多桨推进初步设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要通过对多桨推进的桨间干扰的研究,提出了多桨推进的螺旋桨设计方法。首先,提出了常规分布的多桨推进的桨间干扰因子的概念,并通过自航试验的测量方法确定了多桨的干扰因子,同时也将多桨干扰因子应用于三桨快艇、四桨快艇以及航空母舰的螺旋桨的设计和分析中;另外,也通过提出导流管干扰因子的概念将导管螺旋桨的敞水图谱与串列螺旋桨的设计理论相结合,给出一种导管串列螺旋桨的图谱设计方法,并将其应用于两栖车的推进设计中。
     本文的结构安排如下:
     首先,简要介绍了海上高速舰船的发展现状以及其对应的推进装置,确定了多桨推进设计方法研究的必要性;同时也对国内外多桨推进的研究进行了概述;最后确定了本文对多桨推进舰船的研究重点。
     其次,提出了多桨干扰因子的概念,并基于自航试验的确定方法,以一艘四桨推进的船模为例,对不同螺旋桨分布的桨间干扰进行了定量分析:同时也根据不同螺旋桨分布的桨间干扰影响,对螺旋桨的分布进行了优化分析,并且确定了不同响应变量对应的显著的影响因素。
     在本论文第三章中,将多桨干扰因子引入到多桨船的螺旋桨的设计与分析中。对三桨推进交通艇的螺旋桨分别进行了考虑干扰因子和不考虑干扰因子的设计,并对两种不同情况的设计进行了比较分析:同时也在四桨推进舰船的机桨匹配分析中引入了多桨干扰因子,分别对随边切削和直径切削进行了比较分析。
     在本论文第四章中,将多桨干扰因子引入到四桨推进的航空母舰的螺旋桨的设计中,并分别针对外桨在前、内桨在后和外桨在后、内桨在前两种不同的纵向分布进行了螺旋桨的设计和比较分析;同时也通过国外航空母舰的相关资料,对航空母舰的阻力性能进行了回归分析,得到了航空母舰的主尺度和主机功率的预报公式,并通过有效的阻力回归公式对所设计的航空母舰的阻力性能进行了估算。
     在本论文第五章中,提出导流管干扰因子的概念,并通过导流管的干扰因子将导管螺旋桨的敞水图谱与串列螺旋桨的设计理论结合在一起,给出了一种导管串列螺旋桨的图谱设计方法,并将该方法应用于两栖车的螺旋桨的设计中,同时也将设计出的导管串列螺旋桨与其对应的导管螺旋桨进行了比较。
The design method of multi-propeller propulsion is proposed in this thesis by the study of interaction factor. Interaction factor of multi propellers of conventional distribution is determined by the method of self-propelled test. The interaction factor of multi propellers is applied to triple-propeller craft, four-propeller boat and aircraft carriers. Besides, interaction factor of duct is also proposed to design ducted tandem propeller.
     The framework of this paper is as follow:
     Firstly, the author introduces the development of high-speed marine vehicles, presents the propulsion characteristics of multi-propeller vessels, and gives the focus of this paper.
     Secondly, interaction factor is proposed to design the propeller of multi-propeller vessels. An experimental method is suggested to determine the interaction factor of multi-propeller propulsion, and quantitative analysis of influence factor is also performed according to a series of model testing of a four-propeller craft. The optimum distribution of four propellers is discussed based on different response variables and the significant factor is also confirmed by unbalanced analysis of variance.
     Thirdly, the interaction factor is applied to propeller design and analysis of multi-propeller vessels. The difference in propeller design between considering and not considering interaction factor is compared based on a triple-propeller crew boat. Propeller cutting of considering interaction factor for a four-propeller craft is also discussed to improve the engine performance.
     Fourthly, the interaction factor is applied to propeller design of aircraft carriers. Two different longitudinal distributions are discussed for the propeller design of Kuznetsov class aircraft carriers. Meantime, empirical formulas relating the speed and power to principal dimensions of aircraft carriers have also been obtained through regression analysis of available data of106aircraft carriers. The goodness of fit of these formulas is finally analyzed through statistical tests.
     Chapter5gives a method to design ducted tandem propeller according to the open-water charts of ducted propeller and design theory of tandem propeller. The design procedure of ducted tandem propeller is introduced by an amphibious vehicle, and the propulsive performance of ducted tandem propeller is compared with ducted propeller for the same amphibious vehicle.
引文
[1]Faltinsen, Q. M. Hydrodynamics of High-Speed Marine Vehicles [M]. New York:Cambridge University Press,2005.
    [2]吴梵,陈听.喷水推进装置及其在舰艇上的应用[J].海军工程大学学报,2003,15(6):44-48.
    [3]崔维成,刘应中,葛春华,等.海上高速船水动力学[M].北京:国防工业出版社,2007.
    [4]Jalkanen, J. P., Johansson, L., Kukkonen, J. et al. Extension of an Assessment Model of Ship Traffic Exhaust Emissions for Particulate Matter and Carbon Monoxide [J]. Atmos. Chem. Phys.,2012,12:2641-2659.
    [5]Bailey, D. High-Speed Displacement Ships; trends in hull form design, Workshop on Developments in Hull Form Design [C]. Wageningen:Maritime Research Institute Netherlands,1985.
    [6]孙诗南.现代航空母舰[M].上海:上海科学普及出版社,2000.
    [7]Harvald, S. A. Resistance and Propulsion of Ships [M], New York:John Wiley&ions, 1983.
    [8]黄鼎良,张忠业,王言英.船舶阻力与推进[M].大连:大连理工大学出版社,1989.
    [9]胡志安.特种推进器[M].广州:华南理工大学出版社,1996.
    [10]Hadler, J. B., Morgan, W. B., Meyers, K. A. Advanced Propeller Propulsion for High-powered Single-Screw Ships [C]. The Society of Naval Architects and Marine Engineers, Transactions,1964,72:231.
    [11]Titoff, I. A., Biskup, B. A. Investigation into the Possibilities of Tandem Propeller Application with the Aim of Decreasing the variable Hydrodynamic Loads Transmitted to a Propeller Shaft [C].11th ITTC,1966.
    [12]Miller, M. L. Experimental Determination of Unsteady Propeller Forces [C].7th Symposium Naval Hydrodynamics,1968.
    [13]Sinclair, L., Emerson, A. The Design and Development of Propellers for High-powered Merchant Vessels [J]. Shipbuilding and Shipping Record,1968,80.
    [14]Munk, T., Prohaska, C. W. Test with Interlocking and Overlapping Propellers [R]. Lyngby:Hydro-and Aerodynamics Laboratory, rep. No. Hy-12,1969.
    [15]Weitendorf, E. A. Experimentelle Untersuchungen der von Propellern an der erzeugten periodischen Druck-schwankungen [J]. Schiff und Hafen,1970,1.
    [16]Harms, H. (SBP), ein neuer Schiffpropeller [J]. Schiff und Hafen,1972,8.
    [17]Strom-Tejsen, J. A Comparison of Contrarotating Propellers with Other Propulsion Systems:Result of Model Experiments [J]. Marine Technology, The Society of Naval Architects and Marine Engineers,1972,9(1):99.
    [18]Denny, S. B. A Producedure for the Design of Tandem Propellers [R]. DTNSRDC Rept. 530-H-04,1974.
    [19]孙勤,顾蕴德,郑淑珍.串列螺旋桨设计方法[J].船舶研究,1978,(1):1-28.
    [20]孙勤,顾蕴德,郑淑珍.串列螺旋桨的模型系列试验和图谱设计[J].中国造船,1979,(3):1-18.
    [21]孙勤,顾蕴德,郑淑珍.串列螺旋桨的简化理论设计方法[J].中国造船,1980(4):42-53.
    [22]孙勤,顾蕴德,郑淑珍.串列螺旋桨及其设计方法[M].北京:人民交通出版社,1983.
    [23]Qin, S., Yunde, G. Tandem Propellers for High Powered Ships [C]. RINA Trans.,1991, 133:347-363.
    [24]Williams, A. WHAT Can New Hull Forms Do to Minimize Fuel Costs [R]. Goteborg: Publication of the Swedish Maritime Research Centre, No.87,1980.
    [25]蔡惠礼.内河浅水拖船采用双桨推进的节能效果[J].江苏造船,1982,(2):1-8.
    [26]崔承根.双桨涡尾船型的推进性能[J].华中工学院学报,1984,12(5):85-90.
    [27]叶立钦,陈昌运,徐惠民.浅吃水肥大船尾型、伴流场与螺旋桨旋向配合的研究[J].交通部上海船舶运输科学研究所学报,1985,16(2):51-59.
    [28]Zhang, J. L., Xu, H. M. Open Water Experimental Investigations with Tandem Propellers in Nozzle [J]. Journal of shanghai ship and shipping research institute,1985,15:1-18.
    [29]孙昌民,陈孟泉,吴国华.长江双桨浅吃水肥大型油船的船型开发研究.武汉造船,1989,(1):22-30.
    [30]吕庭豪.船舶限速航行的性能分析与计算[J].华中理工大学学报,1989,17(6):119-123.
    [31]石明权.提高船舶推进效率的探讨[J].广西交通科技,1992,(1):40-41.
    [32]张家龙,叶立钦,徐惠民等.长江下游(通申线)综合节能客轮水动力试验研究设计[J].交通部上海运输科学研究所学报,1992,15(1):1-25.
    [33]程振中.涡尾型推轮的推进性能研究[J].华中理工大学学报,1993,21(3):145-149.
    [34]谭家华,顾敏童,陈泽梁等.单机啮合式双桨推进装置[J].中国造船,1993,120(1):105-110.
    [35]谭家华,顾敏童.啮合式双桨桨叶相对位置的正交分析[J].上海交通大学学报,1994,28(1):9-15.
    [36]中武一明,篇冈克己,廖又明ITTC 1978年功率估算方法在高速艇上的适用性[J].江苏船舶,1993,10(1):23-27.
    [37]杜月中.一种实用船型设计方法(2)——特殊船尾及其推进性能分析[J].中国造船,2004,167(4):11-16.
    [38]Abramowicz-Gerigk, T. Experimental Study on the Hydrodynamic Forces Induced by a Twin-propeller Ferry During Berthing [J]. Ocean Engineering,2008,35:323-332.
    [39]Abramowicz-Gerigk, T. Distribution of flow velocity generated by propellers of twin propeller vessel [J]. Scientific Journals Maritime University of Szczecin,2010, 20(92):5-12.
    [40]丁举,陈红梅,于海.大型LNG船螺旋桨设计研究[J].船舶工程,2011,33(3):9-12.
    [41]Kishi, Y., Sugimura, Y., Abe, M. On Propulsion, Sea-keeping Quality and Maneuverability of a High Speed Container Ship with Triple-screws [J]. Japan Shipbuilding and marine Engineering,1973,7:7-18.
    [42]Kawakami, Y. Study on Stern Shapes with Multi-Screw Propellers [R], Tokyo:Ship Research Institute,1978.
    [43]Kawakami, Y., Kokubo, Y. Effect of Propulsion Devices on the Propulsive Performance of Supertankers. Part 2. Comparison among Ducted, Triple and Contrarotating Screw Propellers [R]. Tokyo:Ship Research Institute,1979.
    [44]French, C.3 Firms to Seek Job of Building Icebreaker [N]. Globe and Mail,1984,7.
    [45]Shrubsole, J. Wake Interference with Triple-Screws [J]. Motor Ship,1989,70:1.
    [46]Shrubsole, J. The Effects of Wake Interference on Design Criteria for Triple-Screw Propulsion Units [C]. International Marine Propulsion Conference,12th. London: Maritime Technical Information Facility,1990.
    [47]徐筱欣.采用多机多桨推进装置拖网渔船实例分析[J].渔业机械仪器,1993,103:15-18.
    [48]王新平,张忠业.渔政船三机三桨推进装置设计研究[J].大连理工大学学报,1993,33(4):461-465.
    [49]梁汝铁.三机三桨渔船三机功率的配备、计算技螺旋桨设计中问题的探讨[J].水产科技,1997,71:33-35.
    [50]王兴权,陈秋芝,王德恂.三桨船船模自航试验的数据处理分析[J].武汉造船,1998,(6):26-29.
    [51]王兴权,陈秋芝,王德恂.三桨船船模自航试验推进因子分析方法探讨[J].武汉交通科技大学学报,1998,22(2):145-148.
    [52]谭廷寿,陈宾康.三桨船船模自航试验分析[J].船海工程,2005,(5):20-23.
    [53]史一鸣.多桨船船模自航试验推进因子分析方法探讨[J].船舶设计通讯,2008,118:14-16.
    [54]周国平,桂满海.新型高性能海洋救助船船型与快速性试验研究[J].中国造船,2010,192(3):30-38.
    [55]Labberton, J. M. A Method for Determining Proper Pitch for the Inboard and Outboard Propellers on a Four Screw Ship [J]. Journal of the American Society for Naval Engineers,1973,49 (4):576-584.
    [56]高秋新,周连第.船舶尾部流动与多个螺旋桨相互干扰的数值模拟[J].中国造船,1998,(1):16-24.
    [57]覃新川.短翼水动力计算模型与多桨多舵水动力干扰研究.哈尔滨:哈尔滨工程大学,2006.
    [58]覃新川,黄胜,常欣.四桨两舵推进系统的水动力干扰研究[J].中国造船,2008,49(1):112-116.
    [59]单铁兵.四桨两舵船舶螺旋桨不同工况下水动力性能及船体操纵性研究[D].哈尔滨:哈尔滨工程大学,2008.
    [60]丁小强.四浆推进大型船舶的船机桨匹配研究.哈尔滨:哈尔滨工程大学,2009.
    [61]周斌.四桨两舵大型船舶螺旋桨的面元法设计研究[D].哈尔滨:哈尔滨工程大学,2010.
    [62]朱理,庞福振,康逢辉.螺旋桨激振力下的舰船振动特性分析[J].中国造船,2011,52(2):8-15.
    [63]王展智,熊鹰,齐万江,姜治芳.船后桨的布局对螺旋桨水动力性能的影响[J].哈尔滨工程大学学报,2012,33(4):427-431.
    [64]王展智,熊鹰,姜治芳.舵的布置对螺旋桨水动力性能的影响[J].华中科技大学学报,2012,40(8):53-56.
    [65]Lehn E. Thruster Interaction Effect [R]. The Ship Research Institute of Norway, NSFI Report-102.80,1980:1-22.
    [66]Moberg S., Hellstrrm S. A. Dynamic Positioning of a Four-column Semi-submersible. Model Tests of Interaction Forces and fl Philosophy about Optimum Strategy when Operating the Thrusters [C]. Proceedings of the Second International Symposium on Ocean Engineering and Ship Handling. Gothenburg, Sweden,1983:443-480.
    [67]Nienhuis U. Analysis of Thruster Effectivity for Dynamic Positioning and Low Speed Maneuvering [D]. Delft:Dissertation of Technical University Delft,1992.
    [68]Dang J., Laheij H. Hydrodynamic Aspects of Steerable Thrusters [C]. Marine Technology Society, Dynamic Positioning Conference,2004.
    [69]杨世知,陆耀辉,王磊.动力定位推进系统中桨-桨干扰研究进展[J].实验室研究与探索,2009,28(11):11-21.
    [70]Tursini, L. Leonardo da Vinci and the Problems of Navigation and Naval Design [C]. Transactions of the Institution of Naval Architects,1953,95:97.
    [71]Stoot, W. F. Some Aspects of Naval Architecture in the Eighteenth Century [C]. Transactions of the Institution of Naval Architects,1959,101:31.
    [72]Foude, W. Observations and Suggestions on the Subject of Determining by Experiment the Resistance of Ships [D]. The Institution of Naval Architects,1955:120.
    [73]Telfer, E. V. Ship Resistance Similarity [C]. Transactions of the Institution of Naval Architects, LXIX,1927,174.
    [74]Telfer, E. V. Frictional Resistance and Ship Resistance Similarity [C]. North East Coast Institution of Engineers and Shipbuilders, Transactions, XLV,1928-1929,115.
    [75]Hughes, G. Friction and Form Resistance in Turbulent Flow, and a Proposed Formulation for Use in Model and Ship Correlation [C]. Transactions of the Institution of Naval Architects,1954,96:314.
    [76]Prohaska, C. W. Trial Trip Analysis for Six Sister Ships Using a New Method of Analysis [C].Transactions of North East Coast Institution of Engineers and Shipbuilders, 1961-1962,78:417.
    [77]ITTC. Eighth International Towing Tank Conference, Madrid,15-23 September 1957, Proceedings, Canal de Experiencias Hidrodinamicas [C]. Madrid,1959.
    [78]ITTC. ITTC Dictionary of Ships, Hydrodynamics, Maritime Technology Monograph, No. 6 [C]. London:The Royal Institute of Naval Architects,1978(a).
    [79]ITTC.15th International Towing Tank Conference,3-10 September 1978 [C]. Wageningen: Nederlands Ship Model Basin,1978(b).
    [80]邵世明,王云才,陈良全.首压浪条对高速排水型艇航行性能的影响[J].上海交通大学学报,1980,(3):83-91.
    [81]邵世明,王云才,钱章义,等.尾板宽度对高速艇的阻力和耐波性影响[J].上海交通大学学报,1997,31(7):35-39.
    [82]邵世明,杨阿康.首消波水翼对高速排水量艇航行性能影响的试验研究[J].上海交通大学学报,1981,(1):39-53.
    [83]仇道良.高速圆舭排水艇的线型设计和阻力试验研究[J].中国造船,1987,(1):24-35.
    [84]仇道良,程明道.高速圆舭排水艇三个系列船型阻力性能的比较[J].船舶工程,1989,(3):4-9.
    [85]毕毅,王波.高速船减阻减摇艏艉鳍的试验研究[J].海军工程大学学报,2002,14(2):5-8.
    [86]Ackers, B. B., Michael, T. J. Investigation of the Resistance Characteristics of Powered Trimaran Side-hull Configurations [J]. Society of Naval Architectures and Marine Engineers,1997,105:349-373.
    [87]Jia, J. B., Zong, Z., Shi, H. Q. Model Experiments of a Trimaran with Transom Stern [J]. International Shipbuilding Progress,2009,56:119-133.
    [88]贺俊松,张风香,陈震,等.五体船型的阻力性能试验[J].上海交通大学学报,2007,41(9):1449.
    [89]Doust, D. J. Ship Design and Power Estimation Using Statistical Methods [R]. Trondheim: Norwegian Ship Model Experiment Tank Publication No.70,1962.
    [90]Doust, D. J. The Planning of Methodical Series for Ship Forms Using Statistical Methods [R]. London:National Physical Laboratory, SHIP report 48,1964.
    [91]Taylor, D. W. The Speed and Power of Ships [M]. Washington:U.S. Government Printing Office,1933.
    [92]Gertler, M. A Reanalysis of the Original Test Data for the Taylor Standard Series [R]. Washington:Navy Department The David W. Taylor Model Basin, report 806,1954.
    [93]Lap, A. J. W. Resistance (Fundamentals of Ship Resistance and Propulsion) [J]. International Shipbuilding Progress,1956(a),3 (24):411.
    [94]Lap, A. J. W. Resistance (Fundamentals of Ship Resistance and Propulsion) [J]. International Shipbuilding Progress,1956(b),3(25):510.
    [95]Lap, A. J. W. Resistance (Fundamentals of Ship Resistance and Propulsion) [J]. International Shipbuilding Progress,1956(C),3(28):613.
    [96]Guldhammer, H. E., Harvald, Sv. Aa. Ship Resistance Effect of Form and Principal Dimensions [M]. Copenhagen:Akademisk Forlag,1965.
    [97]Guldhammer, H. E., Harvald, Sv. Aa. Ship Resistance Effect of Form and Principal Dimensions (Revised) [M]. Copenhagen:Akademisk Forlag,1974.
    [98]Lackenby, H. On the Presentation of Ship-Resistance Data [C]. Transactions of the Institution of Naval Architects,1954,96:471.
    [99]Mercier, J. A., Savitsky, D. Resistance of Transom Shear Craft in the Pre-Planing Range, Davidson Laboratory Report 1667 [R]. Stevens Institute of Technology,1973.
    [100]Sacitsky, D., Ward, B. P. Procedures for Hydrodynamic Evaluation of Planning Hull in Smooth and Rough Water [J]. Marine Technology,1976,13(4):381-400.
    [101]胡业初.主尺度要素变换的舰船有效功率估算法[J].舰船科学技术,1986,(4):48-73.
    [102][43]邵世明,王云才,郑明燕.高速排水型艇的静水阻力估算[J].上海交通大学学报,1987,(2):90-101.
    [103]董祖舜,卢晓平.高速圆舭艇浅水阻力计算方法[J].中国造船,1994,(1):22-33.
    [104]谭廷寿,冯恩德.消波型高速船剩余阻力系数的回归分析[J].江苏船舶,2006,23(1):1-3.
    [105]贾敬蓓,宗智,毕俊颖,等.“企业”号航空母舰阻力预报理论研究[J].中国舰船研究,2009,4(1):13-17.
    [106]Newman, J. N. Marine Hydrodynamics [M]. Cambridge:The MIT Press,1977:32-34.
    [107]Perez, F., Suarez, J. A., Clemente, J. A., et al. Geometric Modelling of Bulbous Bows with the Use of Non-Uniform Rational B-Spline Surfaces [J]. J Mar Sci Technol,2007,12: 83-94.
    [108]Arribas, F. P., Fernandez, J. A. C. Strip Theories Applied to the Vertical Motions of High Speed Crafts [J]. Ocean Engineering,2006,33:1214-1229.
    [109]胡健,黄胜,闯振菊,等.几何参数对螺旋桨尾流场的影响[C].黑龙江省造船工程学会2008年学术年会论文集,2008:60-64.
    [110]张利军,王言英.单桨船螺旋桨安装位置确定[J].大连理工大学学报,2003,43(1):93-96.
    [111]Wu, S. J., Ouyan, K., Shiah, S. W. Robust Design of Microbubble Drag Reduction in a Channel Flow Using the Taguchi Method [J]. Ocean Engineering,2008,35:856-863.
    [112]于秀山.正交试验设计方法在测试用例设计中的应用[J].计算机工程与应用,2004,20:62-63.
    [113]郦云,卢晓平,董祖舜.正交设计法与回归分析相结合对高速三体船侧体参数优化[J].船舶力学,2008,12(5):716-726.
    [114]Holtrop, J. Extrapolation of Propulsion Tests for Ship with Appendages and Complex Propulsors [J]. Marine Technology,2001,38(3):145-157.
    [115]Lewis, E. V. Principles of Naval Architecture, Second Revision [M]. New York:SNAME, 1988:145-153.
    [116]Hector, A., von Felten, S., Schmid, B. Analysis of Variance with Unbalanced Data: an Update for Ecology & Evolution [J]. Journal of Animal Ecology,2010,79:308-316.
    [117]Howell, D. C., McConaughy, S. H. Nonorthogonal ANOVA:Putting the Question before the Answer [J]. Educational and Psychological Measurement,1982,42:9-24.
    [118]Klein, J. L A Rational Approach to Propeller Geometry [C]. SNAME propellers'75 Symposium, Philadelphia,1975.
    [119]Hawdon, L., Carlton, J. S., Leathard, F. I. The Analysis of Controllable Pitch Propeller Characteristics at Off-design Conditions [C]. Transactions of the Institute of Marine Engineers,1976,88.
    [120]Abbott, I. H., Von Doenhoff, A. E. Theory of Wing Sections [M]. Mineola:America Dover Publications,1959.
    [121]曹梅亮.切割桨叶随边以适应船-机-桨的匹配[J].上海交通大学学报,2000,34(1):148-151.
    [122]Ireland, B. The Illustrated Guide to Aircraft Carriers of the World [M]. London:Hermes House,2005.
    [123]应业炬,赵连恩.船舶快速性[M].北京:人民交通出版社,2007.
    [124]顾敏童.船舶设计原理[M].上海:上海交通大学出版社,2001.
    [125]戴维森,麦金农,(沈根祥译).计量经济理论和方法[M].上海:上海财经大学出版社,2006.
    [126]陆惠贞.工程数理统计[M].上海:上海交通大学出版社,1987.
    [127]沈根祥.计量经济学[M].上海:格致出版社,2010.
    [128]金光炎,王发信,王式成.工程数据统计分析[M].南京:东南大学出版社,2002.
    [129]赵连恩,韩端锋.高性能船舶水动力原理与设计[M].哈尔滨:哈尔滨工程大学出版社,2007.
    [130]赵连恩,谢永和.高性能船舶原理与设计[M].北京:国防工业出版社,2009.
    [131]邵世明,赵连恩,朱念昌.船舶阻力[M].北京:国防工业出版社,1995.
    [132]Papanikolaou, A., Eliopoulou, E. The European Passenger Car Ferry Fleet-Review of Design Features and Stability Characteristics Of Pre-and Post SOLAS 90 Ro-Ro Passenger Ships [C]. Euroconference on Passenger Ship Design, Contruction, safety and Operation, Anissaras-Crete,2001.
    [133]李华彦,李明.现代玻璃钢游艇设计要点[C].中国大连国际海事论坛论文集,2006.
    [134]盛振邦,刘应中.船舶原理(上册)[M].上海:上海交通大学出版社,2003.
    [135]盛振邦,刘应中.船舶原理(下册)[M].上海:上海交通大学出版社,2003.
    [136]王国强,盛振邦.船舶推进[M].北京:国防工业出版社,1985.
    [137]施内克鲁特.船舶水动力学[M].上海:上海交通大学出版社,1997.
    [138]Tachmindji, A. J. The Axial Velocity Field of an Optimum Infinitely Bladed Propeller [R]. Research and Development Report Hydromechanics Laboratory, Report No.1294, 1959.
    [139]Goldstein, S. On the Vortex Theory of Screw Propellers [J]. Proc. Royal Soc., Ser. A, 1929,123:440-465.
    [140]McCormick, B. W. The Effect of a Finite Hub on the Optimum Propeller [J]. J Aeronaut Sci,1955,22(9):645-50.
    [141]Tachmindji, A. J. The Potential Problem of the Optimum Propeller with Finite Hub [J]. Int. Shipbuilding Progr.,1956,23 (27):563-72.
    [142]Wald, Q. R. The Aerodynamics of Propellers [J]. Progress in Aerospace Sciences 42, 2006:85-128.
    [143]Betz, A. Eine Erweiterung der Schrauben Theorie [C]. Zreits. Flugtech,1920.
    [144]Carlton, J. S. Marine Propellers and Propulsion (second edition) [M]. Butterworth-Heinemann,2007:172-174.
    [145]Kramer, K. N. The Induced Efficiency of Optimum Propellers having a Finite Number of Blades [R]. NACA Technical Memorandom 884,1939.