频率可调共振式液压滤波器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压系统中,流动脉动引发的振动与噪声沿管道传播,严重影响系统工作性能,同时也会降低管道系统的可靠性。在液压系统管道中,安装滤波器是衰减压力脉动和噪声的方法中应用最广泛的一种。由于共振式滤波器具有结构简单,直流压损小的优点,因此在液压滤波控制中得到了广泛的应用。
     由于共振式滤波频率选择性强,在共振频率附近滤波衰减量很大,偏离共振频率时衰减量急剧下降。为了使滤波器获得较宽的衰减频带,在分析液压系统压力脉动特征的基础上,本文提出了一种结构共振衰减器和容腔共振衰减器相结合的频率可调共振式液压滤波器方案,用集中参数模型估算滤波器共振频率,总结了共振式滤波器设计的一般方法和原则,并对滤波器进行了初步参数计算和结构设计。由于所设计的滤波器是两个单节共振式滤波器,通过调整主要结构参数,使滤波器的共振频率相互错开获得较宽衰减频带,实现滤波器频率可调。以声学理论为基础,容腔共振衰减器等效成具有一定质量、弹性、阻尼的单自由度简谐激振力作用的振动系统,用集中参数流体四端网路法建立了滤波器的传递矩阵。应用数值计算方法,对共振式滤波器主要结构参数改变对其共振频率的影响和滤波器的衰减性能进行了深入的研究。
     结果表明:改变滤波器两个共振容腔的体积参数和共振容腔衰减器颈部面积能实现其共振频率的改变,使该滤波器的谐振频率适应液压系统工况的频率变化。当滤波器满足结构共振衰减器的频率与主液压系统的基频相近或相等时,衰减系统的基频脉动;容腔共振衰减器与主液压系统的二次谐频相近或相等时,衰减系统的二次谐频脉动,从而使滤波器在较宽频带实现较大衰减量。研究成果为后续工作提供了良好的基础。
The vibration and noise which spread over hydraulic system were caused by flow pulsation in Hydraulic system, seriously influence working performance, and reduce system reliability. In the hydraulic system, installing hydraulic filter is one of the most widely used ways which reduce pressure pulsation and noise. Due to the advantages of simple structure and low loss, resonance hydraulic filter has been widely applied in the control of hydraulic filter.
     As resonance hydraulic filter has strong selectivity and the filter attenuation near the resonance frequency is sharp, it attenuates on deviating from the resonant frequency. In order to make filter get wider attenuation band, we propose an adjustable hydraulic filter based on structure-fluid coupled vibration, which combined frequency attenuation with the second harmonic frequency analyzed by pressure pulsation characteristics of hydraulic system. By concentrating parameter model estimated filter resonant frequency, the paper summarizes methods and designs principles in resonant hydraulic filter. Because the filter comprises of two single-resonant hydraulic filters, we can adjust the main structure parameters and make resonance frequency of single-resonant hydraulic filter differentiate from each other and achieve the relatively wider attenuation band,thus realizing filter frequency tunableness. Based on the acoustic theory, the second harmonic frequency attenuator can be equivalent to a single-degree-of-freedom harmonic excitation force vibration system which has a certain quality and flexibility and damping, so that we can establish a transfer matrix with concentrated parameter four-terminal network flow method. We study the effect of the change of main structure parameters of resonant filter to resonant frequency by numerical methods.
     The results showed: the change of volume parameters of two resonant chambers and the neck area of the second harmonic frequency can realize the change of resonant frequency which makes the resonance frequency of the change of the filter resonant frequency adapted the frequency changing hydraulic system. When the filter frequency equals or closes to the hydraulic system, weak hydraulic system pulses. When the frequencies of Second harmonic frequency attenuation closes or equals to the second harmonic frequencies of hydraulic filter which can weak hydraulic system pulse, so filter have broad-spectral-bandwidth attenuation in a large quantity. Research results provide a good job for follow-up work.
引文
[1]程友胜.液压系统液压冲击的危害、原因及预防措施[J].煤矿机械,No.3,2002:66;;67.
    [2]杨小森,沈燕良,蔡军等.飞机泵源回路消减压力脉动的阻抗调整法[J].空军工程大学学报(自然科学报),2006,7(3)13-15.
    [3]李树立,焦宗夏.液压流体脉动主动控制现状与展望[J].机床与液压,2006,9:243-246.
    [4]雷天觉.液压工程手册[M].北京:机械工业出版社,1990
    [5]刘忠族,孙玉东,吴有生.管道流体耦合振动机声波传播的研究现状与展望[J].船舶力学,2000,5(2):82-90.
    [6]姜荣俊,何琳.一种新型的流体脉动衰减器[J].液压与机床,2005(No.1):67;;69.
    [7]史维祥,曹刚.流体滤波消声器[J].机床与液压,1986(No5):1;;10.
    [8] Steward.Physical Review, V01.20, 1922(No.4):120;;123.
    [9] Igarash.J and Toyca[ M].Report No.339,Aeronautical Research Instat University of Tokyo,V01.62,1958(No.2):231;;235.
    [10]福田基一、奥田囊介.噪声控制与消声器设计[M],国防工业出版社,1982:6;;65.
    [11]方丹群.空气动力性噪声与消声器[M].科学出版社,1978:15;;74.
    [12] Parrot.NASA IND-7309 .1973.
    [13]井定美.降低液压系统噪声[J].油压技术,1977( No.6):75;;80.
    [14]山口知史等.扩展液压压力脉动的吸收与衰减特性的研究[J]. 1976(No.6):729;;735.
    [15]曹刚,史维祥.液压滤波器[J].机床与液压,1985(No.5):1;;5.
    [16]史维祥,曹刚.流体滤波消声器[J].机床与液压,1986(No5):1;;10.
    [17]曾祥荣等.H型液压滤波器在系统安装位置的研究[J].机床与液压,1988(No.5):18;;23.
    [18] Takayoshi Ichiyanagi, Eiichi Kojima. Development and optimum design method of multi degree of freedom type helmholtz resonator for hydraulic pulsateonattenuateion.油压空气压, 2001, 32 (1) : 13;;20.
    [19]祁仁俊.液压系统压力脉动的机理[J].同济大学学报.2001,29(9):1017-1022.
    [20] V.B.Panicker and M.L.Munjal,Aeroacoustic analysis straight;;through mufflers with simple and extended tube expansion chamber.J.Ind.Inst.Sc,63(A),1981:119P.
    [21] L.J.Eriksson,C.A.Anderson,et a1.Finite length effects on l_1igher order mode propagation in silencers.1lth ICA.1983:329;;332P.
    [22] D.F Ross.A finite dement analysis of parallel;;coupled acoustic system using sub;;system,J.Sound and Vibration,69(4),1980:509;;518P.
    [23] T.L.Parrott.An improved method for design of expansion chamber mufflers with application of all operational ;;helicopfer.NASA TN 1973:7309P.
    [24] J.M.de Bedout,M.A.Franchek,R_J.Bernhard and L.Motmgeau. Adaptive-passive noise control with self-tuning helmholtz resonators.J.Sound and Vibration,202(1),1997:109;;123P.
    [25]王裕清等.液压阻容滤波元件的设计与性能实验[J].液压与气动,No.12,2005.
    [26]王裕清.液压阻容滤波系统仿真研究[J].煤炭机械,(No.5), 2006.
    [27]周新祥.噪声控制及应用实例.[M].北京:海洋出版社.1999.
    [28]王伯良.噪声控制理论[M].武汉:华中理工大学出版社,1990.
    [29]谢坡岸,王强.蓄能器对管路流体脉动消减作用的研究[J].噪声与振动控制,2000,8:2-5.
    [30]何存兴主编.液压元件,北京:机械工业出版社,1982.
    [31]徐绳武编.柱塞式液压泵.北京:机械工业出版社,1985.
    [32]史纪定编著.液压系统故障诊断与维修技术.北京:机械工业出版社,1990.
    [33]上海煤炭研究所编.液压泵和液压马达,北京:煤炭工业出版社,1976.
    [34]西德工程师协会编.低噪声设计.1979.
    [35]贺月仁.水箱蒸汽冲水声的降噪.噪声与控制技术,1991.
    [36]冯奇.结构风振动.噪声与振动控制.1992.N0.2.
    [37]刘达德.列车噪声及其控制.噪声与振动控制.1992.N0.2.
    [38] N.B.Nichols,“TheLineer Properties of Pneumatic Transmission Lines”,Trans,Lustrun.Soc,Amer.1,1962.PP:5-14.
    [39] F.T.Brown,“The Transient Response of Fluid Lines”,J.Basic Eng.Trans.ASME Ser.D,84,No.4,1962:547-553.
    [40]射流技术编译组译.“射流系设计手册”,国防工业出版社,1971.
    [41] Uri Dinnar,“Cardiovascular Fluid Dynamics”,CRC Press,Inc.1981.