用于羟基磷灰石冷喷涂的送粉系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羟基磷灰石(Hydroxyapatite,HA或HAP)涂层材料以其良好的生物相容性和强度,在人工义肢植入、骨骼修复等领域有着广泛的应用。然而传统热喷涂制备方法易产生相变产物,在人体环境中易溶解,造成涂层脱落;化学、电化学法操作复杂,反应条件要求精确,难以推广应用。本课题提出在常温下利用高速粉体气射流喷射制备HA涂层的方法,具有常温喷涂无相变产物、方法简单等特点。本文针对冷喷涂法制备HA涂层对送粉系统微量、均匀送粉的要求,利用超声行波送粉原理开发了一种新型送粉系统。该系统对HA粉体的最小送粉速率约为0.002g/s,最大送粉速率约为0.25g/s。
     1.该送粉系统主要由压电陶瓷片、有机玻璃管、驱动电源及混料装置组成。送粉原理为:轴向极化的环形压电陶瓷片受到高频正弦交流电激励时产生超声频段的径向收缩振动。振动沿有机玻璃管壁传播时受到管壁及粉体的吸振作用,能量衰减,从而在管壁上形成衰减行波。此时,有机玻璃管内壁上的质点微观下做椭圆运动,方向与波传递方向相反,从而驱动粉体由料杯向压电片方向移动。从出料口流出的粉体经由混料装置混入高压气流,进入laval喷嘴进行喷射。
     2.通过对超声行波送粉过程的理论分析,得出:系统送粉能力主要与驱动电源的输出电压和频率,压电陶瓷片的性能和结构参数,以及有机玻璃管的长度和阻尼系数等因素有关。
     3.由环形压电陶瓷片的仿真分析结果得知,径向伸缩模态的谐振频率随内径或外径尺寸的增大而减小,而与厚度的关系较小;当驱动电压一定时,内环质点径向振动的振幅随驱动频率趋近其谐振频率而逐渐增大,并在谐振频率处达到最大值;当驱动频率与谐振频率相等时,内环质点径向振动振幅随驱动电压的升高而增大,且与驱动电压呈线性关系。
     4.有机玻璃管的有限元仿真结果表明,在压电陶瓷片谐振频率附近,有机玻璃管有多阶径向收缩振动模态;有机玻璃管的阻尼系数越大,其径向振动振幅沿管壁的衰减越明显;管内壁上各点径向振动的振幅随着与振源距离的增加而逐渐减小
     5.利用白行搭建的不同结构参数的送粉系统对羟基磷灰石粉体进行了送粉试验。由单因素对比试验结果得知,送粉速率随着驱动电压的升高而增大,应用时可以通过改变驱动电压调节送粉速率;驱动频率对送粉速率的影响规律曲线与压电陶瓷片的谐响应曲线相似,在压电陶瓷片的谐振频率处系统达到最大送粉速率,且谐振频率右侧频段的曲线线性度好,应用时可以在此频段内通过改变驱动频率调节送粉速率;送粉速率随着输送管送粉段长度的增大而减小;料杯内粉体的高度对送粉速率影响较小;在可输送范围内,HAP粉体的粒度对送粉速率的影响较小。
     6.在相同实验条件下,利用该系统对不同种类的粉体进行了送粉试验。试验结果表明,该送粉系统对流动性好,密度大,颗粒表面较粗糙的粉体具有良好的输送能力。
Because of good biocompatibility and strength, HAP (Hydroxyapatite, HA or HAP) is widely applied to some fields such as prosthetic implants and bone repair etc. However, the traditional preparation methods for thermal spraying are easy to produce phase transition matter, which is easy to dissolve in the human body, resulting in coatings flaking. This paper proposed a method for making HA coatings using high-speed gas jet. This method is simple and with no phase transition matter produced. Because powder feeding system needs to meet the requirement of feeding powder with uniform speed and micro quantity when producing HA coatings by cold spray, the paper developed a new powder feeding system based on the theory of feeding powder using ultrasonic wave. In the system, the smallest feeding rate for HA powder is about 0.002g/s, and the maximum rate is about 0.25g/s.
     1. The powder feeding system is composed of piezoelectric ceramics, PMMA tube, drive power and the mixing device. The principles for the powder feeding are as follows:the annular piezoelectric ceramics polarized axially generates radial contraction vibration with the frequency of supersonic range when inspired by the high-frequency sinusoidal alternating current. During propagating, vibration wave becomes attenuation traveling wave, because the wall of the PMMA tube and the powder can absorb vibration leading to the energy loss. In this case, the particles on the wall of the PMMA tube moves with oval shape. The moving direction is opposite to the one of wave propagation. So the powder is droved along the direction from the feeding cup to the piezoelectric. The powder fluids out of the discharge hole is mixed high-pressure air in the mixing device and injected through Laval nozzle.
     2. Based on the theoretical analysis of the powder process using ultrasonic, some conclusion are obtained. The feeding capacity of the system is mainly related to the voltage and frequency of the drive power, the performance and structural parameters of the piezoelectric ceramics, the length and damping coefficients of the PMMA tube.
     3. The simulation results of the annular piezoelectric ceramics show that the resonant frequency of the radial telescopic mode decreases with the increase of the size of the inner or the outer diameter and has a little relationship with the thickness of the annular piezoelectric ceramics. When the driving voltage is constant, the more the drive frequency approaches the resonant frequency, the bigger the amplitude of the radial vibration of the particle on the inner ring becomes. The amplitude reaches the maximum at the resonant frequency. When the driving frequency is equal to the resonant frequency, the amplitude of the radial vibration increases with the rise of the drive voltage.
     4. The finite element simulation results of the PMMA tube indicate that the PMMA tube has multiple-order radial contraction vibration modes near the resonant frequency of the piezoelectric ceramic. The attenuation of the amplitude of the radial vibration along the wall of the PMMA tube becomes more obvious with the increase of the damping coefficient of the PMMA tube. The amplitude of the radial vibration of each point on the wall decreases with the increase of the distance from the point the vibration source.
     5. Some trials about feeding HAP powder using the feeding powder system with different structure parameters have been done. The contrast tests of the single factor show that the feeding rate increases with the rise of the drive voltage. The feeding rate can be adjusted by changing the driving voltage. The curve of the relationship between the drive frequency and the feeding rate is similar with the one of the relationship between the piezoelectric and the feeding rate. The feeding rate gets the maximum at the resonant frequency of the piezoelectric ceramic. The curve has better linearity at the right side of the resonant frequency, in which the feeding rate can be adjusted by changing drive frequency. The feeding rate decreases with the increase of the length of the feeding pipe and has little relationship with the height of the powder in the cup. The particle size of the HAP powder has little effect on the feeding rate in the available transport.
     6. Under the same experimental conditions, some feeding tests using different types of powder has been done. The test results show that the feeding powder system has good feeding capacity when the powder has good mobility, rough surface and large density.
引文
[1]钱文伟,淋进,丘贵兴.人工骨替代物研究进展[J].医学研究通讯,2001,30(4):40-43.
    [2]王海亭,陈磊,金雪玲,朱海涛.羟基磷灰石(HAP)材料在生物材料中的研究与开发[J].山东陶瓷,2002,25(2):3-8.
    [3]牛宗伟,张建华,等.羟基磷灰石人工骨研究进展与展望[J].硅酸盐通报,2004,6:70-74.
    [4]陈彩凤.金属基纳米羟基磷灰石涂层材料研究进展[J].陶瓷学报,2002,23(4):241-245.
    [5]孙昌,孙康宁,刘爱红.羟基磷灰石基人工骨的研究进展[J].生物骨科材料与临床研究,2004,1(2):46-48.
    [6]曲晓娟.口腔羟基磷灰石涂层植入体的研究进展[J].大连大学学报,2003,24(2):99-102.
    [7]许艳慧.纳米羟基磷灰石的研究进展[J].国外医学口腔医学分册,2003,30:36-38.
    [8]黄永玲.羟基磷灰石涂层人工关节应用研究[J].材料工程,2002,11:35-37.
    [9]肖秀兰,陈彩凤,陈志刚.羟基磷灰石涂层制备技术及其稳定性[J].机械工程材料,2003,27(4):4-6.
    [10]袁媛,刘昌胜.生物医用纳米羟基磷灰石的研究进展[J].硅酸盐通报,2003,6:55-59.
    [11]李洲成,李年丰.纳米羟基磷灰石及其复合材料的研究进展[J].中国医学工程,2005,13(3):257-259.
    [12]丁传贤,薛卫昌,刘宣勇,郑学斌.等离子喷涂人工骨涂层材料[J].中国有色金属学报,2004,14(1):306-309.
    [13]徐淑华,罗承萍,王迎军.羟基磷灰石生物涂层材料界面的电镜观察与分析[J].中国有色金属学报,2001,11(2):190-194.
    [14]付涛,张玉梅,李浩,徐可为.羟基磷灰石生物涂层的体外溶解性研究[J].生物医学工程学杂志,2000,17(4):373-375.
    [15]张春燕,程祥荣.羟基磷灰石涂层种植体失败的主要原因及其处理方法[J].口腔颌面修复学杂志,2002,3(3):192-194.
    [16]李军英.浅议拉瓦尔喷头[J].宽厚板,2002,8(2):25-26.
    [17]王以飞,王晓放,黄钟岳,王晓鸣.冷喷涂材料改性研究中超音速冲击射流流场数值分析[J].大连理工大学学报,2004,44(3):398-401.
    [18]Wenya Li, Changjiu Li, Hanlin Liao. Effect of Annealing Treatment on the Microstructure and Properties of Cold-Sprayed Cu Coating[J]. Journal of Thermal Spray Technology,2006,15(2):206-211.
    [19]Changjiu Li, Wenya Li, Yuyue Wang. Formation of metastable phases in cold-sprayed soft metallic deposit[J]. Surface & Coatings Technology,2005,198: 469-473.
    [20]李文亚,李长久.冷喷涂特性[J].中国表面工程,2002,1(54):12-16.
    [21]丁丽,王晓放,孙涛,陈友义,李文亚.冷喷涂材料改性技术中粒子与基板结合过程的研究[J].机械工程材料,2004,28(10):26-28.
    [22]Changjiu Li, Wenya Li. Deposition characteristics of titanium coating in cold spraying[J]. Surface and Coatings Technology,2003,167:278-283.
    [23]Changjiu Li, Wenya Li, Hanlin Liao. Examination of the Critical Velocity for Deposition of Particles in Cold Spraying[J]. Journal of Thermal Spray Technology,2006,15(2):212-222.
    [24]吴杰,金花子等.冷气动力喷涂技术研究进展[J].材料导报,2003,17(1):59-62.
    [25]Wenya Li, Changjiu Li, Hongtao Wang, Chengxin Li, Hee Seon Bang. Measurement and Numerical Simulation of Particle Velocity in Cold Spraying[J]. Journal of Thermal Spray Technology,2006,15(4):559-562.
    [26]Wenya Li, Hanlin Liao, G. Douchy, C. Coddet. Optimal design of a cold spray nozzle by numerical analysis of particle velocity and experimental validation with 316L stainless steel powder[J]. Meterials and Design,2007,28:2129-2137.
    [27]Wenya Li, Hanlin Liao, Changjiu Li, Gang Li, Christian Coddet, Xiaofang Wang. On high velocity impact of micro-sized metallic particles in cold spraying[J]. Applied Surface Science,2006,253:2852-2862.
    [28]李殿魁,译.冷喷涂技术[J].上海钢研,2002,2:49-51.
    [29]罗志平,邵刚勤,等.等离子喷涂送粉剖析及粉末均化处理[J].表面技术,1997,26(5):24-26.
    [30]李朋,杨慧宾,等.激光熔覆同步送粉器的设计与应用[J].表面技术,2007,36(1):81-83.
    [31]冯立伟.激光再制造双料斗载气式送粉器的试验研究[D].天津:天津工业大学,2007.
    [32]刘常乐,杨洗陈,王云山.一种新型载气式激光熔覆送粉器[J].天津工业大学学报,2003,22(5):30-33.
    [33]李向阳.用于激光再制造双料斗载气式送粉器的研制[D].天津:天津工业大学,2005.
    [34]罗涛.载气式超细粉末送粉器的研制[D].天津:天津工业大学,2006.
    [35]刘常乐.载气式激光熔覆送粉器的研制[D].天津:天津工业大学,2003.
    [36]罗志平,潘牧,邵刚勤.一种高效等离子喷涂送粉均化器[J].材料保护,1997,30(2):39-40.
    [37]赵淳生.21世纪超声电机技术展望[J].振动、测试与诊断,2000,20(1):7-12.
    [38]Takehiro Takano,Yoshiro Tomikawa. Excitation of a progressive wave in a lossy ultrasonic transmission line and an application to a powder-feeding device[J]. Smart Mater Struct,1998,7:417-421.
    [39]Takehiro Takano,Yoshiro Tomikawa. Propagation of progressive wave in a coated metal pipe and its application for powder feeding device[J]. IEIC Technical Report (Institute of Electronics, Information and Communication Engineers),2001,42:21-26.
    [40]Nobuhiro Kanbe,Yoshiro Tomikawa, Takehiro Takano. Powder-feeding device using hollow cylindrical piezoelectric ceramics. Japanese Journal of Applied Physics,1993,32:2405-2407.
    [41]M.Mracek,J.Wallaschek. A system for powder transport based on piezoelectrically excited ultrasonic progressive waves[J]. Materials Chemistry and Physics,2005,90:378-380.
    [42]U.Kuhne, U.Fritsching. Dosage of disperse powders by ultrasound agitated tube modules[J]. Powder Technology,2005,155:117-124.
    [43]张贵林,郭浩,赵淳生.超声波粉体输送装置输送能力的实验研究[J].压电与声光,2002,24(6):489-491.
    [44]Masaki Ikeya, Koichi Suda. Powder supplying device utilizing an ultrasonic motor:US,5906294[P].1999-5-25.
    [45]黄华,齐乐华,等.超声振动微量给粉机理及振幅对送粉速率的影响[J].机械工程学报,2009,45(1):267-272.
    [46]黄华,齐乐华,等.超声振动毛细管微量给粉装置设计及实验研究[J].中国机械工程,2009,20(3)262-266.
    [47]Yong Yang, Xiaochun Li. Experimental and analytical study of ultrasonic micro powder feeding[J]. Journal of Physics D:Applied Physics,2003,36:1349-1354.
    [48]Xiaochun Li, Hongseok Choi, Yong Yang. Micro rapid prototyping system for micro components[J]. Thin Solid Films,2002,420-421:515-523.
    [49]Takehiro Takano, Yoshiro Tomikawa, et al. Powder-supply device using bending mode disk vibrator with cylindrical funnel at its center[C]. IEEE Ultrasonics Symposium,2002:657-660.
    [50]Shoufeng Yang, Julian R.G.Evans. A dry powder jet printer for dispensing and combinatorial research[J]. Powder Technology,2004,142:219-222.
    [51]Shoufeng Yang, Julian R.G.Evans. A multi-component powder dispensing system for three dimensional functional gradients[J]. Materials Science & Engineering A,2004,379:351-359.
    [52]Shoufeng Yang, Julian R.G.Evans. Acoustic control of powder dispensing in open tubes[J]. Powder Technology,2004,139:55-60.
    [53]Xuesong Lu, Shoufeng Yang, Julian R.G.Evans. Dose uniformity of fine powders in ultrasonic microfeeding[J]. Powder Technology,2007,175:63-72.
    [54]郑北昌.机械振动[M].北京:机械工业出版社,1980:0:4-425.
    [55]唐照千,黄文虎,恽伟君,等.振动与冲击手册,第二卷,振动与冲击测试技术[M].北京:国防工业出版社,1990:81-106.
    [56]Takehiro Takano, Hiroshi Hirata, Yoshiro Tomikawa. Analysis of nonaxisymmetric vibration mode piezoelectric annular plate and its application to an ultrasonic motor[J]. IEEE Transaction on Ultrasonic, Ferroelectrics and Frequency Control,1990,37(6):558-565.
    [57]赵淳生.超声电机技术与应用[M].北京:科学出版社,2007:49-51.
    [58]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵[M].北京:北京大学出版社,2005:126-127.
    [59]Sashida T, Kenjo T. An introduction to ultrasonic motors[M]. London: Oxford Science Publications,1993.
    [60]胡伟,赵淳生.直线型行波超声马达的研究[J].振动、测试与诊断,1996,16(3):8-14.
    [61]Ueha S, Tomikawa Y. Ultrasonic motors:Theory and applications[M]. London:Oxford Science Publications,1993.
    [62]马大猷,等.声学手册[M].北京:科学出版社,2004:83-85.
    [63]上羽贞行,富川义朗著;杨志刚,郑学伦译.超声马达理论与应用[M].上海:上海科技出版社,1997,11-12.
    [64]H.M. Sutton, et. Characterisation of Powder Surfaces[M], Lon:Academic Press.1976:107-158.
    [65]T.Yokoyama,K.Gotoh,K.Higashitani. Powder Technology Handbook[M]. NY:Dekker.1991:127-138.
    [66]A.Adler. Flow properties of metal powders[J]. J. Powder Metall.1969:7-20.
    [67]J.M.Coulson, J.F. Richardson. Chemical Engineering Volume 2:Particle Technology and Separation Processed,4th Edition. Pergamon Press.1991:1-54.
    [68]S.Yang, J.R.G.Evans. Metering and dispensing of powder; the quest for new solid freeforming techniques [J]. Powder Technology,2007,178:56-72.
    [69]H.M. Sutton. Characterisation of Powder Surfaces[J]. Acadecic Press,1976, 107-158.
    [70]R.Freeman, Going with the flow-testing for powder processing[J], Materials World,2002,9:14-15.
    [71]D.Geldart. Types of gas fluidization[J].Powder Technol.1973,7:285-292.
    [72]冯若主编.超声手册[M].南京:南京大学出版社,1999,10.
    [73]http://www.believe-zb.com/chanpin-2.asp
    [74]张福学.现代压电学[M].北京:科学出版社,2003.
    [75]http://www.believe-zb.com/chanpin-3.asp
    [76]中国船舶工业总公司发布.CB1194-88水声实用压电陶瓷元件性能参数的测量与计算方法.中国船舶工业总公司部标准。1988:10-14.
    [77]方昆凡主编.工程材料手册非金属材料卷[M].北京:北京出版社.2002.9-58-9-64.
    [78]鲍善慧,王艳东.超声波清洗机的阻抗匹配电路[J].洗净技术.2004.2(5):11-14.
    [79]彭太江,常颖,杨志刚,吴博达.超声摩擦用压电换能器阻抗匹配的试验研究[J].压电与声光,2004.26(1):65-68。
    [80]张贵林.超声波粉体输送装置的研究[D].南京航空航天大学博士后士学位论文.2001.1.1.
    [81]党沙沙,许洋,张红松,等.ANSYS12.0多物理耦合场有限元分析从入门到精通[M].北京:机械工业出版社,2010.2:14-17.
    [82]姜德义,郑拯宇,李林,任松.压电耦合片耦合振动模态的ANSYS模 拟分析[J].传感技术学报.2003.12(4):452-456.
    [83]雷辉,周双娥.用ANSYS软件分析压电陶瓷的振动状态[M].湖北大学学报(自然科学版),2008,30(1):29-33.
    [84]小飒工作室编.最新经典ANSYS及Workbench教程[M].北京:电子工业出版社.2004.6.
    [85]机械工程手册编辑委员会编.机械工程手册工程材料卷(第二版)[M].北京:机械工业出版社.2006.6.
    [86]蒋阳,陶珍东.粉体工程[M].武汉:武汉理工大学出版社,2008.