线性菲涅耳太阳能聚光系统的理论分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,人类活动中对化石能源的过度开发已经导致了前所未有的,人们所不愿看到的大气与环境污染,包括全球变暖、温室效应、气候变化、以及酸雨,并且这种传统化石能源正在全世界范围内快速衰竭。然而,随着人口增长(70亿)、科技的发展使得全球对能源的需求正以各种各样的形式巨大的增加。解决这些问题有两条路可选,一是提高化石燃料品质,减少有毒气体排放。另一条,也是我们所热衷的,尽可能使用清洁、环境友好的可再生能源替代化石能源。所有这些意味着,世界正面临着不可避免的向新能源系统的过渡,这一过程将是对传统化石能源的依靠越来越少,对可再生能源利用越来越多。
     当前,作为可再生能源的太阳能因其清洁、无污染以及用之不竭等特性正吸引着大量的关注。我们知道,地球所接受的太阳辐射是人类生活所赖以生存的主要能源,大部分可再生能源均源自太阳能。太阳能是最丰富、可持续利用的能源,到达地球表面的太阳辐射功率约150000TW,只需使用其中的一小部分就能满足全球的能源需求。目前直接利用太阳辐射,所面临的最大的科学与技术挑战就是以合理的,能够承受的成本有效地收集、转换、存储和利用太阳能,因为尽管太阳辐射可以看作高品位能源,但是,在地球表面的功率密度却使其很难被提取做功,并在工作流体中获得合适的温度。利用太阳能聚光热发电技术,这些问题能够更好地解决,对于大规模发电,聚光热发电更是常用。可以说,利用光学聚光技术的太阳能热发电系统将是未来所必须的清洁与可再生能源供应的主力军。
     太阳能聚光热发电系统由光学设备(镜面)和太阳跟踪系统将大面积太阳光聚集在小的吸热器面积上,作为热源提供给传统的发电系统。聚光发电系统的形式多种多样,但主要的有槽式系统、碟式系统、塔式系统、线性菲涅耳系统。通过聚光系统对太阳能的聚集主要是为了产生高温,以提高热功转换效率。本论文主要研究线性菲涅耳聚光热发电系统。
     线性菲涅耳聚光太阳能发电系统源于一类光学聚焦系统,该类光学系统使用大量平面光学面实现聚焦目的,由于这类光学系统是由法国工程师AugustinJeanFresnel发明,故而得名。它是70年代国际石油危机期间唯一没有建立相关实验的太阳能利用技术。
     作为太阳能聚光热发电技术中的最年轻成员,线性菲涅耳技术(LFR)靠线性带状反射镜阵列,将太阳入射光聚集到安装在线性塔上的固定吸热器上。线性菲涅耳镜场可以设想为抛物槽式反射镜的线性分段离散化。但是,与抛物槽式反射技术所不同的是,它不必保持抛物面形状,每一平面(或微弯)镜元在同一近地水平面平行安装。镜元绕着自身的长轴跟踪太阳转动以确保反射光指向高度约为10-15m的固定线性吸热器上。吸热器纵深可长达1000m,传热流体在吸热器内被加热或直接产生水蒸气并汇集驱动汽轮机。
     本论文重点讨论三个方面内容,首先研究太阳位置算法,介绍当今典型的太阳位置算法,给出利用天文年历精确计算太阳位置的方法,对现有典型一般算法进行日子数计算方法的改进,以提高计算精度。其次研究了LFR系统的几何光学特性以及对LFR系统进行光学性能分析与优化。最后给出LFR系统的太阳跟踪控制系统的具体设计。
     在聚光太阳能热发电系统中,聚光装置需要实时跟踪太阳。这就需要知道太阳位置,以此跟踪太阳,提高聚光装置效率。在开环太阳跟踪控制系统中,太阳位置的计算更为重要。本文介绍了几种典型计算太阳位置算法,通过分析比较,总结出各种算法的特点。最后,对于不同的太阳能热发电系统,给出推荐算法。针对广泛应用的太阳位置算法,总结在具体应用中其主要变量日子数的具体算法,不同的太阳位置算法使用合适的日子数算法能提高计算结果的精度。计算结果表明,使用正确的日子数算法,其算法精度至少可提高30%,若将Bourges的赤纬角算法与Lamm的时差算法相结合,其太阳高度角、方位角计算误差均在0.02°以内。
     在LFR系统光学几何方面,本文提出了线性菲涅耳聚光反射装置中入射角、反射位置、跟踪倾角的矢量计算方法。该聚光装置中每一个反射镜面(简称镜元)需实时跟踪太阳,将太阳入射光反射至固定位置的线性吸热器上,故每一镜元的入射角、反射位置、跟踪倾角均时刻变化,这便使系统设计时的计算非常复杂。本论文利用太阳位置算法中得到的太阳高度角、方位角,通过矢量法,简化了计算过程,推导出线性菲涅耳反射装置任一镜元的入射角、反射位置、跟踪倾角公式,方便于菲涅耳太阳能聚光装置的分析应用并计算了2009年各月平均日的各变量在具体算例情况下的变化。
     为了证明上述LFR光学几何公式的有效性,本文运用软件仿真与实验的方法进行了验证。用户界面友好的仿真软件分析太阳能聚光镜场光学子系统的光学性能对太阳能聚光热发电系统的优化与设计是非常必要的。Soltrace是一款由NationalRenewableEnergyLaboratory开发,用于对各种太阳能发电技术光学系统建模及系统性能分析的基于射线追踪法的软件工具,它能允许用户灵活全面的建立各种复杂几何光学器件如槽式、线性菲涅耳、碟式以及塔式等,并能进一步分析评估其光学性能以及吸热器的有效辐射通量分布。论文详细描述了Soltrace的各项功能及使用方法,最后以线性菲涅耳聚光反射系统为例给出具体的应用。
     在聚光太阳能热发电系统设计时,有必要分析聚光装置的聚光比。线性菲涅耳聚光反射装置中每一行反射镜面均实时跟踪太阳,将太阳入射光反射至固定位置的线性吸热器上,故每一镜元在吸热器上形成的反射光带宽度均时刻变化,这使系统聚光比分析变得非常复杂。对于聚光比分析,本论文首先利用二维光学分析,得到线性菲涅耳反射装置任一镜元的剖面角、跟踪倾角、单个镜元在吸热器平面上的光带宽度计算公式,其次得到线性菲涅耳聚光反射聚光装置的几何聚光比公式并分析几何聚光比随着镜元个数与相对距离的变化趋势。然后在分析系统聚光比的基础上对该类系统镜场的宽度及塔高进行优化。最后给出考虑日轮张角情况下的几何聚光比变化。
     在LFR镜场辐射量计算方面,本文利用线性菲涅耳反射装置任一镜元的入射角计算公式,计算整个镜场的实时辐射通量,得到整个镜场在有效工作期间内的累积辐射能量。通过对反射光在吸热器平面的偏移分析,得到线性菲涅耳聚光反射镜场的最佳塔高计算方法。
     在聚光太阳能热发电系统设计时,有必要对不同的镜场分布方式进行光学性能的分析比较。论文首先利用LFR东西镜场与南北镜场中任意矩形镜元的入射角、反射矢量、跟踪倾角计算公式,对这两种不同的LFR镜场分布的末端溢出损失、大气衰减、余弦系数等光学效率进行分析比较,针对不同的应用,找出合理的镜场分布方式,为LFR系统的大规模应用提供重要的参考与指导。
     LFR技术的主要一个难点是避免相邻反射镜之间的相互遮挡,这将导致反射镜之间的间距加大。阴影是指太阳入射光被相邻的镜元所遮蔽,遮挡是指射向吸热器的反射光被相邻的镜元所阻挡。阴影与遮挡影响是限制LFR聚光装置成本效力的重要因素。阴影与遮挡影响对聚光镜场的布局与太阳位置非常敏感,因此,有必要对系统的阴影与遮挡进行精确的几何分析,然后借助计算机去构建一个合适的、优化的LFR镜场阵列。本文通过坐标变换以及射线追踪法,得到被遮挡镜元所在平面上的阴影与遮挡分布,通过统计分析,给出线性菲涅耳镜场的阴影与遮挡效率。最后通过分析线性塔高、镜元间距、镜元宽度对LFR镜场阴影与遮挡效率的影响,给出线性菲涅耳聚光镜场的阴影与遮挡效率计算模型。
     论文最后,对LFR系统的跟踪控制设计进行了详细的描述。近年来,太阳跟踪系统的技术进步带动了各种太阳能光热、光电应用的发展。与传统的固定位置装置相比,全天候实时跟踪太阳的太阳利用系统能够收集更多的太阳能,产生更高的输出功率。研究显示,太阳能跟踪系统根据控制模式可以泛泛分为两类,闭环和开环控制,一方面由于闭环跟踪不能适应一些天气条件并且跟踪精度较差,另一方面,开环跟踪可以消除许多由于使用太阳传感器所带来的问题并节约成本,所以,目前太阳能聚光热发电系统的跟踪控制趋向于开环跟踪。为了降低成本,一般使用单片机作为控制器。
     本论文最后一章包括设计和完成基于单片机的LFR单轴太阳跟踪控制系统。该控制系统主要由8位单片机AT89C51RC(32KROM、512RAM)、时钟日历芯片PCF8563T以及用于键盘与LED数码显示管理的ZLG7290组成。本系统要以一定精度跟踪太阳,日落后镜元自动回位,可以在多云等恶劣条件下工作,允许在维修、测试、清洗时手动控制,大风或冰雹时可以翻转保护。基于上述功能,本研究编写了相应的计算机程序,用于计算太阳位置、计算镜元倾角然后向步进电机驱动器发送相关信号,驱动步进电机带动镜元完成跟踪任务。总体上说,该跟踪控制方式灵活,成本低廉,易于安装与操作。
It is well established that atmospheric and environmental pollution as a result of extensive fossil fuel exploitationin almost all human activities has led to some undesirable phenomena that have not been experienced before in known human history and they are varied and include global warming, the greenhouse affect, climate change, and acid rain. On the other hand, worldwide this conventional energy sources are rapidly depleting. While population growth, increased expectations and means, and scientific and technological developments have dramatically increased the global demand for energy in its various forms. In order to resolve these problems, the two main alternatives are either to improve the fossil fuel quality thus reducing their harmful emissions into the atmosphere or, more significantly, to replace fossil fuel usage as much as possible with environmentally friendly, clean, and renewable energy sources. What this all implies is that the world is in the initial stages of an inevitable transition to a new energy system that, over time, will be less dependent on traditional uses of fossil fuels and increasingly dependent on renewable energy resources.
     Nowadays, solar energy, as renewable energy, is attracting a lot of attention, since it is clean, pollution-free, and inexhaustible. As we known, solar radiation incident upon the Earth is the primary energy source by which the life of mankind has developed and most renewable energies derive their energy from the sun. Solar energy is the most abundant, sustainable source of energy, which provides over150,000terawatts of power to the Earth. Only a small fraction of the available solar energy reaching the Earth surface would be enough to satisfy the global expected energy demand. Directly utilizing solar energy, one of the greatest scientific and technological challenges we are facing is to develop efficient ways to collect, convert, store, and utilize solar energy at affordable costs, Which is because that although the solar radiation is a high quality energy source because of the high temperature and exergy at its source, its power density at the earth's surface makes it difficult to extract work and achieve reasonable temperatures in common working fluid. These problems can be better solved by concentrating solar thermal power technology (CSP) and for large-scale generation, CSP has been more common. It can be say that CSP with optical concentration technologies is important candidates for providing a major share of the clean and renewable energy needed in the future
     CSP systems use optical devices (usually mirrors) and sun tracking systems to concentrate a large area of sunlight into a smaller receiving area. The concentrated solar energy is then used as a heat source for a conventional power plant. A wide range of concentrating technologies exists. The main concentrating concepts are parabolic troughs, solar dishes, solar power towers, and Linear Fresnel reflector (LFR). The main purpose of the concentrating solar energy is to produce high temperatures and therefore high thermodynamic efficiencies. This thesis mainly researches LFR concentrating power system.
     Linear Fresnel CSP technology derives its name from a type of optical system that uses a multiplicity of small flat optical faces, invented by the French engineer Augustin-Jean Fresnel and it is the only one that was not built experimentally during the oil crises of the1970s.
     As the "youngest" of the CSP technologies, LFR technology relies on an array of linear mirror strips which concentrate light on to a fixed receiver mounted on a linear tower. The LFR field can be imagined as a broken-up parabolic trough reflector, but unlike parabolictroughs, it does not have to be of parabolic shape. every planar (or nearly planar) mirror elements are all mounted at the same height near the ground. They follow the position of the Sun by rotating around their long axes so that they point to a focus line at a height of10-15m, which remains fixed over time. Along this line, an absorber tube up to1000m long is mounted, and in it HTF is heated or water is directly vaporized. The steam from many parallel absorber tubes can operate a large turbine.
     This thesis mainly discusses three matters about LFR system. Firstly, solar position algorithms are researched.10classical solar position algorithms are introduced and accurate computed methods using astronomical almanac is presented. By improving the algorithms of day number of the year, the precision can be tremendously increased. Secondly, the LFR's optic geometry characteristics and optical performance are investigated and optimal system structures are presented. Finally, solar tracking control system for LFR mirror field is detailed description.
     High concentration solar thermal power systems require the Sun to be tracked real time for improving efficiency of generating electricity, which needs to know the solar position. The accuracy of computing the sun position is more important of opening-loop tracking control system than that of the others. This paper presents some typical sun position algorithms of which the characteristics was summarized by comparing and analyzing and appropriate algorithms were commended for different solar thermal-power systems.
     Aimed at some typical solar position algorithms which have been broadly used and compares its'computational error and summarizes the detailed algorithm of day number of the year for every solar position algorithms.The calculating accuracy of solar position can be improved by using optimum algorithm of day number of years. The results indicate that the algorithm accuracy can be improved by30%at least by corrected algorithm of day number of years and computational error of solar azimuth and altitude angle is smaller than0.02°if combining Bourges'declination angle formula and Lamm's EOT formula.
     For optic geometry characteristics of LFR system, This paper presents a vector algorithm of incidence angle and reflected position and sun tracking tilt-angle of linear Fresnel concentrating solar device (LFR). In the LFR systems, every mirror needs to track the Sun real time and reflects the beam radiation to fixed linear receiver, therefore some concerned quantities consequentially vary throughout the year, which make the calculation very complexity. This paper simplifies the processes of derivation via vector analysis and educes some necessary formulae fitted into the application of LFR and farther shows the curves of various quantities on average days for months in2009by computing based on idiographic example.
     In order to testify the validity of above derived formulae, the software simulation and experiments was done. To optimize and design a concentration solar power system it is essential to know the performances of the subsystem formed by the receiver and the concentrating mirror field by master user-friendly modeling tools. Soltrace is an NREL-developed ray tracing code for optically modeling all types of CSP technologies. Soltrace is flexible and comprehensive allowing the user to easily generate complex geometries for troughs, linear fresnel, dish and tower systems and analyze its optical performances, furthermore assess the available flux distribution of receiver. This paper particularly describes the features of Soltrace and presents the using methods. At the same time, LFR system modeling is done as a illustrative example of application.
     It is necessary for analyzing the concentration ratio for designing of concentrating solar thermal power system. Every mirror segment or row of LFR needs to track the Sun real time and reflects the sunlight to fixed linear receiver. therefore, the band width on the absorber illuminated by every mirror row varies throughout the year, which makes the analysis of concentration ratio very complexity. About concentration ratio analyses, firstly, the formulae of projected angle of incidence and reflection solar rays, tracking inclination angle and band width illuminated on the flat plane absorber were obtained by a two-dimensional optic analysis. Secondly, the expressions of geometric concentration ratio of LFR were derived and the correlation between ideal geometric concentration ratio and number of mirror slats and relative distance were analyzed. And then, optimizations of mirror field width and tower height are analyzed based on analysis above. Finally, the effects of angular size of sun's disc on geometric concentration ratio were illuminated.
     At the aspect of radiation algorithm of LFR mirror field, this paper firstly utilizes the equations of incidence angle and tracking inclination angle to computed the instantaneous solar beam radiation of all mirror elements. And then, cumulated irradiation of whole mirror field during the available work was obtained. Finally, the algorithm of optimal tower highness of LFR mirror field was derived by analyzing excursion of reflecting sunlight.
     It is necessary for analyzing and comparing the optical performance of different mirror field distributions when concentrating solar thermal power systems are designed. This paper analyzed and compared the different optical efficiencies including cosine factor, atmospheric attenuation and end spillage loss by making use of the formulae of incidence angle, tracking angle and the reflected vector for north_south and east_west aligned LFR mirror field. The reasonable LFR mirror field layout mode was recommended in order to fit different application, which will provide important reference and instruction for large scale LFR technology application.
     One difficulty with the LFR technology is that avoidance of shading and blocking between adjacent reflectors leads to increased spacing between reflectors. Shading is the loss of illumination on a given mirror due to the interception of the incident sunlight by a neighboring mirror element. Blocking is the loss of illumination on the receiver due to the interception of reflected sunlight by some other neighboring mirror. Shading and blocking effects play a major role in limiting the cost effectiveness of the LFR system. These effects depend sensitively on the arrangement of the mirror element in the horizontal plane and on the position of the sun. Consequently it is necessary to have an axact geometrical analysis of shading and blocking. Then with the help of a computer we can begin to construct the appropriate averages and to seek an optimization of the mirror array. This paper firstly got shading and blocking distribution of analyzed mirror element by coordinates transform and ray-tracing method, and then annual average shading and blocking efficiency of LFR mirror field was analyzed by statistic means. Finally, the effect of shading and blocking efficiency of LFR mirror field due to different linear absorber high, spacing between adjacent mirror element and width of mirror slat was analyzed and fitted calculating model of shading and blocking efficiency of LFR mirror field was presented.
     Advances in the algorithms of sun tracking systems have enabled the development of many solar thermal and photovoltaic systems for a diverse variety of applications in recent years.Compared to their traditional fixed-position counterparts, solar systems which track the changes in the sun's trajectory over the course of the day collect a far greater amount of solar energy, and therefore generate a significantly higher output power. It has been shown that these sun tracking algorithms can be broadly classified as either closed-loop or open-loop types, depending on their mode of control. Because, on the one hand, the closed loop system can not fit some bad weather conditions and the accuracy of tracking is poor, on the other hand, the open loop system can eliminates many of the problems and costs associated with closed-loop tracking, the current trend in solar concentrator tracking systems is to use open-loop controllers that compute the direction of the solar vector based on location and time. To keep down the price of the tracking system, the controller is based on a low-cost microprocessor.
     The last chapter of this thesis includes the design and implementation of a microcontroller-based LFR single-axis solar tracking control system. This tracking control system consists of an8-bit microcontroller (AT89C51RC) with32K byte of internal EEROM and512byte static RAM, Real Time Clock (PCF8563T) and chip for keyboard and LED display (ZLG7290)
     This tracking system is able to follow the sun with a certain degree of accuracy, return the collector to its original position at the end of the day and also track during periods of cloud over, protect the mirror element by face down and allow manual control of the array for repair, testing and cleaning. Considering all above aspects of this tracking system, a computer software has been developed to calculate solar position based on installation position, the start time and correct initial alignment, and compute the tracking angle, and send corresponding signal to stepper motor driver, so that, the stepper motor drives mirror element to rotate and achieve the tracking task. it can be concluded that, it is a flexible tracking system with low cost electromechanical set-up, low maintenance requirements and ease on installation and operation.
引文
[1]王大中.21世纪中国能源科技发展展望[M].清华大学出版社,北京,2007:15~45
    [2]罗运俊,何梓年,王长贵.太阳能利用技术[M].化学工业出版社,北京2009:10~29
    [3]BP. BP statistical review of world energy2006.1ondon:BP,2006
    [4]周大地.2020年中国能源战略分析.中国高校科技与产业化,2007(11):52-53
    [5]气候变化国家评估报告编写委员会.气候变化国家评估报告,科学出版社,2007
    [6]Soteris A Kalogirou. Solar energy engineering:processes and systems[M], Elsevier/Academics Press, New York,2009
    [7]张鹤飞,俞金娣,赵承龙.太阳能热利用原理与计算机模拟(第2版)[M].西北工业大学出版社.西安2004.
    [8]何梓年太阳能热利用[M].中国科学技术大学出版社.2009
    [9]Yin Zhiqiang. Development of solar thermal systems in China[J].Solar Energy Materials and Solar Cells,2005,86(3):427-442
    [10]王炳忠.太阳能辐射资源太阳能应用[M].北京:人民教育出版社.1995.
    [11]Wang Z, Prospectives for China's solar thermal power technology development, Energy (2009), doi:10.1016/j.energy.2009.04.004
    [12]J.A.Duffie. Solar Engineering of Thermal Processes[M]. W.A.Beckman.New York:Jone Wiley&Sons,2006.326.
    [13]A.Rabl.Active Solar Collectors and Their Applications[M]. New York:Oxford,1985.19-120
    [14]Iqbal M.. An Introduction to Solar Radiation [M]. New York:Academic Press,1983.6-14.
    [15]Stine W.B. Solar Energy Fundamentals and Design With Computer Applications[M]. New York:Jone Wiley&Sons,1985.38-69.
    [16]Frank Kreith, Jan F. Kreider. Principles of solar engineering[M] Washington: Hemisphere Pub. Corp.,1978.242-252
    [17]Sen, Z.Solar energy in progress and future research trends[J]. Progress in Energy and Combustion Science,2004,30,(4):367-416
    [18]Fausto Cavallaro. Multi-criteria decision aid to assess concentrated solar thermal technologies[J], Renewable Energy,2009,34(7):1678-1685
    [19]Soteris A.Kalogirou. Solar thermal collectors and applications[J]. Energy and Combustion Science,2004,30(3):231-295.
    [20]Gerry Wolff, Belen Gallego, Reese Tisdale, David Hopwood. CSP concentrates the mind[J].Renewable Energy Focus,2008,9(1):42-47
    [21]Werner Vogel, Henry Kalb. Large-Scale Solar Thermal Power-Technologies, Cost, and Development[M].Germany:Wiley-VCH,2010,51-67.
    [22]Graham Ford. CSP:bright future for linear fresnel technology? Renewable Energy Focus[J],2008,9(5):48-49
    [23]P L Singh, S Ganesan, G C Yadav. Performance study of a linear Fresnel concentrating solar device [J]. Renewable Energy,1999,18(3):409-416.
    [24]N. Velazquez, O. Garcia-Valladares, D. Sauceda, R. Beltran. Numerical simulation of a Linear Fresnel Reflector Concentrator used as direct generator in a Solar-GAX cycle. Energy Conversion and Management[J].2010,51(2):434-445
    [25]Chemisana D, Ibanez M. Linear Fresnel concentrators for building integrated applications. Energy Convers Manage (2010), doi:10.1016/j.enconman.2010.01.024
    [26]A. V. Sonune, S.K. Philip. Development of a domestic concentrating cooker. Renewable Energy [J].2003,28(6):1225-1234
    [27]Daniel Chemisana,Manuel Ibanez, Jerome Barrau.Comparison of Fresnel concentrators for building integrated photovoltaics. Energy Conversion and Management[J].2009,50(5)1079-1084
    [28]Florent CASSAR. HYBRIDATION OF A DIRECT STEAM GENERATION CSP FRESNEL SOLAR FIELD FOR FOOD PROCESSING INDUSTRY. SolarPACES2011, Granada, Spain
    [29]V. A. Baum, R. R. Aparasi, B. A. Garf. High power solar installations[J]. Solar Energy.1957,1(1):6-13.
    [30]Francia G. Pilot plants of solar steam generation systems [J]. Solar Energy,1968,12,51-64.
    [31]Riaz M. R. A theory of concentrators of solar energy on a central receiver for electric power generation [J]. J. Eng. Power ASME1976,98(3),375-385.
    [32]Vant-Hull L. L.,Hildebrandt A. F. Solar thermal power system based on optical transmission [J]. Solar Energy,1976,18:31-39.
    [33]Lipps, F.W., Vant-Hull, L.L.,. A Cellwise method for the optimization of large central receiver systems [J]. Solar Energy,1978,20(8):505-516.
    [34]Abdel-Monem M. S. et al.(1976) A new method for collector field optimisation. Heliostech. Dev.1,372.
    [35]Igel E. A. and Hughes R. L.(1979) Optical analysis of solar facility heliostats. Solar Energy22,283-295.
    [36]Dudley V. E. and Workhoven R. M.(1978). Summary Report:Concentrating Solar Collector Test Results. Collector Module Test Facility, Sandia National Laboratories, Alberquer-que, NM, Report No. SAND78-0816; May.
    [37]Dudley V. E. and Workhoven R. M.(1979). Summary Report:Concentrating Solar Collector Test Results. Collector Module Test Facility (CMTF). January-December1978, Sandia National Laboratories, Alberquerque, NM, Report No. SAND78-0977; August.
    [38]Di Canio D. G., Tretyl W. J., Jur F. A. and Watson C. D.(1979). Line-focus Solar Thermal Central Receiver Research Study, FMC Corporation, Santa Clara, CA, Final Report1977-79DOE/ET/20426-1.
    [39]Miura, Masahiro, and Tsuboi, Sadamitsu, Development of the SegmentMirror Collector, Proceedings ISES Solar World Congress,1989, Kobe, Japan.
    [40]D. Feuermann, J. M. Gordon.Analysis of a Two-Stage Linear Fresnel Reflector Solar Concentrator [J]. Journal of Solar Energy Engineering,1991,113(11):272-279
    [41]B.S. Negi, S.S. Mathur, T.C. Kandpal. Optical and thermal performance evaluation of a linear fresnel reflector solar concentrator [J]. Solar&Wind Technology,1989,6(5):589-593
    [42]B.S. Negi, T.C. Kandpal, S.S. Mathur Designs and performance characteristics of a linear fresnel reflector solar concentrator with a flat vertical absorber[J]Solar&Wind Technology,1990,7(4):379-392
    [43]S. S. Mathur, B. S. Negi, T. C. Kandpal. Geometrical designs and performance analysis of a linear fresnel reflector solar concentrator with a flat horizontal absorber[J]. International Journal of Energy Research,1990,14(7):107-124.
    [44]S.S. Mathur, T.C. Kandpal, B.S. Negi Optical design and concentration characteristics of linear Fresnel reflector solar concentrators—Ⅱ. Mirror elements of equal width[J].Energy Conversion and Management,1991,31(3):221-232
    [45]G.D. Sootha, B.S. Negi.A comparative study of optical designs and solar flux concentrating characteristics of a linear fresnel reflector solar concentrator with tubular absorber [J]. Solar Energy Materials and Solar Cells,1994,32(2),:169-186
    [46]G.D. Sootha, B.S. Negi.A comparative study of optical designs and solar flux concentrating characteristics of a linear fresnel reflector solar concentrator with tubular absorber[J].Solar Energy Materials and Solar Cells,1994,32(2),:169-186
    [47]P. L.Singh, R.M. Sarviya, J.L. Bhagoria. Thermal performance of linear Fresnel reflecting solar concentrator with trapezoidal cavity absorbers[J]. Applied Energy,2010,87(4)541-550.
    [48]Andreas Haberle, Christian Zahler, Hansjorg Lerchenmuller. The Solarmundo line focussing Fresnel collector. Optical and thermal performance and cost calculations. SolarPACES2002
    [49]Jorge Facao, Armando C. Oliveira.Numerical simulation of a trapezoidal cavity receiver for a linear Fresnel solar collector concentrator.Renewable Energy,2011,36(2):90-96
    [50]D. Mills. Advances in solar thermal electricity technology[J]. Solar Energy,2004,76(1):19-31.
    [51]Akira Hoshi, David R. Mills, Antoine Bittar, Takeo S. Saitoh. Screening of high melting point phase change materials (PCM) in solar thermal concentrating technology based on CLFR[J]. Solar Energy,2005,79(3):332-339
    [52]Philipp Schramek, David R. Mills, Multi-tower solar array. Solar Energy75(2003)249-260
    [53]Philipp Schramek, David R. Mills. Heliostats for maximum ground coverage[J]. Energy,2004,29,(5):701-713
    [54]DAVID R. MILLS, GRAHAM L. MORRISON compact linear fresnel reflector solar thermal power plants [J]. Solar Energy,2000,68(3):263-283
    [55]PE1-World's first Fresnel Solar Power Plant in commercial operation [R].Novatec-Biosol,2010.
    [56]Hautmann G, Selig M, Mertins M:First European Linear Fresnel Power Plant in Operation-Operational Experience and Outlook, Conference Paper and Presentation at Solarpaces2009, Berlin, Germany
    [57]C. Richter. Solar Power and Chemical Energy Systems SolarPACES Annual Report2009[R]. Koln Germany:IEA,2010,3.6
    [58]Martin Selig. Commercial CSP plants based on Fresnel collector technology. SolarPACES2011, Granada, Spain
    [59]Gabriel Morin1, Max Mertins2, Jann Kirchberger3, Martin Selig. supernova- construction, control&performance of steam superheating linear fresnel collector. SolarPACES2011, Granada, Spain
    [60]Xiudong Wei, Zhenwu Lu, Weixing Yu, Zhifeng Wang. A new code for the design and analysis of the heliostat field layout for power tower system[J]. Solar Energy,2010,84(4)685-690.
    [61]Y. T. Chen, B. H. Lim, C. S. Lim. General Sun Tracking Formula for Heliostats With Arbitrarily Oriented Axes[J] Journal of Solar Energy Engineering.2006,128(5):245-250
    [62]Wu Yu-ting, Liu Bin, Ma Chong-fang, Guo Hang. Convective heat transfer in the laminar-turbulent transition region with molten salt in a circular tube. Experimental Thermal and Fluid Science33(2009)1128-1132
    [63]Xiong Ya-Xuan, Wu Yu-Ting, Ma Chong-Fang, Modibo Kane Traore&Zhang Ye-Qiang Numerical investigation of thermal performance of heat loss of parabolic trough receiver. Science China Technological Sciences,2010,53(2)444-452.
    [64]Zhihao Yao, Zhifeng Wang, Zhenwu Lu, Xiudong Wei. Modeling and simulation of the pioneer1MW solar thermal central receiver system in China[J]. Renewable Energy,2009,34(12):2437-2446.
    [65]Pierre Garcia, Alain Ferriere, Jean-Jacques Bezian.Codes for solar flux calculation dedicated to central receiver system applications:A comparative review[J]. Solar Energy,2008,82(3):189-197
    [66]Clifford K. Ho. Software and Codes for Analysis of Concentrating Solar Power Technologies[R]. Sandia National Laboratories SAND2008-8053.2008
    [67]Wendelin. T. SolTRACE:a new optical modeling tool for concentrating solar optics. In:Proceedings of the ISEC2003:International Solar Energy Conference,15-18March2003, Kohala Coast,Hawaii, New York, American Society of Mechanical Engineers, pp.253-260.
    [68]Biggs, F., Vittitoe, C.N.,1977. HELIOS:a computational model for solar concentrators, Sandia National Labs, Albuquerque, NM, US-USSR Workshop on Solar Energy Appl., Moscow.
    [69]Kistler, B.L.,1986. A user's manual for DELSOL3:a computer code for calculating the optical performance and optimal system design for solar thermal central receiver plants, Sandia Report SAND86-8018.
    [70]Leary, P.L.; Hankins, J.D.,1979. Users guide for MIRVAL:a computer code for comparing designs of heliostat-receiver optics for central receiver solar power plants, Sandia Report SAND-77-8280.
    [71]Blanco-Muriel, M Alarcon-Padilla, D C Lopea-Moratalla, et al. Computing the solar vector [J]. Solar Energy,2001,70(5):431-441.
    [72]L L Vant Hull, A F Hildebrandt. Solar thermal power system based on optical transmission[J]. Solar Energy,1976,18(1):31-39.
    [73]Walraven R. Calculating the position of the Sun[J]. Solar Energy,1978,20(5):393-397.
    [74]Reda, I., Andreas, A., Solar position algorithm for solar radiation applications [J]. Solar Energy,2004,76(5):577-589.
    [75]Roberto Grena. An algorithm for the computation of the Solar position [J]. Solar Energy,2008,82(5):462-470.
    [76]P.I. Cooper. The absorption of radiation in solar stills [J]. Solar Energy,1969,12(3):333-346.
    [77]B. Bourges. Improvement in solar declination computation[J]. Solar Energy,1985,35(4):367-369.
    [78]L.O. Lamm. A new analytic expression for the equation of time [J]. Solar Energy,1981,26(5):465.
    [79]F.D. Barlow. A simple computer algorithm for calendar date conversion [J]. Solar Energy,1980,25(5):479.
    [80]Michalsky J.J. The astronomical Almanac's algorithm for approximate solar position (1950-2050)[J]. Sol Energy,1988,40(3):227-235.
    [81]Walraven, R..Erratum [J]. Solar Energy,1979,22:195.
    [82]Archer, C.B., Comments on'Calculating the position of the Sun'[J].Solar Energy,1980,25:91.
    [83]Muir, L.R.. Comments on'The effect of atmospheric refraction onthe solar azimuth'[J]. Solar Energy,1983,30:295.
    [84]Wilkinson, B.J.,. An improved FORTRAN program for the rapid calculation of the solar position[J]. Solar Energy,1981,27:67-68.
    [85]Wilkinson, B.J. The effect of atmospheric refraction on the solar azimuth[J]. Solar Energy,1983,30:295.
    [86]Braun JE, Mitchell JC. Solar geometry for fixed and tracking surfaces[J]. Sol Energy,1983,31(5):439-444.
    [87]Spencer, J.W., Fourier series representation of the position of the Sun[J]. Search 1971,2(5).172
    [88]Sproul AB. Derivation of the solar geometric relationships using vector analysis[J]. Renew Energy,2007,32(7):1187-1205.
    [89]Runsheng Tang, Tong Wu. Optimal tilt-angles for solar collectors used in China[J]. Applied Energy,2004,79(1):239-248
    [90]M. CUCUMO, D. KALIAKATSOS, V. MARINELLI. General calculation methods for solar trajectories[J]. Renewable Energy,1997,11(2):pp.223-234,
    [91]Chang, T.P., The Sun's apparent position and the optimal tilt angle..., Sol. Energy (2009), doi:10.1016/j.solener.2009.02.009
    [92]G. Montero, J.M. Escobar, E. Rodriguez, R. Montenegro. Solar radiation and shadow modelling with adaptive triangular meshes[J]. Solar Energy,2009,83(7):998-1012
    [93]刘颖,戴景民,郎治国等.旋转抛物面聚光器焦面能流分布的有限元分析[J].光学学报,2007,27(10):1776-1778
    [94]F.W.Lipps and Vant-Hull L. L. shading and blocking geometry for a solar tower concentrator with rectangular mirrors [R]. New York:ASME paper74-WA/Sol-11,presented at the winter annual Meeting,1974,1-7
    [95]A. NIEWIENDA, F. D. HEIDT, SOMBRERO, a pc-tool to calculate shadows on arbitrarily oriented surfaces[J]. Solar Energy,1996,58(4-6):253-263
    [96]R. Budin, L. Budin. A mathematical model for shading calculations[J]. Solar Energy,1982,29(4):339-349
    [97]J. Appelbaum, J. Bany. Shadow effect of adjacent solar collectors in large scale systems[J]. Solar Energy,1979.23(6):497-507
    [98]Karl W.Boer, J.A.Duffie. Advances in Solar Energy-An Annual Review of Research and Development[M]. Volume2. New York:Plenum press,1985.428-433
    [99]O. Barra, M. Conti, E. Santamata, R. Scarmozzino, et al. Shadows'effect in a large scale solar power plan[J]t. Sol Energy,1977,19(6):759-762.
    [100]J.C.Daly. Solar Concentrator Flux Distribution Using Backward Tracing. Applied Optics.1979,18(15):2696-2700
    [101]Feuermann D.(1993). Analysis and Evaluation of the Solar Thermal System at the Ben-Gurion Sede Boqer Test Center for Solar Electricity Generating Technologies, Israel Ministry of Energy and Infrastructure, Jerusalem, Final Report,Contract No.88169101; July.
    [102]Hossein Mousazadeh, Alireza Keyhani, Arzhang Javadi, Hossein Mobli.A review of principle and sun-tracking methods for maximizing solar systems output[J]. Renewable and Sustainable Energy Reviews,2009,13():1800-1818
    [103]A. Kassem, M. Hamad.A Microcontroller-Based Multi-Function SolarTracking System.2011IEEE
    [104]A review of solar tracker patents in Spain
    [105]Alexander B. Maish. A SELF-ALIGNING PHOTOVOLTAIC ARRAY TRACKING CONTROLLER[J].1988IEEE1309-1314
    [106]郑小年,黄巧燕.太阳跟踪方法及应用[J].能源技术.2003,24(4):149-151.
    [107]陈维,李戬洪.抛物柱面聚焦的几种跟踪方式的光学性能分析[J].太阳能学报.,2003,24(4):478-479.
    [108]K.K. Chong, C.W. Wong. General formula for on-axis sun-tracking system and its application in improving tracking accuracy of solar collector[J].Solar Energy,2009,83(3):298-305
    [109]M. Berenguel, F. R. Rubio, A. Valverde, et al.An artificial vision-based control system for automatic heliostat positioning offset correction in a central receiver solar power plant.Solar Energy[J],2004,76(5):563-575
    [110]Mohanad Alata, M.A. Al-Nimr, Yousef Qaroush. Developing a multipurpose sun tracking system using fuzzy control[J],Energy Conversion and Management.2005,46(7-8):1229-1245
    [111]F.R. Rubio, M.G. Ortega, F. Gordillo, M. Lopez-Martinez. Application of new control strategy for sun tracking.Energy Conversion and Management.2007,48(7):2174-2184
    [112]SOTERIS A. KALOGIROU. DESIGN AND CONSTRUCTION OF A ONE-AXIS SUN-TRACKING SYSTEM[J].Solar Energy,1996,57(6):465-469,
    [113]H. Arbab, B. Jazi, M. Rezagholizadeh.A computer tracking system of solar dish with two-axis degree freedoms based on picture processing of bar shadow[J]. Renewable Energy,2009,34(12)1114-1118
    [114]V. Poulek, M. Libra. New solar tracker[J]. Solar Energy Materials and Solar Cells.1998,51(3)113-120
    [115]George C. Bakos. Design and construction of a two-axis Sun tracking system for parabolic trough collector (PTC) efficiency improvement[J]. Renewable Energy,2006,31(15):2411-2421
    [116]SOTERIS A. KALOGIROU.DESIGN AND CONSTRUCTION OF A ONE-AXIS SUN-TRACKING SYSTEM[J].Solar Energy,1996,57(6):465-469,
    [117]P. Roth, A. Georgiev, H. Boudinov. Design and construction of a system for sun-tracking[J]. Renewable Energy,2004,29():393-402
    [118]Georgiev, A.; Roth, P.; Olivares, A. Sun following system adjustment at the UTFSM. Energ.Convers. Manage.2004,45,1795-1806.
    [119]Baltas P, Tortoreli M, Russel P. Evaluation of power output for fixed and step tracking photovoltaic arrays. Solar Energy1986;37(2):147-63.
    [120]Brunotte M, Goetzberger A, Blieske U. Two-stage concentrator permitting concentration factors up to300X with one-axis tracking. Solar Energy1996;56(3):285-300.
    [121]Shinni S, Rumala N. A shadow method for automatic tracking. Solar Energy,1986;37(3):245-7.
    [122]Zogbit R, Laplaze D. Design and construction of a sun tracker. Solar Energy1984;33(314):369-72.
    [123]J.B.Blackmon.Solar One Beam Characterization System Design Description and Requirements Document. SAND86.8179
    [124]HAN Changjun, LV Yi, HAO Yu, JIN Jingjing. A Solar Ray Automatic Tracking Device Based on Image Sensor. Proceedings of the30th Chinese Control Conference July22-24,2011, Yantai, China5187-5190
    [125]Mohammad Tafir Mustaffa, Fiona Li Hsia Yeoh. A prototype of a solar-tracking power-generating system[J], International Journal of Ambient Energy,201132:(3),134-145
    [126]Salah Abdallah. The effect of using sun tracking systems on the voltage-current characteristics and power generation of flat plate photovoltaics[J]. Energy Conversion and Management,2004,45(11):1671-1679
    [127]Salah Abdallah, Salem Nijmeh. Two axes sun tracking system with PLC control[J]. Energy Conversion and Management,2004,45(12):1931-1939
    [128]Koyuncu B, Balasubramanian K. A microprocessor controlled automatic sun tracker[J]. IEEE Trans Consum Electron1991;37(4):913-917.
    [129]lgnacio Luque-Heredia, Carlos Martin, hlaria T. Madanes, Jose M. Moreno, Josd L. Auger, Vincent Bodin, Jeslis Alonso, Vicente Diaz, and Gabriel Sala. A SUBDEGREE PRECISION SUN TRACKER FOR lOOOX MICROCONCENTRATOR MODULES.3rd world conference on photovoltaic energy conversion may11-18,2003Osaka Japan
    [130]J. Beltran A., J. L. Gonzalez Rubio S. y C. D. Garcia-Beltran. Design, Manufacturing and Performance Test of a Solar Tracker Made by a Embedded Control[C],Fourth Congress of Electronics, Robotics and Automotive Mechanics,2007
    [131]Tamer T.N. Khatib, A. Mohamed, R.J. Khan and N. Amin. A Novel Active Sun Tracking Controller for Photovoltaic Panels[J]. Journal of Applied Sciences,20099(22):4050-4055
    [132]Lwin Lwin Oo, Nang Kaythi Hlaing.Microcontroller-Based Two-Axis Solar Tracking System. Second International Conference on Computer Research and Development.2010IEEE, computer society
    [133]A. R. Ehsani, J.A. Reagan. A MICROPROCESSOR BASED AUTO SUN-TRACKING MULTI-CHANNEL SOLAR RADIOMETER SYSTEM. IEEE1992,1696-1698
    [134]S. Zubair, A. Suleiman2, H. T. Abdulazzez, B. A. Salihu. DESIGN AND CONSTRUCTION OF A MICROCONTROLLER BASED SINGLE AXIS SOLAR TRACKER[J].Innovations in Science and Engineering,2011,1(1):41-47
    [135]Meeus,Astronomical Algorithms,2ed [M].1998. Will2mann2Bell, Inc. Richmond, Virginia, USA.
    [136]夏坚白,陈永龄,王之卓.实用天文学[M].武汉:武汉大学出社,2007.34-90.
    [137]http://www.nrel.gov/csp/troughnet/models_tools.html#soltrace
    [138]D. Buie, A.G. Monger. The effect of circumsolar radiation on a solar concentrating system[J]. Solar Energy,2004,76(1):181-185
    [139]Damien charles william Buie.optical considerations in solar concentrating systems[Phd][D]. The University of Sydneyfor,2004
    [140]F.M.F. Siala, M.E. Elayeb.Mathematical formulation of a graphical method for a no-blocking heliostat field layout[J].Renewable Energy,2001,23(1):77-92
    [141]Marcelino Sa'nchez, Manuel Romero.Methodology for generation of heliostat field layout in central receiver systems based on yearly normalized energy surfaces[J].Solar Energy.2006,80(7):861-874
    [142]Francisco J. Collado. Preliminary design of surrounding heliostat fields[J].Renewable Energy.2009,34(5):1359-1363
    [143]Daniel Chemisana, Manuel. Linear Fresnel concentrators for building integrated applications[J]. Energy Conversion and Management,2010,51(7)1476-1480.
    [144]Roberto Grena, Pietro Tarquini. Solar linear Fresnel collector using molten nitrates as heat transfer fluid[J]. Energy,2011,36(2):1048-1056
    [145]Renewable energy focus handbook[M]. New York:El sevier/Academic Press,2009.319-333
    [146]Hottel, H. C, A simple model for estimating the transmittance of direct solar radiation through clear atmospheres [J]. Solar Energy,1976,18(2):129-134
    [147]Collado FJ, Ture'gano JA. Calculation of the annual thermal energy supplied by a defined heliostat field[J]. Solar Energy,1989;42(2):149-165.
    [148]Mark Schmitz, Peter Schwarzbozl, Reiner Buck, Robert Pitz-Paal.Assessment of the potential improvement due to multiple apertures in central receiver systems with secondary concentrators [J]. Solar Energy,2006,80(1):111-120
    [149]Falcone PK. A handbook for solar central receiver design. Sandia National Laboratories,1986.2.2-2
    [150]EDNA SHAVIV, ABRAHAM YEZIORO. ANALYZING MUTUAL SHADING AMONG BUILDINGS[J].SolarE nergy,1997,59(1-3):83-88
    [151]Sizmann, R. Solar Power Plants[M]. C. J.Winter, R. L. Sizmann, and L. L. Vant-Hull. Berlin:Springer-Verlag,1991.120-122,
    [152]S.D. Odeh, M. Behnia, G.L. Morrison.Performance evaluation of solar thermal electric generation systems[J]. Energy Conversion and Management2003,44(15):2425-2443
    [153]G.Sassi.Some notes on shadow and blockage effects[J]. solar energy,1983,33(3):331-333
    [154]Collado FJ, Ture'gano JA. an analytic function for the flux density due to sunlight reflected from a heliostat[J]. Solar Energy,1986;37(3):215-234.
    [155]Moustafa M. Elsayed, Kadry A. Fathalah.Estimation of percentage useful area of a heliostat when considering shadowing and blocking[J].Solar&Wind Technology,1986,3(3):199-205
    [156]Spencer, G.H., and Murty, M.V.R.K. General Ray-Tracing Procedure[J]. Journal of the Optical Society of America,1962,52(6):672-678.
    [157]B. Belhommel,R. Pitz-Paal,P. Schwarzbozl,S. Ulmer.A New Fast Ray Tracing Tool for High-Precision Simulation of Heliostat Fields[J], Journal of Solar Energy Engineering.2009:131(8):031002