圆筒内开缝圆筒自然对流换热及非线性特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
圆筒内开缝圆筒自然对流换热的工业应用背景是发电厂采用的大电流离相封闭电流母线。由于热效应可能引起母线局部过热等问题,会严重影响母线的安全运行,需对封闭电流母线采取可靠而有效的散热措施,其所抽象出的理论研究模型就是圆筒内开缝圆筒的自然对流换热。本文关注圆筒内开缝圆筒自然对流换热的另一原因是其所表现出丰富的非线性特性。在某些参数范围内,这种圆筒内开缝圆筒的自热对流换热会出现自维持振荡,分岔及混沌等非线性现象。研究及预测这些奇妙而复杂的非线性现象对于发展传热学理论体系和加深人类对自然界的理解,具有重要意义。
     本文针对水平放置的圆筒内开缝圆筒自然对流换热展开工作。
     首先对水平圆筒内开缝圆筒自然对流换热的二维模型进行了数值模拟,探讨了其中基本的流动和换热规律及非线性特性,并与前人已存在的实验结果进行了比较;然后,通过激光干涉实验,得到了不同物理参数和几何结构下的温度分布;进一步采用三维模型对水平圆筒内开缝圆筒自然对流换热进行模拟,并比较分析二维模型、实验、三维模型结果间的异同和所表现出的三维流动和传热规律及其中的非线性特性。为了能够更精准地预测圆筒内开缝圆筒自然对流换热规律及其中的非线性特性,同时也为了研究问题多一种途径和参照,还发展了紧致差分方法。
     本文获得了如下研究成果:
     1)采用具有QUICK格式的SIMPLE算法对水平圆筒内开缝圆筒自然对流换热的二维模型进行了数值计算,给出了圆筒内开缝圆筒自然对流换热二维模型的基本流型及对应温度场,揭示了这种流动和换热具有对称和非对称的两涡流型及四涡流型流场、T字和2T字型温度场,并给出了系统的静态分岔解、自维持振荡解及从稳态到混沌的发展过程。
     2)在本文研究参数范围内,开缝位置不同的圆筒内开缝圆筒自然对流换热的实验和二维数值结果表明:对于水平开缝圆筒((?)=(?)/2),温度场是稳态的,相同参数下经过多次实验和数值计算,会获得两种不同的温度分布,实验与数值结果一致,从实验和数值计算两个方面证明该系统存在静态分岔现象;对于圆筒内竖直((?)=0)和偏斜((?)=(?)/4)开缝圆筒,尽管实验边界条件是稳态的,但实验温度场表现出了非对称的自维持振荡现象。但二维模型的数值结果是稳态的,未能反映实验发现的温度场自维持振荡现象。
     3)采用三维模型,对水平圆筒内开缝圆筒自然对流换热问题进行了数值模拟。数值结果表明,当Ra数较小时,系统为稳态的,二维和三维数值模拟获得的平均当量导热系数均与已有文献的实验结果相一致。当Ra数较大时,这种自然对流换热随时间振荡,流场和温度场呈现出三维特性,二维模型的数值结果与文献中的换热实验结果的差异趋于增大,但是三维模型的数值结果与实验结果吻合良好。
     4)本文的研究表明,对于水平放置的圆筒内竖直开缝圆筒自然对流换热问题,当流动和换热为稳态时,呈现二维流动与换热,但存在一个临界Rac,当超过这个临界值Rac时,流动和换热随时间振荡,呈现三维特性。临界Rac与开缝度S c相关。
     5)当圆筒内开缝圆筒水平开缝时,在本文实验参数范围内,温度场是稳态的,具有对称和非对称两种不同的温度场,且三维数值结果、二维数值结果及实验结果均一致。
     6)采用三维模型对本文实验中圆筒内竖直开缝圆筒自然对流换热的模拟结果表明:实验参数下,尽管边界条件稳态且对称,三维数值温度场随时间振荡,与实验结果一致,获得了二维数值结果所未能获得的自维持振荡现象。
     7)发展了求解泊松方程和对流扩散方程的紧致修正法,对几类典型的偏微分方程进行求解,获得较高精度。采用延时修正方法,将紧致格式与SIMPLE算法相结合,构造了求解流动与换热问题的基于SIMPLE的紧致方法。通过底部加热的方腔内自然对流换热问题验证了该方法的准确性,高精度以及对分岔现象的预测能力。
     8)采用本文所发展的紧致方法对圆筒内开缝圆筒自然对流换热问题进行数值模拟。随着Ra数的增加,系统从稳态,经历周期性振荡状态,最终发展为混沌,与具有QUICK格式的SIMPLE算法表现的系统从稳态到混沌的发展过程一致。
The engineering background of natural convection heat transfer in a horizontalannulus with an internal slotted circle is natural cooling of enclosed isolated-phasebuses used in power plants. The local overheated of enclosed isolated-phase busesinduced by thermal effective can affect the normal running of machine seriously. So itis necessary to make some effective measure for heat dissipating. The theoreticalmodel for those above is natural convection heat transfer in a horizontal annulus withan internal slotted circle. The other reason for focusing on those problems is abundantand complex phenomenon induced by non-linear characteristics. In the scope of somecertain parameters, some non-linear phenomenon such as self-sustained oscillation,bifurcation, and chaos will appear during the investigation of natural convection heattransfer in a horizontal annulus with an internal slotted circle. Study on thosewonderful and complex dynamic characters is necessary and worth for thedevelopment of heat transfer theory and cognition of natural law.
     Firstly, two-dimensional model is applied for natural convection heat transfer ina horizontal annulus with an internal slotted circle. The based regulars of flow andheat transfer are discussed and compared with some existed experimental results.Secondly, the laser interferometer experiment platform had been constructed to studythe natural convection heat transfer of cylindrical envelope with different internalstructure and analysis the non-linear phenomenon. Thirdly, three-dimensional modelis applied for natural convection heat transfer in a horizontal annulus with an internalslotted circle. Two-dimensional, three-dimensional, and experimental results arecompared and analyzed for investigating three-dimensional flow and heat transfer andnon-linear characteristics. Finally, compact finite difference schemes are developedfor predicting non-linear characteristics accurately. Based on those objects above, themain content in this paper is as follows:
     1) Natural convection heat transfer in cylindrical envelope with an internalconcentric cylinder with slots is solved by two dimensional SIMPLE algorithms withQUICK scheme. The based flow and temperature field is obtained, includingsymmetric and non-symmetric two-vortex flow pattern and temperature with theshape of T, four vortex flow pattern and temperature with the shape of double T.Typical non-linear phenomenon is obtained by two-dimensional model, includingstatic bifurcation, self-sustained oscillation, and the route from steady to chaos.
     2) Experimental and two-dimensional numerical methods are applied for solving natural convection heat transfer in cylindrical envelope with an internal slottedconcentric cylinder with different site. The results indicate that for vertical slottedstructure, temperature field of both experiment and numerical solution is steady, andtwo different temperature fields are obtained under the same boundary conditions.The phenomenon of static bifurcation is verified by both experimental and numericalmethod; for level slotted structure, experimental boundary conditions are steady andsymmetric, but the non-symmetric unsteady experimental temperature fields areobtained, the oscillated phenomenon is obvious on the top of internal slottedconcentric cylinder, the amplitude of oscillation increases with the increasingRayleigh numbers, the numerical solution of two-dimensional model is steady, and itcan not reflect the oscillation phenomenon in experimental temperature.
     3) Three-dimensional mathematical model was established, and it is applied forsolving natural convection heat transfer in cylindrical envelope with an internalslotted concentric cylinder. The numerical results of Wang’s experimental parametersindicate that when the Rayleigh number is lower, the system is steady, three and twodimensional numerical solutions are consistent with experimental solutions. When theRayleigh number is higher, the system is unsteady with steady and symmetricboundary condition. Those oscillated solution shows three characteristics of flow andheat transfer. The discrepancy between two-dimensional numerical and experimentalresults increases gradually with the increasing Ra numbers, but the three-dimensionalnumerical results is continent with experimental results.
     4) For cylindrical envelope with an internal vertical slotted concentric cylinder, theflow and heat transfer of this system is steady and two-dimensional. There exists acritical Rayleigh number Racor slotted degree Sc. When the value of parameters ishigher than the critical value, the flow and heat transfer is oscillating with time andthree-dimensional with steady and symmetric boundary conditions.
     5) Three-dimensional model is applied for solving natural convection heat transferin cylindrical envelope with an internal level slotted concentric cylinder in this paper.The results indicate that the temperature is steady, and two different temperature fieldsare obtained under the same boundary conditions. Both three-dimensional anddimensional numerical solution can reflect experimental temperature field.Three-dimensional numerical method can predict the experimental temperature fieldand static bifurcation phenomenon.
     6) Three-dimensional model is applied for solving natural convection heat transfer in cylindrical envelope with an internal vertical slotted concentric cylinder in thispaper. When Rayleigh number is equal to6.46×104, three-dimensional numericaltemperature field is oscillating with time, and it can predict experimental temperaturefield. The oscillated temperature lines are obvious on the top of internal slottedconcentric cylinder, the amplitude of oscillation increases with the increasingRayleigh numbers. Three-dimensional numerical method can reflect the oscillatedtemperature, which can not be obtained by two-dimensional numerical scheme. Theoscillated system induced by non-linear characteristic can be verified by experimentaland numerical method.
     7) Compact correction methods are developed firstly for solving two typical partialdifference equations. The compact method based on SIMPLE is developed bydeferred correction method, and it can obtain the high order accurate solutions. Theproblem of natural convection heat transfer of cavity heated from below is calculatedby this method. Numerical results show that the compact scheme has higher accuracythan classical scheme and predict static bifurcation phenomenon.
     8) Compact finite difference scheme based on SIMPLE algorithm by author isapplied for solving natural convection heat transfer in cylindrical envelope with aninternal slotted concentric cylinder. The numerical results indicate that with theincreasing Rayleigh numbers, the system evolve from steady, periodic oscillating, tochaos. Different numerical method can predict the route from steady to chaos and beconsistent with SIMPLE algorithm with QUICK scheme..
引文
[1]詹姆斯.格莱克,混沌:开创新科学,高等教育出版社,张淑誉译,2004,11..
    [2] Bishop E. H., Carley C. T., Photographic studies of natural convection betweenconcentric cylinders, Proc. Heat Transfer Fluid Mech,1966, pp:63-78.
    [3] Powe R. E., Bishop E. H., Carley C. T., Free convective flow patterns in cylindricalannuli, Transactions of the ASME Journal of Heat Transfer,1969, pp:310-314.
    [4] Morgan V. T., The overall convective heat transfer from a smooth cylinder,Advances in Heat Transfer,1975,111:99-264.
    [5] Churchill S. W., Chu H. H. S., Correlating for laminar and turbulent free convectionfrom a horizontal cylinder, International Journal of Heat and Mass Transfer,1975,18(9):1049-1053.
    [6] Kuehn. T. H, Goldstein. R. J., An experimental and theoretical study of naturalconvection in the annulus etween two horizontal concentric cylinders. J. Fluid.Mech.1976,74(4):695-919.
    [7] Farouk B., Guceri S. I., Natural convection from a horizontal cylinder-laminarregime, Journal of Heat Transfer,1981,103(3):522-527.
    [8] Farouk B., Guceri S. I., Laminar and turbulent natural convection in the annulusbetween horizontal concentric cylinders, ASME Journal of heat transfer,1982,104:631-636.
    [9] Saitoh T., Sajiki T., Maruhara K., Bench mark solutions to natural convection heattransfer problem around a horizontal circular cylinder, International Journal of Heatand Mass Transfer,1993,36(5):1251-1259.
    [10] Cesini G., Natural convection from a horizontal cylinder in a rectangular cavity,International Journal of Heat and Mass Transfer,1999,42(10):1801-1811.
    [11] Yoo J. S., Natural convection in a narrow horizontal cylindrical annulus: Pr≤0.3. Int.J. Heat Mass Transfer,1998,41:3055-3073.
    [12] Kitamura K., Kami-iwa F., Misumi T., Heat transfer and fluid flow ofnaturalconvection around large horizontal cylinders, International Journa lof Heatand Mass Transfer,1999,42(22):4093–4106.
    [13] Yang S.-M., Improvement of the basic correlating equations and transition criteriaof natural convection heat transfer, Heat Transfer–Asian Research,2001,30(4):293–300.
    [14] Fant D. B., Prusa J., Rothmayer A., Unsteady multicellular natural convection in anarrow horizontal cylinderical annulus,1990, Trans. ASME J. Heat Transfer,1990,112:379-387.
    [15] Fant D. B., Rothmayer A., Prusa J., Natural convective flow instability betweenhorizontal concentric cylinders, J. Thermophys Heat Transfer,1991,3:407-414.
    [16] Cheddadi A., Caltagirone J. P., Mojtabi A. et al., Free two dimensionalconvective bifurcation in a horizontal annulus, ASME Journal of heat transfer,1992,114:99-106.
    [17] Chung J. D., Kim J. C., Yoo H. et al., Numerical investigation on the bifurcativenatural convection in horizontal concentric annulus, Numerical Heat Transfer, PartA,1991,36:291-307.
    [18] Yoo J. S., Prandtl number effect on bifurcation and dual solutions in naturalconvection in a horizontal annulus, Int.J.Heat Mass Transfer,1999,42:3279-3290.
    [19] Yoo J. S., Dual free-convective flows in a horizontal annulus with a constant heatflux wall, Int. J. Heat Mass Transfer,2003,46:2499-2503.
    [20] Cadiou P., Desrayaud, G. and Lauriat G.., Natural convection in a narrow horizontalannulus: the effects of thermal and hydrodynamic instability, ASME Journal ofHeat Transfer,1998,120:1019-1026.
    [21] Labonia G., Gui G.., Natural convection in a horizontal concentric cylindricalannulus: oscillatory flow and transition to chaos, J. Fluid Mech.,1998,375:179-202.
    [22] Sande E. V., Hamer B. J. G., Steady and transient natural convection in enclosuresbetween horizontal cylinders, Int. J. Heat Mass Transfer,1979,22:361-370.
    [23] Hirose K., Hachinohe T., Ishili Y., Natural convection heat transfer in eccentrichorizontal annuli between a heated outer tube and a cooled inner tube withdifferent orientation: the case of an elliptical outer tube,2001,30(8):624-635.
    [24] Kenjeres S., Hanjalic K., Prediction of turbulent thermal convection in concentricand eccentric horizontal annuli, Int. J. Heat and Fluid Flow,1995,16(3):429-439.
    [25]王健敏,何杰,最大偏心圆环空间自然对流传热的数值分析,计算力学学报,2003,20(5):616-620.
    [26]陈雪江,秦国良等,谱元方法求解环形空间内自然对流换热,应用力学学报,2004,21(3):121-124.
    [27] Char M. I., Hsu Y. H., Comparative analysis of linear and nonlinear low Reynoldsnumber eddy viscosity models to turbulent natural convection in horizontalcylinderical annuli, Numerical Heat Transfer, Part A,1991,33:191-206.
    [28] Chmaissem W., Suh S. J., and Daguenet M., Numerical study of the Boussinesqmodel of natural convection in an annular space: Having a horizontal axis boundedby circular and elliptical isothermal cylinder, Applied Thermal Engineering,2002,22:1013-1025.
    [29] Lee J. H., Lee T. S., Natural convection in the annuli between horizontalconvection in the annuli between horizontal confocal elliptical cylinders, Int. J.Heat Mass Transfer,1981,24:1739-1742.
    [30] Yousefi T., Ashjaee M., Experimental study of natural convection heat transferfrom vertical array of isothermal horizontal elliptic cylinders, ExperimentalThermal and Fluid Science,2007,32:240-248.
    [31] Elshamy M. M., Ozisik M. N., Coulter J. P., Correlation for laminar naturalconvection between confocal horizontal elliptical cylinders, Numerical HeatTransfer, Part A,1990,18:95-112.
    [32] Cheng C. H., Chao C. C., Numerical predictions of the buoyancy driven flow in theannulus between horizontal eccentric elliptical cylinders, Numerical Heat Transfer,Part A,1996,30:283-303.
    [33] Raithby G. D. and Hollands K. G. T., Laminar and Turbulent free convection fromelliptic cylinders with a vertical plate and horizontal circular cylinder as specialcases,1976,98:72-80.
    [34] Sakr R. Y., Berbish N. S., Abd-Alziz A. A. et al, Experimental and numericalinvestigation of natural convection heat transfer in horizontal elliptic annuli,Journal of Applied Sciences Research,2008,4(2):138-155.
    [35] Chai J. C., Patankar S. V., Laminar natural convection in internally finnedhorizontal annuli, Numerical Heat Transfer, Part A,1993,24:67-87.
    [36]郑正,吴清金,圆内不同开缝度下的八边形管自然对流换热的实验研究,工程热物理论文集.西安:西安交通大学出版社,1990,133~136。
    [37]杨沫,陶文铨,陈钟颀,开缝八边形离相封闭母线自然对流散热的数值计算,中国电机工程学报,1991,11(4):58-64.
    [38]李少华,陶文铨,邹增家,杨茉,圆内开缝八边形自然对流换热的数值分析,西安交通大学学报,1997,31(12):39-43.
    [39] Zhang H. L., Wu Q. J., Experimental study of natural convection heat transferbetween a cylindrical envelope and an internal concentric heated octagonalcylinder with or without slots, ASME J. of Heat Transfer,1991,113:116-121.
    [40] Zhang H. L., Tao W. Q., Wu Q. J., Numerical simulation of natural convection incircular enclosure with inner polygonal cylinder with confirmation of experimentalresults, J. Thermal Science,1992,1:249-258.
    [41]刘继平,王良璧,陶文铨,圆内正八边形自然对流静态分岐数值研究,工程热物理学报,1996,17:119-122.
    [42] Mallinson G. D., Davis G. D. V., Three-dimensional natural convection in a box: anumerical study,1977,83:1-31.
    [43] Glakpe E. K., Watkins C. B., Kurien B., Solution of three dimensional naturalconvection about a vertical square rod in a cylindrical enclosure,1987,7(2):155-173.
    [44] Fuseqi T., Hyun J. M., Kuwahara K., A numerical study of3D natural convectionin a cube: effects of the horizontal thermal boundary conditions,1991,8:221-230.
    [45] Wakitani S., Numerical study of three dimensional oscillatory natural convection atlow Prandtl number in rectangular enclosures,2001,123(1):77-84.
    [46] Dias T., Milanez L. F., Natural convection in high aspect ratio three dimensionalenclosures with uniform heat flux on the heated wall,2004,3(2),96-99.
    [47] Gustavsen A., Thue J. V., Numerical simulation of natural convection in threedimensional cavities with a high vertical aspect ratio and a low horizontal aspectratio,2007,30:217-240.
    [48] Takata Y., Iwashige K., Fukuda K. et al, Three dimensional natural convection inan inclined cylindrical annulus,1984,27(5):747-754.
    [49] Fusegi T., Farouk B., A three dimensional study of natural convection in theannulus between horizontal concentric cylinders, Proc.8thInt. Heat Transfer Conf.1991,4:1575-1580.
    [50] Vafai K., Ettefagh J., Axial transport effects on natural convection inside of anopen-ended annulus. ASME Journal of heat transfer,1991,113:627-634.
    [51] Vafai K., Ettefagh J., An investigation of transient three dimensional buoyancydriven flow and heat transfer in a closed horizontal annulus, Int. J. Heat MassTransfer,1991,34:2555-2570.
    [52] Greed G. T., Zhang K., Two and three dimensional linear convection in a rotatingannulus, Geophysical and Astrophysical Fluid Dynamics,1996,82:23-24.
    [53] Desai.C.P and Vafai.K. Three-dimensional buoyancy-induced flow and heattransfer around the wheel outboard of an aircraft, Int. J. Heat and Fluid Flow,1993,13(1):50-63.
    [54] Desai C. P., Vafai K., An investigation and comparative analysis of two and threedimensional turbulent natural convection in a horizontal annulus,1994,37(16):2475-2504.
    [55] Mateescu D., Three dimensional unsteady viscous flows between oscillationgeccentric cylinders by an enhanced hybrid spectral method,1995,9:671-695.
    [56] Dyko M. P., Vafai K., Mojtabi A. K., A numerical and experimental investigation ofstability of natural convective flows within a horizontal annulus, J. Fluid Mech.,1999,381:27-61.
    [57] Dyko M. P., Vafai K., Three-dimensional natural convective states in a narrow-gaphorizontal annulus, J. Fluid Mech.,2001,445:1-36.
    [58] Dyko M. P., Vafai K., On the presence of odd transverse convective rolls innarrow-gap horizontal annuli, Physics of Flow,2002,14(3):1291-1294.
    [59] Iyer S. V., Vafai K., Effects of a geometric perturbation on buoyancy induced flowand heat transfer in a cylindrical annulus, Int. J. Heat Mass Transfer,1997,40(12):2901-2911.
    [60] Iyer S. V., Vafai K., Buoyancy induced flow and heat transfer in a cylindricalannulus with multiple perturbations, Int. J. Heat Mass Transfer,1998,41:3025-3035.
    [61] Miki Y., Fukuda K., Taniguchi N., Large eddy simulation of turbulent naturalconvection in concentric horizontal annuli, Int. J. Heat and Fluid Flow,1993,14(3):210-216.
    [62] Mark B., Dyko P., Kambiz V., Three dimensional natural convective states in anarrow gap horizontal annulus,2001,45:1-36.
    [63] Choi J.Y., Kim M., Three-dimensional linear stability of natural convective flowbetween concentric horizontal annulus, Int. J. Heat mass transfer,1993,36(17):4173-4180.
    [64] Drazin G., Reid W. H., Hydrodynamic stability, Cambridge University Press,1981.
    [65] Ivey G. N., Experiments on transient natural convection in a cativy, J. Fluid Mech.1984,144:389-401.
    [66] Paolucci S., Chenoweth D. R., Transition to chaos in a differentially heated verticalcavity, J. Fluid Mech.1989,201:125-138.
    [67] Mokutmoni D., Yang K. T., Rayleigh-Benard convection in a small Aspect RatioEnclosure: part I Bifurcation to oscillatory Convection, Journal of Heat Transfer,1993,115:360-366.
    [68] Mokutmoni D., Yang K.T., Rayleigh-Benard convection in a small Aspect RatioEnclosure: Part II-Bifurcation to chaos, Journal of Heat Transfer,1993,115:367-376.
    [69] Patterson J., Imberger J., Unsteady natural convection in a rectangular cavity, J.Fluid Mech.1980,100:65-86.
    [70] Scheel S., Seehafer N., Bifurcation to oscillations in three-dimensionalRayleigh-Benard convection, Physical Review,1997,56(5):5511-5516.
    [71] Deshpande M. D., Srinidhi B. G., Mixed convection in a lid-driven cavity,Appearance of bifurcation, periodicity and hysteresis, Research Articles,2005,89(10):1720-1728.
    [72] Vadasz P., Olek S., Route to chaos for moderate Prandtl number convection in aporous layer heated from below, Transport in Porous Media,2000,41:211-239.
    [73] Miranda M. A., Burguete J., Experimentally observed route to spatiotemporalchaos in an extended one-dimensional array of convective oscillators, PhysicalReview,2009,79:1-11.
    [74] Erenburg V., Gelfgat A. Y., Kit E. et al, Multiple states, stability and bifurcations ofnatural convection in a rectangular cavity with partially heated vertical walls, J.Fluid Mech.,2003,492:63-89.
    [75] Sheu T. W. H., Rani H. P., Tan T. C. et al, Multiple states, topology and bifurcationsof natural convection in a cubical cavity,2007,37(8):1011-1028.
    [76] Quere L. P., Alziary D. R. T., Transition to unsteady natural convection of air indifferentially heated vertical cavities,4thInt. Conf. Num. Meth. In Laminar andTurbulent Flow, Pineridge Press,1985,841-852.
    [77] Quere L. P., Alziary D. R. T., Transition to unsteady natural convection of air invertical differentially heated cavities: influence of thermal boundary conditions onthe horizontal wall,8thInt. Heat Transfer Conf., San Francisco,1986,1533-1538.
    [78] Quere L. P., Alziary D. R. T., On the existence of multiple periodic solutions of theBoussinesq equations, Mech. Fluids, C. R. Acad. Sci. Paris,1991,306(2):681-687.
    [79] Jones D. N., Briggs D. N., Periodic two dimensional cavity flow: effect of linearhorizontal thermal boundary condition, J. Heat Transfer,1989,111:86-91.
    [80] Briggs D. G., Jones D. N., Two-dimensional periodic natural convection in arectangular enclosure of aspect ratio one, J. Heat Transfer,1985,107:850-854.
    [81] Winters K. H. Hopf bifurcation in the double glazing problem with conductingboundaries, J. Heat Transfer,1987,109:894-898.
    [82] Henkes R. A. W. M. Natural convection boundary layers, Huisdrukkerij DelftUniversity,1990:68-95.
    [83] Net M., Alonso A., Sanchez J., From stationary to complex time dependent flows atmoderate Rayleigh numbers in two dimensional annular thermal convection,Physics of Fluids,2003,15(5):1314-1326.
    [84] Mizushima J., Hayashi S., Adachi K., Transitions of natural convection in ahorizontal annulus, International Journal of Heat and Mass Transfer,2001,44(6),1249-1257.
    [85] Liu J. P., Tao W. Q., Bifurcation to oscillatory flow of the natural convectionaround a vertical channel in rectangular enclosure, International Journal ofNumerical Methods for Heat and Fluid Flow,1999,9(2):170-185.
    [86] Borjini M. N., Abidi A., Aissia H. B., Prediction of unsteady natural convectionwithin a horizontal narrow annular space using the control volume method,Numerical Heat Transfer, Part A,1991,48(8):811-829.
    [87] Fusegi O., Hyun J. M., Kuwahara K., Three-dimensional numerical simulation ofperiodic natural convection in a differentially heated cubical enclosure, AppliedScientific Research,1992,49:271-282.
    [88] Benouaguef S. A., Zeghmati B., Bouhadef K. et al, Multiple solutions in naturalconvection in an air filled square enclosure: fractal dimension of attractors, Journalof Applied Sciences,2008,8(2):218-229.
    [89] Kuleek P. V., Heating and Cooling of Bus burs for Large Power Generators,Electric Power Plant,1964,10:39-43.
    [90]王国祥等.双半圆大电流封闭母线自然对流换热实验研究.工程热物理论文集.1986:235-240.
    [91] Yang M., Tao W. Q. A numerical study of nature convective heat transfer in ancylindrical enclosure with internal concentric slotted hollow cylinder, NumericalHeat Transfer.1992,22:289-306
    [92]杨沫等.圆内开缝圆环自然对流换热数值解的唯一性.工程热物理学报.1995,16(1):91-95.
    [93] Yang Mo, Huang Fuquan, Li Ling.Oscillation and Bifurcation of NaturalConvection in an Annulus with an Internal Concentric Slotted Circle,ISAME2005Proceedings of2005International Symposium on Advanced MechanicalEngineering and Power Engineering, Busan, Korea,2005,319-326
    [94] M Yang,B W Zhang,F Q Huang,M Yu, M Lu and L Li. Numerical Simulation forNonlinear Characters of Natural Convection in an Annulus with an InternalConcentric Slotted Cylinder.13th International Heat Transfer Conference. SydneyConvention and Exhibition Centre Sydney, Australia,13-18August2006.
    [95]黄夫泉,杨茉,余敏等.封闭圆内开缝圆自然对流换热的非稳态振荡,中国工程热物理学会第十一届年会论文集,传热传质学(上册),2005,北京:248-251
    [96]黄夫泉,杨茉,余敏等,封闭圆内开缝圆自然对流换热的振荡特性,工程热物理学报,2006,27(2):286-288.
    [97]黄夫泉,封闭圆内开缝圆自然对流及其非线性特性分析,硕士学位论文,上海理工大学,2008。
    [98]郑建城,封闭圆内开缝圆自然对流的实验研究和数值模拟,硕士学位论文,上海理工大学,2010。
    [99] Zhang K. Yang M., Zhang Y. W., Numerical analysis natural convection in acylinderical envelope with an internal concentric cylinder with slots, NumericalHeat Transfer, Part A,2011,59:1-16.
    [100]陶文铨,数值传热学,西安,西安交通大学出版社,第四版,2004,2.。
    [101]黄润生,黄浩,混沌及其应用,第二版,武汉大学出版社,2005年12月。
    [102]李天舒,混沌时间序列分析方法及其应用,哈尔滨工程大学,博士学位论文,2006:21-22.
    [103]刘秉正,非线性动力学与混沌基础,长春,东北师范大学出版社,1994,161-162.
    [104] Packard N. M., Gratchfield J. P., Farmer J. D. et al, Geometry from a time series,Phys. Rev. Lett.,1980,45:45.
    [105] Takens F., Detecting strange attractors in turbulence, Lect Notes in Math.,1981,898:366-381.
    [106] Rosenstein M. T., Collins J. J., De L. C., Reconstruction expansion as a geometrybased framework for choosing proper delay times, Physica D: NonlinearPhenomena,1994,73(1-2:82-98.
    [107] Rosenstein M. T., Couins J. J., Deluca C. J., A practical method for calculatinglargest lyapunov exponents from small data sets, Physica D.,1993,65:117-134.
    [108] Rossler O. E., An equation for continuous chaos, Phys. Lett., A.,1976,57:397-398.