny J, Cohen S, Teitel M. Screenhouse Microclimate and Ventilation:an Experimental Study[J]. Biosystems Engineering.2003,84:331-341.
    [164]van der Mass J. Air flow through large openings in buildings[M]. Energy Conservation in Buildings and Community Systems Programme. Annex 20, Subtask 2. International Energy Agency,1992.
    [165]Hoxey R P, Moran P. Full scale wind pressure and load experiments[M]. Silsoe:International Institute of Agricultural Engineering, Department Note 1594,1991.
    [166]Gandemer J, Bietry J. Cours d'aerodynamique Vol 2[M]. REEF, Science du Batiment CSTB Nantes,1989.
    [167]Kittas C, Boulard T, Papadakis G. Natural ventilation of a greenhouse with ridge and size openings:sensitivity to temperature and wind effects[J]. Transactions of the ASAE.1997,40: 415-425.
    [168]Karava P, Stathopoulos T, Athienitis A K. Wind driven flow through openings:a review of discharge coefficients[J]. International Journal of Ventilation.2004,3:225-266.
    [169]Campen J B, Bot G P A. Determination of Greenhouse-sepcific Aspects of Ventilation using Three-dimensional Computational Fluid Dynamics[J]. Journal of Agricultural Engineering Research.1994,57:217-227.
    [170]Mahpeykar M R, Teymourtash A R. Effects of Friction Factor and Inlet Stagnation Conditions on the Self-Condensation of Steam in a Supersonic Nozzle[J]. Scientia Iranica.2004,11(4): 269-282.
    [171]Izaurralde R C, Williams J R, McGill W B, et al. Simulating soil C dynamics with EPIC:Model description and testing against long-term data[J]. Ecological Modelling.2006,192:362-384.
    [172]de Barros I, Williams J R, Gaiser T. Modeling soil nutrient limitations to crop production in semiarid NE of Brazil with a modified EPIC version Ⅰ. Changes in the source code of the model[J]. Ecological Modelling.2004,178:441-456.