船舶封闭舱室火灾温度分布特性实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
腔室火灾属于常见的火灾场景,在建筑火灾安全中得到了广泛的关注和研究。前人针对有门窗等开口的建筑空间火灾进行了大量研究并建立了相关的火灾模型,然而很少研究涉及到没有对外开口或仅有顶棚开口的封闭空间火灾
     本文针对以船舶机舱为代表的无开口或者仅仅具有顶棚开口的封闭舱室,在自行研制的封闭空间火灾实验系统中进行了小尺度模型实验研究,目的是为了揭示对封闭空间火灾燃烧特性及火灾烟气的运动规律。实验在一个内尺寸为1000mm(L)×1000mm(W)×750mm(H)封闭舱室内进行,研究了无开口条件下的火灾燃烧特性,重点研究了舱室内气体温度分布特性和火灾烟气在舱室中的运动规律。通过理论分析、类比、无量纲法则等方法对实验数据进行了分析,归纳出了封闭舱室火灾中的温度分布特性和烟气运动规律,主要包括以下几点内容:
     封闭舱室火灾中,温度经历了三个过程,分别是发展阶段、稳定增长阶段、临近熄火衰退阶段。水平方向上,舱内大部分空间中同一水平高度具有相同温度值。竖直方向上,舱室可以分为上部的高温区和下部的匀梯度区,高温区内部具有相同的温度,温度与高度无关;匀梯度区内部温度为高度的一次函数,二者呈线性增长关系。
     熄火时刻舱内的温度分布可用分段函数表示,通过研究建立了熄火时刻温度分布函数模型。熄火时刻无量纲的温度分布满足统一的波尔兹曼方程,建立了熄火时刻温度的预测模型,为船舶火灾中封舱灭火之后重新开舱时间的确立提供了理论依据。
     封闭舱室火灾中,烟气运动与传统有竖直开口建筑火灾有很大不同。传统双区域模型热烟气层和冷空气层的划分不再适用。此时,烟气由最初的热烟气层、过渡层和冷空气层三部分随时间逐步发展成为热烟气层和过渡层两部分,冷空气层消失。封闭舱室火灾中,舱内气体各分界面位置随时间以指数衰减的形式由上往下移动,研究分别建立了不同火源功率下的界面移动模型。
One of the most common scenarios of fire is the chamber fire which has been paid specially attention and studied by lots of researchers. So far, fires in buildings with outlets such as windows and doors have been studied and the corresponding fire models have been developed, but few researches have been found about the fire in closed chamber without outlets or with only roof outlet.
     This paper conducted a lab-scale experimental research using an enclosed cabin fire testing system developed by ourselves, aiming at to reveal the principles of the combustion and the smoke movement in fires occurred in enclosed cabin. The experiment was conducted in a closed ship cabin with the dimension of 1000mm(L)×1000mm(W)×750mm(H). The properties of the fire in a chamber without outlet was studied, emphasized at temperature distribution and the smoke movement in the cabin. Through analyzing the experimental data using various methods such as theoretical induction, analogy, non-dimension analysis etc., the characteristics of the temperature distribution and the smoke movement of fire in closed boat cabin were concluded as following:
     Fire in enclosed cabin usually consists three consequent periods, namely the developing period, the temperature steady increasing period and the close-burnout period. At the horizontal direction, most of spaces, the same temperature appears at the same height in the cabin; at the vertical direction, the gas in the cabin can be classified into two layers: the upper layer with high temperature and the lower layer with even gradient of distribution. In the upper area, the temperature remains the same everywhere and has nothing to do with the height, while in the lower area, the temperature is an one order function with the height, namely, is in direct proportion with the height.
     Considering that the temperature distribution in the cabin at the time of burnout can be represented as a separable function and the dimensionless temperature distribution is consist with the united Boltzmann equation, a model for predicting the temperature at the time of burnout has been proposed, which provides the theoretical basis for estimate an appropriate time to open the cabin after the fire suppression of a ship fire
     The movement of the smoke in fires of enclosed cabin is very different from that in the normal buildings with vertical outlets. Here, the traditional two-zone model, in which the space is divided into the hot smoke layer and the cold gas layer, is not suitable anymore. Instead, as the time elapsed, the original three layers of smoke, which consists of the hot smoke layer, the cold smoke layer and the transitional layer, change into two layers, namely the hot smoke layer and the transitional layer, where the cold gas layer disappears. The height of the smoke interface in fires in enclosed cabin changes as the form of exponential attenuation with the time, a model has been proposed of the height of the smoke interface with different fire powers.
引文
[1]姜晓燕,蔡敬标,陆守香.模糊综合评价方法在舰船机舱消防安全管理中的应用.火灾科学,2001,10(4):222-226页
    [2]王当利.船舶火灾时现场施救措施及消防设备的维修保养.水运科技情报,1997,162(3):22-23页
    [3]邱辉,刘一凡.船舶火灾应注意的几个问题.中国水运,2001(4):27-28页
    [4] www.baidu.com
    [5]朱佳颖.船舶机舱火灾分析与思考.www.fire.sh.cn
    [6]缪光全.船舶火灾的预防与扑救[J].船舶消防与安全,2000,(1-12)
    [7]中国消防在线.http://www.119.cn/txt/2008-07/14/content_2347868.htm
    [8] Sprague Chester M., White Derek, Dolph Brian. Fire Safety Analysis of the USCGCDEPENDABLE. ADA368395, 1999
    [9]邵高万,刘顺隆,周允基,郜冶.中国船舶机舱火灾研究现状.中国安全科学学报.
    [10] Hamathy. Experimental Study on the Effect of Ventilation on the Burning of Piles of Solid Fuels[J], Combustion and Flames, 1978,31:259-264
    [11]陈仁铃,普金云.水面舰艇生命力[M].武汉:海军工程大学出版社,1982:21– 23.
    [12] Quintiere J.G..Fundamentals of Fire Phenomena. England: John Wiley & Sons Ltd, 2006
    [13] Heskestad Gunnar. Fire Plumes, Flame Height, and Air Entrainment. SFPE Handbook of Fire Protection Engineering. MA: Nat. Fire Protection Assoc., 3nd Ed, 2002.
    [14] Vladimir Shigunov. A zone model for fire development in multiple connected compartments. Fire Safety Journal, 2005, 40: 555-578
    [15] Yii E.H., Fleischmann C.M., Buchanan A.H. Experimental study of fire compartment with door opening and roof opening. FIRE AND MATERIALS, 2005, 29: 315-334
    [16] Mercia Bart, Maele Karim Van. Numerical simulations of full-scale enclosure fires in a small compartment with natural roof ventilation. Fire Safety Journal, 2008, 43: 495-511
    [17] Tan Q, Jaluria Y, Mass flow through a horizontal vent in an enclosure due to pressure and density differences. International Journal of Heat and Mass Transfer, 44(2001) 1543-1553
    [18] Pretrel H., Querre P., Forestier M., Experimental study of burning rate behavior in confined and ventilated fire compartment. Fire Science and Technology, 2006, 25(2) 185-194
    [19] Utiskula Y, Quintiere J.G., Rangwala A.S. et al., Compartment fire phenomena underlimited ventilation. Fire Safety Journal, 40(2005) 367-390
    [20] Pearson Anthony, Most Jean-Michel, Drysdale Dougal. Behaviour of a confined fire located in an unventilated zone. Proceedings of the Combustion Institute, 2007, 31: 2529-2536
    [21]范维澄,王清安,姜冯辉,周建军.火灾学简明教程[D],合肥:中国科学技术大学出版社,1995
    [22] Steckler, K. D., Quintiere, J. G. and Rinkinen, W. J.. Flow induced by Fire in a Compartment[S]. NBSIR 822520.National Bureau of Standards, Washington, DC, 1982.
    [23] Quintiere, J. G., Rinkinen, W. J. and Jones, W. W.. The Effect of Room Openings on Fire Plume Entrainment[J]. Combustion Science and Technology, 1981, Vol. 26, 193–201P.
    [24] Jin-Yong Jeong and Hong-sun Ryou. A study on smoke movement in room fires with various pool fire location[J]. Journal of Mechanical Science and Technology, volume 16, Number11/2002, 1485-1496P.
    [25] Epstien M. Buoyancy-driven exchange flow through small openings in horizontal partitions[J]. Heat Transfer,1998:885-893P
    [26] Jaluria Y. Visualization of transport across a horizontal vent due to density and pressure differences[J]. ASME, 1993:65-81P
    [27] Takeda H. Model experiments of ship fire[C]. In 22nd Internal Symptom on Combustion,1990:1311-1317P
    [28] Than C F, Savilonis B. Modeling fire behavior in an enclosure with a ceiling vent[J]. Fire Safety,1993(20):151-174P
    [29] Copper L Y. Calculation of the flow through a horizontal ceiling/floor vent[S]. NIST Technical Report NISTIR 89-4052, National Institute of Standards and Technology, 1989:1-5P
    [30] Copper L Y. An algorithm for calculation of flow through a horizontal ceiling/floor vent in a zone type compartment fire model[S]. NIST Technical Report NISTIR 4402, National Institute of Standards and Technology, 1990:1-15P
    [31] Copper L Y. Combined buoyancy and pressure driven flow through a horizontal circular vent[J]. Heat Transfer, 1995(117):659-667P
    [32] Copper L Y. Calculating Combined buoyancy and pressure driven flow through a shallow horizontal circular vent: application to a problem of steady burning in a ceiling-vented enclosure[J]. Fire Safety Journal, 1996(27):23-35P
    [33] Satoh K, Matsubara Y, Kumano Y. Flow and temperature oscillations of fire in a cubic enclosure with a ceiling and floor vent[J]. Report of Fire research Institute of JapanNo.55,1983:1-20P
    [34] Yoshida K. Full-scale model tests of smoke movement in ship passenger accommodations. ASTM Special Technical Publication No.1336, American Society for Testing and Meterials, 1998:163-171
    [35] Gottuk D T, Farley J P, Williams F W. The development and mitigation of backdraft explosions. Fire Safety Science——Proceedings of the Fifth International Symposium, International Association for Fire Safety Science, 1997:935-946
    [36] White D A, Beyler C L, Scheffey J L, Williams F W. Modeling the impact of post-flashover shipboard fires on adjacent spaces. Journal of Fire Protection Engineering, 2000, 10(4):2-18
    [37] Andersson C, Saterborn D. Smoke control systems aboard-a risk analysis of smoke control systems in accommodation spaces on passenger on passenger ships. Report 5093. Lund University, 2002:1-10
    [38] Wikman J. Ship fire safety engineering. ISRN LUTVDG/TVBB-1012-SE, ISSN 1102-8246, Lund University, Sweden, 1995:1-149
    [39] Ndubizu C C, Brown R A, Tatem P A, Williams F W. Fire hazard assessment in submarine plastic waste stowage compartments. SAMPE Journal, 2001,37(4):42-48
    [40] Rochett J A. Fire growth in combat ships[S]. NBSIR 86-3451, National Bureau of Standards, 1986:1-30P
    [41]王志国,殷沐德.结构防火在舰船防火设计中的应用.火灾科学,2001,10(2):113-115
    [42]仲晨华,王志国,殷沐德.确定舰船防火主竖区舱壁分隔等级的经验公式.航海工程,2003(6):1-3
    [43]杨传祖,刘焕牢,李日福.船舶水雾灭火设计方法探讨.湛江海洋大学学报,1998,18(4):39-42
    [44]王英.机舱固定式局部水雾灭火系统.船舶,2002(1):52-53
    [45]苗兰森,邱金水,陈生春。舰船灭火系统现状与发展.海洋技术,2003,22(3):102-105
    [46]董华,范维澄.船舶密闭舱室火灾过程及其模拟计算[J].计算力学学报,1998,15(1):80-86页.
    [47]邵高万,谈和平,刘顺隆,周允基.船舶大空间舱室火灾烟气填充研究[J].哈尔滨工程大学学报,2007,28(6)
    [48]范维澄,程晓舫.火灾科学与社会发展,《中国科学院院刊》1993年03期.
    [49]邵高万.船舶机舱火灾热流场特性研究.哈尔滨工程大学动力机械及工程(专业)博士论文,2005
    [50]廖光煊,王喜世,秦俊.热灾害实验诊断方法.合肥:中国科学技术大学出版社,2003
    [51]尤飞,周建军,张昱春,李元洲.大空间建筑火灾中烟气层界面的一种判定.火灾科学,2000,9(4)?
    [52]火灾烟气控制.中国科学技术大学,火灾科学国家重点实验室,内部教材.?
    [53] Bjorn Karlsson and James G. Quintiere,“Enclosure Fire Dynamics”, CRC Press.
    [54] Vytenis Babarauskas,“Estimating Large Pool Fire Burning Rates”. Fire Technology, pp. 251–261,1983
    [55] SFPE Handbook of Fire Protection Engineering, 3nd ed., National FireProtection Association, Quincy, MA, 2002.
    [56]霍然,胡源,李元洲.建筑火灾安全工程导论.合肥:中国科技大学出版社,1999.
    [57] Zhixin Hu,etal. A comparison between observed and simulated flame structures in poorly ventilated compartment fires. 8thIAFSS. 2005
    [58]吕崇德.热工参数测量与处理.北京:清华大学出版社,2001.
    [59] Waterman T. E. Determination of fire conditions supporting room flashover, Washington, DC, 1966
    [60] Bart Merci, Paul Vandevelde. Experimental study of natural roof ventilation in full-scale enclosure fire tests in a small compartment. Fire Safety Journal, 42(2007): 523-535
    [61]葛新石,王义方,郭宽良译.传热的基本原理.原著者:弗兰克.P.英克鲁佩勒,戴维.P.戴威特(美).
    [62]沈维道,蒋智敏,童钧耕.工程热力学.北京:高度教育出版社,2001
    [63]陈希孺.概率论与数理统计.合肥:中国科学技术大学,2002
    [64] Chow W.K. Fire spread and control. The Hong Kong Polytechnic University, Hong Kong, 1995
    [65] NFPA92B Guide for Smoke Management Systems in Malls, Atria, and Large Areas. National Fire Protection Association. Quincy, MA.2000.
    [66] Cooper L.Y., Harkleroad M., Quintiere J., Reinkinen W.. An Experiment Study of Upper Hot Layer Stratification in Full-Scall Multi-Room Fire Scenarios. Journal of Heat Transfer, Vol.104, 1982:741-749