半导体激光器在光注入下的偏振及动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪八十年代起注入式半导体激光器(SL)受到了人们极大的关注,它们被广泛地应用在锁频、锁相、降低噪声、提高调制带宽、时钟恢复、微波生成和同步通信等领域。受到常规光反馈(COF)、共轭光反馈(PCF)等自注入和单/双向外部注入的SL,常呈现出丰富的动态特性。深入研究这些动力学行为,有助于揭示注入式SL这一典型非线性系统的物理本质,为提高SL工作性能、拓展其在光通信等领域的应用提供参考。另外,垂直腔面发射激光器(VCSELs)作为新型微腔SL的代表,较之传统边发射SL具有众多突出优点,但VCSELs特殊的有源区结构使其输出的偏振特性非常复杂,偏振自由度的引入导致注入条件下输出的非线性动态更加丰富,产生了许多新的课题和应用。因此,本论文对SL在光注入条件下的非线性动态和偏振特性展开深入研究,目的在于揭示光注入下SL的动态演变形式、偏振态分布规律和这些特性的物理成因,并探讨SL动态特性及偏振自由度等方面的控制措施和实际应用。
     处理方法上,基于自旋反转模型、速率方程和无量纲化处理方法,并采用Simulink多级封装技术,建立仿真模块;借助稳态分析、动力学分岔理论和小信号微扰理论等,并参考分岔图、频谱图、眼图、相空间轨迹、参数空间映射、相关性曲线等指标,来刻画输出的物理特性。研究的主要内容和结论有:
     综合考虑多次反馈和共轭镜响应时间等因素的影响后,对边发射SL输出分岔行为、光场时域信号对称性和噪声特性的研究表明:多次反馈使输出分岔提前,甚至改变倍周期和混沌状态的出现范围,并导致PCF条件下输出光场旋转π后不再对称;共轭镜响应时间对输出非线性和强度噪声都具有一定抑制作用,且响应时间越长抑制作用越明显;此外,基于PCF构建的同步通信系统,对共轭镜的位置不敏感,并对光纤传输中的色散和非线性效应具有一定消弱作用。
     采用不对称互注入和混合注入的新思想实现了SL的同步通信,并将前一思想发展到一对多和多对一的光网络通信中。仿真发现:引入不对称注入能够克服传统互注入系统不能进行混沌同步通信的缺点,确保两SL稳定的注入锁定同步;同步后,强弱两个注入方向上都表现出混沌滤波效应,可以实现双向通信。借助中间媒介引入单/双向混合注入,实现了两外部SL的类全同步混沌通信,该方法克服了传统同步系统中同步品质受编码影响以及信息的调制频率受混沌滤波限制不能大于弛豫振荡频率的缺点。
     详细分析了互注入VCSELs系统的偏振和动态特性,并将讨论拓展到强度不对称和含有附加反馈两种特殊情况。平行互注入时(注入光偏振方向与被注入VCSELs向同),两VCSELs表现出与光反馈相似的特点;垂直注入时(注入光偏振方向与被注入VCSELs垂直),频率失调可引起两VCSELs不同的偏振开关(PS)效应。以x偏振模式垂直注入为例,通过动态分析,发现两VCSELs输出存在一不对称区域,该区域内它们分别输出x和y偏振模式,互注入转变为单向注入。选择合适的互注入参数,还可以得到输出耦合模式近似周期性的模式跳变以及与之伴随的PS效应,数值模拟证实其物理原因为,具有最大增益的模式随参数的变化在x和y两个偏振方向上交替产生。
     利用时变垂直光注入的新方法来控制VCSELs的PS双稳特性,并推导了相应的数学模型,进行解释。时变注入对PS有推迟作用,注入系数变化越快,PS双稳区域越宽;物理上,PS的推迟作用源于输出对先前状态的记忆作用,推导的数学模型可很好地解释该特性。此外,论文首次针对VCSELs线性和椭圆两种输出偏振态,分析了其四波混频(FWM)效应和光电反馈下的动态特性。结果表明:线性偏振的FWM效应和光电反馈特性与边发射SL相似;椭圆偏振的FWM效应对于二色性和双折射参数非常敏感,介于正负弛豫振荡频率之间的共轭效率和再生效率的频谱通常会发生畸变;弱光电反馈引起椭圆偏振态直接分岔,强光电反馈使输出的两个线性偏振态呈现不同频率的同相或反相振荡。
Since 1980s, optical injected semiconductor lasers (SL) have drawn much attention. They are widely used in frequency locking, phase locking, noise reducing, modulation width enhancement, clock recovery, microwave generation and synchronized communication etc. When subjected to self-injection, such as common optical feedback (COF) and phase conjugated feedback (PCF), or subjected to unidirectional and mutual injections from outer lasers, SLs tend to show rich dynamics. A detailed study on such behaviour can help us comprehending the essence of nonlinear systems of SLs, as well as enhancing the device performances and extending applications of SLs in optical communication. Besides, as a representative type of SL, vertical-cavity surface-emitting laser (VCSEL) shows lots of merits over traditional edge-emitting lasers (EELs). However, the polarization characteristics of a VCSEL is complex due to it's special cavity configuration. The polarization degree of freedom adds more complex dynamics to optical injected VCSELs, generating new issues and applications. So this paper presents a detailed study on nonlinear dynamics and polarization characteristics of optical injected SLs. Our purpose is to expose the dynamical evolvement of SL, the law of polarization distribution and the related physical mechanism, and also to find ways of polarization dynamics control and some related applications.
     We develop simulation models by using multilevel masking method in Simulink. These models are found on the spin-flip mode, the rate equations and dimensioness method. In the analysis, steady state analysis, dynamical bifurcation and small perturbation theory are used; besides, bifurcation diagram, spectrum, eyediagram, track of phase space, mapping of parameter space, and correlation curve are taken as references to character output's physical characteristics. The main contents and results of this thesis are:
     The bifurcation behaviors, symmetry of the time serial of optical filed and noise characteristics for EELs are analyzed, taking multiple feedback and response time of phase conjugate mirror in to consideration. The result show, multiple feedbacks will advance the bifurcation, or change the ranges of multiple period and chaotic states; optical field under multiple PCF is no longer symmetrical when rotated byπ; long response time of phase conjugate mirror suppresses nonlinearity and relative intensity noise. In addition, PCF can also be used in optical chaos communication as to reduce the dispersion and nonlinearity of the fibers.
     Novel ideas of asymmetrical mutual injection and multiplex injection are used for the first time to realize synchronized chaotic communication; the former are also extended for the use of one-to-many and many-to-one optical network communication. By using asymmetrical mutual injection, the disadvantage of temporary synchronization in traditional mutual injection system is overcome, and chaos-pass-filtering effect is shown in both directions, so we can communicate bidirectionally. By using multiplex injection introduced by an intermediary, the disadvantages, that encoding reduces synchronization degree and message frequency is constrained by chaos-pass-filtering, are avoided.
     The dynamics and polarization characteristics of mutually coupled VCSELs are investigated detailedly. In addition, the ways of using asymmetric mutual injection to control dynamics and polarization of VCSELs are discussed. Under polarization parallel mutual injection, the two VCSELs show similar characteristics as they were subjected to optical feedback. Under polarization orthogonal mutual injection, the two VCSELs show different polarization switching (PS) characteristics due to frequency detuning. Taking x-polaized mode orthogonal injection as an example, we find that there exists an asymmetrical region wherein the two VCSELs emit x-polarized and y-polaized mode respectively, and mutual injection turns into undirectional injection. Under certain parameter conditions, the compound mode of VCSELs shows almost periodical mode hopping with the company of PS, which is due to the maximal-gain mode generating alternatively in the x-polarized and y-polarized directions.
     PS bistability of VCSELs is controlled using a novel method of time-varying orthogonal injection, and a simple theoretical model is developed to explain the influence of time-varying injection. It is found that PS is postponed by time-varying injection, and the width of PS region is broadened by a fast scanning rate. Physically, this is due to the output's memory about the former state, and it can also be well explained by the theoretical model. Furthermore, the thesis investigates, for the first time, four-wave-mixing (FWM) effect and optoelectronic feedback issue about VCSELs, taking both the linearly and elliptically polarized states into consideration. The results show, FWM of linearly polarized state is similar to that of EELs; FWM of elliptically polarized state are sensitive to anisotropy and birefringence parameters, especially, when frequency detuning is between positive and negative relaxation oscillations frequency, the regenerated and phase conjugated spectra show evident distortions. Weak optoelectronic feedback induces bifurcation of the elliptically state, and strong optoelectronic feedback adds in-phase and anti-phase fluctuations with different frequencies to the two linearly polarized states.
引文
[1]G.P.Agrawal,N.K.Dutta.Semiconductor lasers,2nd ed..New York:Van Nostrand Reinhold.1993.
    [2]栖原敏明.半导体激光器基础.周南生.科学出版社,2002.
    [3]黄德修,刘雪峰.半导体激光器及其应用.国防工业出版社,2001
    [4]http://wiki.oecr.corn/doc.php?action=view&docid=121.
    [5]http://www.lasercomponents.de/uk/laserdioden.html?&MP=6-634.
    [6]http://escher.elis.ugent.be/publ/Edocs/PPT/P103_028.ppt.
    [7]http://www.sandia.gov/mstc/technologies/photonics/index.html.
    [8]R.Lang,K.Kobayashi.External optical feedback effects on semiconductor injection laser properties.IEEE J.Quantum Electron.,1980,16(3):347-355.
    [9]G.P.Agrawal,G.R.Gray.Effect of phase-conjugate feedback on the noise characteristics of semiconductor lasers.Phys.Rev.A.1992,46(9):5890-5898.
    [10]K.C.Harvery,C.J.Myatt.External-cavity diod laser using a grazing-incidence diffraction grating.Opt.Lett.1991,16(12):910-912.
    [11]B.Krauskopf,G.R.Gray,D.Lenstra.Semiconductor laser with phase-conjugate feedback:dynamics and bifurcations.Phys.Rev.E,1998,58(6):7190-7197.
    [12]K.Green,B.Krauskopf.Bifurcation analysis of a semiconductor laser subject to non-instantaneous phase-conjugate feedback.Opt.Commun.,2004,231:383-393.
    [13]伊贺健一,小山二三夫.面发射激光器基础与应用.郑军.科学出版社,2002.
    [14]潘炜,张晓霞,罗斌等.垂直腔面发射半导体微腔激光器.物理,1999,28(4):210-216.
    [15]Z.G.Pan,S.Jiang,M.Dagenais et al..Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers.Appl.Phys.Lett.,1993,63(22):2999-3001.
    [16]I.Gatare,M.Sciamanna,J.Buesa et al..Nonlinear dynamics accompanying polarization switching in vertical-cavity surface-emitting lasers with orthogonal optical injection.Appl.Phys.Lett.,2006,88(10):101106.
    [17]M.B.Panish,I.Hayashi,S.Sumski.A technique for the preparation of low-threshold room-temperature GaAs laser diode structures.IEEE J.Quantum Electron.,1969,5(4):210-211.
    [18]Z.I.Alferov,V.M.Andreev,V.I.Korolkov et al..P-n-p-n structures based on GaAs and AlGaAs solid solutions.Sov.Phys.Semicond.,1970,4(3):481-483.
    [19]M.B.Panish,I.Hayashi,S.Sumski.Double-heterostructure injection lasers with room-temperatuer thresholds as low as 2300 A/cm~2.Appl.Phys.Lett.,1970,16(8):326-327.
    [20]江剑平.半导体激光器.电子工业出版社.2000.
    [21]http://optics.org/cws/article/research/18897;jsessionid=85E34F99C55EFB000B 9E366ABC2E7E08.
    [22]http://www.ulm-photonics.corn/docs/pr/MIKA_050201.pdf.
    [23]K.Iga,S.Kinoshita,F.Koyama.Microcavity GaAlAs/GaAs surface-emitting laser with I_(th)=6mA.Electron.Lett.,1987,23(3):134-136.
    [24]http://comm.ccidnet.com/art/1712/20050224/215581_2.html.
    [25]A.V.Krishnamoorthy,K.W.Goossen,L.M.F.Chirovsky et al..16×16VCSEL array flip-chip bonded to CMOS VLSI circuit.IEEE Photon.Technol.Lett.,2000,12(8):1073-1075.
    [26]H.Roscher,M.B.Sanayeh,S.B.Thapa et al..VCSEL arrays with redundant pixel designs for 10 Gbit/s 2-D space-parallel multimode fiber transmission.Optical Communication,ECOC,Scotland,2005,IEE Conference Publications,2005:687-688.
    [27]http://courses.ece.uiuc.edu/ece445/projects/fall2005/project3_presentation.ppt
    [28]J.Osmundsen,N.Gade.Influence of optical feedback on laser frequency spectrum and threshold conditions.IEEE J.Quantum Electron.,1983,19(3):465-469.
    [29]G.P.Agrawl.Line narrowing in a single-mode injection laser due to external optical feedback.IEEE J.Quantum Electron.,1984,20(5):468-471.
    [30]P.Spano,S.Piazzolla,M.Tamburrini.Frequency and intensity noise in injection-locked semiconductor lasers:theory and experiments.IEEE J.Quantum Electron.,1986,22(3):427-435.
    [31]L.N.Langley,K.A.Shore.Effect of optical feedback on the noise properties of vertical cavity surface emitting lasers.IEE Proc.-Optoelectron.,1997,144(1):34-38.
    [32]S.F.Yu.Nonlinear dynamics of vertical-cavity surface-emitting lasers.IEEE J.Quantum Electron.,1999,35(3):332-341.
    [33]J.Y.Law,G.P.Agrawal.Feedback-induced chaos and intensity-noise enhancement in vertical-cavity surface-emitting lasers.J.Opt.Soc.Am.B,1998,15(2):562-569.
    [34]A.Valle,L.Pesquera.Theoretical calculation of relative intensity noise of multimode vertical-cavity surface-emitting lasers.IEEE J.Quantum Electron.,2004,40(6):597-606.
    [35]M.Jungo,D.Erni,W.Baechtold.2-D VCSEL model for investigation of dynamic fiber coupling and spatially filtered noise.IEEE Photon.Technol.Lett.,2003,15(1):3-5.
    [36]M.Yousefi,D.Lenstra,G.Vemuri.Nonlinear dynamics of a semiconductor laser with filtered optical feedback and the influence of noise. Phys. Rev. E, 2003, 67(4): 046213.
    [37] J. Ohtsubo. Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback. IEEE J. Quantum Electron., 2003, 38(9): 1141-1154.
    [38] N. Kikuchi, Y. Liu, J. Ohtsubo. Chaos control and noise suppression in external-cavity semiconductor lasers. IEEE J. Quantum Electron., 1997, 33(1): 56-65.
    [39] T. Heil, I. Fischer, W. Elsaβer. Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime. Phys. Rev. Lett., 2001, 87(24): 243901.
    [40] E. A. Viktorov, P. Mandel. Low frequency fluctuations in a multimode semiconductor laser with optical feedback. Phys. Rev. Lett., 2000, 85(15): 153157.
    [41] C. Masoller, N. B. Abraham. Low-frequency fluctuation in vertical-cavity surface-emitting semiconductor lasers with optical feedback. Phys. Rev. A, 1999, 59(4): 3021-3031.
    [42] C. Masoller, N. B. Abraham. Stability and dynamical properties of the coexisting attractors of an external-cavity semiconductor laser. Phys. Rev. A, 1998,57(2): 1313-1322.
    [43] J. Y. Law, G. P. Agrawal. Effects of optical feedback on static and dynamic characteristics of vertical-cavity surface-emitting lasers. IEEE J. Sel. Top. Quantum Electron., 1997, 3(2): 353-358.
    [44] I. Pierce, P. Rees; P. S. Spencer. Multimode dynamics in laser diodes with optical feedback. Phys. Rev. A, 2000, 61(5): 053801.
    [45] K. Otsuka, J. Y. Ko, T. Kubota. Nonstationary chaotic oscillations in lasers with frequency-shifted feedback. Opt. Lett., 2001, 26(9): 638-640.
    [46] S. Rajesh, V. M. Nandakumaran. Suppression of chaos in a directly modulated semiconcuctor laser with delayed optoelectronic feedback. Phys. Lett. A, 319(3): 340-347.
    [47] F. Y. Lin, J. M. Liu. Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback. IEEE J. Quantum Electron., 2001, 37(3): 329-336.
    [48] M. Cronin-Golomb, K. Y. Lau, A. Yariv. Infrared photorefractive passive phase conjugation with BaTiO3 - Demonstrations with GaAlAs and 1.09-micron Ar(+) lasers. Appl. Phys. Lett., 1985, 47(6): 567-569.
    [49] H. Horiuchi, T. Shimura, T. Omatsu et al.. Narrow bandwidth operation of high-power broad-area diode laser using cascaded phase-conjugate injection locking. Appl. Phys. B, 1999, 68(5): 1021-1025.
    [50] J. S. Lawrence, D. M. Kane. Contrasting conventional optical and phase-conjugate feedback in laser diodes.Phys.Rev.A,2001,63(3):033805.
    [51]L.N.Langley,K.A.Shore.Intensity noise and linewidth characteristics of laser diodes with phase conjugate optical feedback,IEE Proc.-Optoelectron.,1994,14(2):103-108.
    [52]C.Pedersen,R.S.Hansen.Single frequency,high power,tapered diode laser using phase-conjugated feedback.Opt.Express,2005,13(11):3961-3968.
    [53]M.Vainio.Phase-conjugate external-cavity diode laser.IEEE Photon.Technol.Lett.,2006,18(19):2047-2049.
    [54]G.R.Gray,G.P.Agrawal.Chaotic dynamics of semiconductor lasers with phase-conjugate feedback.Phys.Rev.A,1994,49(3):2096-2105.
    [55]O.K.Andersen,A.P.A.Fischer,I.C.Lane.Experimental stability diagram of a diode laser subject to weak phase-conjugate feedback from a rubidium vapor cell.IEEE J.Quantum Electron.,1999,35(4):577-582.
    [56]A.Murakami,J.Ohsubo.Dynamics and linear stability analysis in semiconductor lasers with phase-conjugate feedback.IEEE J.Quantum Electron.,1998,34(10):1979-1984.
    [57]张伟利,潘炜,罗斌等.奇偶反馈相位共轭腔垂直腔面发射激光器非线性系统的理论研究。中国激光,2006,33(2):179-184.
    [58]张伟利,潘炜,罗斌等.非即变相位共轭光对半导体激光器动态特性的影响.光学学报,2005,25(9):1219-1224.
    [59]L.Chrostowski,B.Faraji,W.Hofmann et al..40 GHz Bandwidth and 64 GHz Resonance Frequency in Injection-Locked 1.55 μm VCSELs.IEEE J.Sel.Top.Quantum Electron.,2007,13(5):1200-1208.
    [60]J.M.Tang,K.A.Shore.Analysis of nearly degenerate four-wave mixing in multisection laser diodes.IEEE J.Sel.Top.Quantum Electron.,1999,5(3):866-872.
    [61]R.Roy,K.S.Thomburg.Experimental synchronization of chaotic lasers.Phys.Rev.Lett.,1994,72(13):2009-2012.
    [62]P.Colet,R.Roy.Digital communication with synchronized chaotic lasers.Opt.Lett.,1994,19(24):2056-2058.
    [63]C.R.Mirasso,P.Colet,P.G.Fernandez.Synchronization of chaotic semiconductor lasers:application to encoded communications.IEEE Photon.Technol.Lett.,1996,8(2):299-301.
    [64]G.D.VanWiggeren,R.Roy.Communications with chaotic lasers.Science,1998,279:1198-1200.
    [65]A.Argyris,D.Syvridis,L.Larger,et al..Chaos-based communications at high bit rate using commercial fibre-optic links.Nature,2005,437:343-346.
    [66]X.F.Li,W.Pan,B.Luo et al..Chaos synchronization and communication of cascade-coupled semiconductor lasers.IEEE J.Lightwave Technol.,2006,24(12):4936-4945.
    [67] X. F. Li, W. Pan, D. Ma et al.. Chaos synchronization of unidirectionally injected VCSELs with global and mode-selective coupling. Opt. Express, 2006, 14(8): 3138-3151.
    [68] J. M. Buldu, J. Garcia-Ojalvo, M. C. Torrent. Demultiplexing chaos from multimode semiconductor lasers. IEEE J. Quantum Electron., 2005, 41(2): 164-170.
    [69] V. Annovazzi-Lodi, M. Benedetti, S. Merlo. Message encryption by phase modulation of a chaotic optical carrier. IEEE Photon. Technol. Lett., 2007, 19(2): 76-78.
    [70] S. F. Yu, P. Shum, N. Q. Ngo. Performance of optical chaotic communication systems using multimode vertical cavity surface emitting lasers. Opt. Commun. 2001,200: 143-152.
    [71] A. Uchida, Y. Liu, P. Davis. Characteristics of chaotic masking in synchronized semiconductor lasers. IEEE J. Quantum Electron., 2003, 39(8): 963-970.
    [72] J. Paul, M. W. Lee, K. A. Shore. Effect of chaos pass filtering on message decoding quality using chaotic external-cavity laser diodes. Opt. Lett., 2004, 29(21): 2497-2499.
    [73] Y. Liu, H. F. Chen, J. M. Liu et al. Communication using synchronization of optical-feedback-induced chaos in semiconductor lasers. IEEE T. Circuits-I. 2001,48(12): 1484-1490.
    [74] R. Vicente, T. Perez, C. R. Mirasso. Open- versus closed-loop performance of synchronized chaotic external-cavity semiconductor lasers. IEEE J. Quantum Electron., 2002, 38(9): 1197-1204.
    [75] J. M. Liu, H. F. Chen, S. Tang. Synchronized chaotic optical communications at high bit rates. IEEE J. Quantum Electron., 2002, 38(9): 1184-1196.
    [76] S. Tang, J. M. Liu. Effects of message encoding and decoding on synchronized chaotic optical communications. IEEE J. Quantum Electron., 2003, 39(11): 1468-1475.
    [77] A. Murakami. Phase locking and chaos synchronization in injection-locked semiconductor lasers. IEEE J. Quantum Electron., 2003, 39(3): 438-447.
    [78] A. Murakami, K. A. Shore. Chaos-pass filtering in injection-locked semiconductor lasers. Phys. Rev. A, 2005, 72(05): 053810.
    [79] M. W. Lee, K. A. Shore. Chaotic message broadcasting using DFB laser diodes. Electron. Lett., 2004,40(10): 614-615.
    [80] M. W. Lee, K. A. Shore. Demonstration of a chaotic optical message relay using DFB laser diodes. IEEE Photon. Technol. Lett., 2006, 18(1): 169-171.
    [81] S. P. Flynn, P. S. Spenser, S. Sivaprakasam et al.. Identification of the optimum time-delay for chaos synchronization regimes of semiconductor lasers. IEEE J. Quantum Electron., 2006, 42(4): 427-434.
    [82] A. Hohl, A. Gavrielides, T. Erneus et al.. Localized synchronization in two-coupled nonidentical semiconductor lasers. Phys. Rev. Lett., 1997, 78(25): 4745-4748.
    [83] T. Heil, I. Fischer, W. Elsasser et al.. Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers. Phys. Rev. Lett., 2001, 86(5): 795-798.
    [84] F. Rogister, M. Blondel. Dynamics of two mutually delay-coupled semiconductor lasers. Opt. Commun., 2004, 239: 173-180.
    [85] F. Rogister, J. Garcia-Ojalvo. Symmetry breaking and high-frequency periodic oscillations in mutually coupled laser diodes. Opt. Lett., 2003, 28(14): 1176-1178.
    [86] H. Erzgraber, D. Lenstra, B. Krauskopf et al.. Mutually delay-coupled semiconductor lasers: mode bifurcation scenarios. Opt. Commun., 2005, 255: 286-296.
    [87] J. Multet, C. Mirasso, T. Heil et al.. Synchronization scenario of two distant mutually coupled semiconductor lasers. J. Opt. B, 2004, 6(1): 97-105.
    [88] M. C. Chiang, H. F. Chen, J. M. Liu. Experimental synchronization of mutually coupled semiconductor lasers with optoelectronic feedback. IEEE J. Quantum Electron., 2005,41(11): 1333-1340.
    [89] R. Vicente, C. R. Mirasso, I. Fischer. Simultaneous bidirectional message transmission in a chaos-based communication scheme. Opt. Lett., 2007, 32(4): 403-405.
    [90] J. M. Buldu, M. C. Torrent, J. Garcia-Ojalvo. Synchronization in semiconductor laser rings. IEEE J. Lightwave Technol., 2007, 25(6): 1549-1554.
    [91] T. H. Russell, T. D. Milster. Polarization switching control in vertical-cavity surface-emitting laser. Appl. Phys. Lett., 1997, 70(19): 2520-2522.
    [92] C. Masoller, M. S. Torre. Influence of optical feedback on the polarization switching of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron., 2005,41(4): 483-489.
    [93] M. S. Miguel, Q. Feng, J. V. Moloney. Light-polarization dynamics in surface-emitting semiconductor lasers. Phys. Rev. A, 1995, 52(2): 1728-1739.
    [94] J. M. Regalado, F. Prati, M. S. Miguel et al.. Polarization properties of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron., 1997, 33(5): 765-783.
    [95] Y. Hong, R. Ju, P. S. Spencer et al.. Investigation of polarization bistability in vertical-cavity surface-emitting lasers subjected to optical feedback. IEEE J. Quantum Electron., 2005,41(5): 619-624.
    [96] M. Sciamanna, K. Panajotov, H. Thienpont. Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers. Opt. Lett., 2003, 28(17): 1543-1545.
    [97] A. Valle, L. Pesquera, K. A. Shore. Polarization selection and sensitivity of external cavity vertical-cavity surface-emitting laser diodes. IEEE Photon. Technol. Lett., 1998, 10(5): 639-641.
    [98] M. A. Arteaga, H. J. Unold, J. M. Ostermann et al.. Investigation of polarization properties of VCSELs subject to optical feedback from an extremely short external cavity—part I: theoretical analysis. IEEE J. Quantum Electron., 2006, 42(2): 89-101.
    [99] M. Sondermann, H. Bohnet, T. Ackemann. Low-frequency fluctuations and polarization dynamics in vertical-cavity surface-emitting lasers with isotropic feedback. Phys. Rev. A, 2003, 67(2): 021802.
    [100]M. Sciamanna, K. Panajotov. Route to polarization switching induced by optical injection in vertical-cavity surface-emitting lasers. Phys. Rev. A, 2006, 73(2): 023811.
    [101]K. Panajotov, M. Sciamanna, A. Tabaka et al.. Residence time distribution and coherence resonance of optical-feedback-induced polarization mode hopping in vertical-cavity surface-emitting lasers. Phys. Rev. A, 2004, 69(1): 011801.
    [102]R. Ju, P. S. Spencer, K. A. Shore. Polarization-preserved and polarization-rotated synchronization of chaotic vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron., 2005,41(12): 1461-1467.
    [103]K. Otsuka, K. Nemoto, K. Kamikariya et al.. Chaos synchronization among orthogonally polarized emissions in a dual-polarization laser. Phys. Rev. E, 2007, 76(2): 026204.
    [104]C. Masoller, M. S. Torre, P. Mandel. Influence of the injection current sweep rate on the polarization switching of vertical-cavity surface-emitting lasers. J. Appl. Phys., 2006, 99(2): 026108.
    [105]J. Paul, C. Masoller, Y. Hong et al.. Experimental study of polarization switching of vertical-cavity surface-emitting lasers as a dynamical bifurcation. Opt. Lett, 2006, 31(6): 748-750.
    [106]N. Fujiwara, Y. Takiguchi, J. Ohtsubo. Observation of the synchronization of chaos in mutually injected vertical-cavity surface-emitting semiconductor lasers. Opt. Lett, 2003, 28(18): 1677-1679.
    [107]R. Vicente, J. Mulet, C. R. Mirasso et al.. Bistable polarization switching in mutually coupled vertical-cavity surface-emitting lasers. Opt. Lett, 2006, 31(7): 996-998.
    [108] S. Jiang, M. Dagenais. Nearly degenerate four-wave mixing in fabry-perot semiconductor laser. Opt. Lett, 1993, 18(16): 1337-1339.
    [109] P. L. Li, D. X. Huang, X. L. Zhang et al.. Theoretical analysis of tunable wavelength conversion based on FWM in a semiconductor fiber ring laser. IEEE J. Quantum Electron, 2005, 41(3): 581-588.
    [110]J. Houliha, D. Goulding, T. Busch et al.. Experimental investigation of a bistable system in the presence of noise and delay.Phys.Rev.Lett.,2004,92(5):050601.
    [111]H.H.Lu,S.G.Tzeng,Y.W.Chuang et al..Bidirectional Radio-Over-DWDM transport systems based injection-locked vcsels and optoelectronic feedback techniques.IEEE Photon.Technol.Lett.2007,19(5):315-317.
    [112]潘仲琦,杨今强,叶亚斌等.程控宽带连续调谐外腔半导体激光器特性分析.光学学报,1999,19(2):221-225.
    [113]徐磊,姚敏玉,张剑峰等.GS-DFB半导体激光器的光自注入技术。中国激光,2000,27(5):427-730.
    [114]薛林,赵华凤,李栩辉等.弱反馈光纤光栅外腔半导体激光器特性研究.中国激光,2001,28(10):877-880.
    [115]张书练.激光回馈技术及发展.激光与光电子学进展,2007,44(11):65-76.
    [116]卒国锋,程灿,瞿荣辉等.体布拉格光栅外腔半导体激光器光谱特性研究.光学学报,2007,27(10):1821-1826.
    [117]徐庆扬,陈少武.光纤光栅外腔半导体激光器改进模型分析.中国激光,2005,32(2):156-160.
    [118]段云锋,张江水,田晓洁等.紧凑型光栅外腔可调谐半导体激光器.量子电子学报,2005,22(2):181-185.
    [119]毛陆虹,郭维廉,陈弘达等.量子阱半导体激光器调制特性和噪声的电路模拟。通信学报,2001,22(1):38-42.
    [120]吴晓冬,陈军,葛剑虹.0.02 nm带宽近衍射极限输出的双外腔反馈半导体激光器。强激光与粒子束,2005,17(11):1605-1609.
    [121]刘崇,葛剑虹,陈军.外腔反馈半导体激光器的损耗和阈值特性研究.中国激光,2004,31(12):1413-1417.
    [122]陈建国,周小红.选频元件谱线宽度对可调谐外腔半导体激光器的影响.光学学报,1998,18(10):1417-1421.
    [123]夏光琼,吴正茂,陈建国.考虑光纤光栅反射率分布的外腔半导体激光器的理论模型.中国激光,2002,29(4):301-303.
    [124]陈海波,陈建国,杨华等.外腔锁相激光二极管阵列的一般分析.中国激光,2005,32(7):899-902.
    [125]吴加贵,吴正茂,夏光琼.利用射线追踪法研究超短外腔半导体激光器的输出特性.物理学报,2007,56(11):6457-6461.
    [126]颜森林.注入半导体激光器混沌调制性能与内部相位键控编码方法研究.物理学报,2006,55(12):6267-6274.
    [127]颜森林.混沌信号在光纤传输过程中的非线性演化.物理学报,2007,56(4):1994-2003。
    [128]郭永娟,孙军强,王健等.基于光纤环形腔激光器的可调谐全光波长转换 器的研究.物理学报,2007,56(8):4602-4607.
    [129]李培丽,黄德修,张新亮等.基于半导体光纤环形腔激光器的新型全光AND门和NOR门.物理学报,2007,56(2):871-877.
    [130]马杰,赵延霆,赵建明等.利用偏振光谱对外腔式半导体激光器实现无调制锁频.中国激光,2005,32(12):1065-1068.
    [131]潘炜,张晓霞,罗斌等.多量子阱垂直腔面发射半导体激光器的速率方程分析.量子电子学报,1999,16(4):324-328。
    [132]潘炜,张晓霞,罗斌等.端面反射率的波长特性对外腔半导体激光器调谐范围的影响。光学学报,2001,21(8):975-979.
    [133]潘炜,张晓霞,罗斌等.VCSELs高阶分岔及混沌行为的参数控制.电子学报,2004,32(11):1789-1792.
    [134]潘炜,张晓霞,罗斌,等.DBR微腔激光器典型参数的开关调制响应及控制.通信学报,2004,25(10):169-174.
    [135]潘炜,张晓霞,罗斌等.垂直腔半导体光放大器双稳及逻辑特性的理论研究.半导体学报,2004,26(2):357-362.
    [136]邓果,潘炜,罗斌.自发辐射因子对VCSEL在大信号调制下的分岔及混沌行为的影响.中国激光,2004,31(3):293-296.
    [137]X.F.Li,W.Pan,B.Luo et al..Mismatch robustness and security of chaotic optical communications based on injection-locking chaos synchronization.IEEE J.Quantum Electron.,2006,42(9):953-960.
    [138]X.F.Li,W.Pan,B.Luo et al..Multi-transverse-mode dynamics of verticalcavity surface-emitting lasers with external optical injection.J.Opt.Soc.Am.B,2006,23(7):1292-1301.
    [139]X.F.Li,W.Pan,B.Luo et al..Effects of unwanted feedback on synchronized chaotic optical communications.Appl.Opt.,2006,45(11):2510-2520.
    [140]李孝峰,潘炜,马冬等.激光器自发辐射噪声对混沌光通信系统的影响.物理学报,2006,55(10):5094-5104.
    [141]李孝峰,潘炜,罗斌等.多次外光反馈下垂直腔面发射激光器非线性动态特性理论研究.中国激光,2004,31(12):1450-1454.
    [142]C.H.Henry.Theory of the linewidth of semiconductor lasers.IEEE J.Quantum Electron.,1982,18(2):259-264.
    [143]A.A.Afonenko,I.S.Manak,K.A.Shore.Effect of detuned DBRs on modal gain in VC S ELs.IEE Proc.-Optoelectron.,147(1):71-76.
    [144]W.L.Zhang,W.Pan,B.Luo et al..Polarization dynamics of VCSEL with optical feedback.Opt.Eng.,2006,45(11):114202.
    [145]N.Schunk,K.Petermann.Noise analysis of injection-locked semiconductor injection lasers.IEEE J.Quantum Electron.,1986,22(5):642-650.
    [146]J.Awrejcewicz.Bifurcation and chaos:theory and applications. Springer-Verlag,1995.
    [147]电子科技大学应用数学系.实用数值计算方法.高等教育出版社,2001.
    [148]刘思敏.光折变非线性光学及其应用。科学出版社,2004。
    [149]D.I.Hillier.Holographic lasers.University of Southampton Doctoral Thesis,2004.
    [150]D.H.DeTienne,G.R.Gray,G.P.Agrawal et al..Semiconductor laser dynamics for feedback from a finite-penetration-depth phase-conjugate mirror.IEEE J.Quantum Electron.,1997,33(5):838-844.
    [151]张伟利,潘炜,罗斌等.相位共轭反馈对外腔VCSEL非线性的控制.光电子·激光,2005,16(10):1152-1156.
    [152]D.Kanakidis,A.Argyris,D.Syvridis.Performance characterization of high-bit-rate optical chaotic communication systems in a back-to-back configuration.IEEE J.Lightwave Technol.,2003,21(3):750-758.
    [153]W.L.Zhang,W.Pan,B.Luo et al..Synchronization performance comparison of vertical-cavity surface-emitting lasers with two different feedback chaos schemes.Semicond.Sci.Tech.,2005,20:979-984.
    [154]A.Locquet,F.Rogister,M.Sciamanna et al..Synchronization of chaotic semiconductor lasers with phase-conjugate feedback.CLEO,2001,IEEE conference paper,2001:388-389.
    [155]G P.Agrawal.非线性光纤光学原理及应用。贾东方等.电子工业出版社,2002.
    [156]W.L.Zhang,W.Pan,B.Luo et al..Chaos synchronization communication using extremely unsymmetrical bidirectional injections.Opt.Lett.,2008,33(3):237-239.
    [157]W.L.Zhang,W.Pan,B.Luo et al..One-to-many and many-to-one optical chaos communications using semiconductor lasers.IEEE Photon.Technol.Lett.,2008,20(9):712-714.
    [158]M.P.Exter,M.B.Willemsen,J.P.Woerdman.Polarization fluctuations in vertical-cavity semiconductor lasers.Phys.Rev.A,1998,58(5):4191-4205.
    [159]W.L.Zhang,W.Pan,B.Luo et al..Theoretical study on polarization dynamics of VCSELs with negative optoelectronic feedback.Appl.Opt.,2007,46(29):7262-7266.
    [160]A.Valle,I.Gatare,K.Panajotov et al..Transverse mode switching and locking in vertical-cavity surface-emitting lasers subject to orthogonal optical injection.IEEE J.Quantum Electron.,2007,43(4):322-333.
    [161]W.L.Zhang,W.Pan,B.Luo et al..Influence of polarization-selected mutual injection on the polarization-switching dynamics of vertical-cavity surface-emitting lasers.J.Opt.Soc.Amer.B,2007,24(9):2472-2478.
    [162]W.L.Zhang,W.Pan,B.Luo et al..Polarization switching of mutually coupled vertical-cavity surface-emitting lasers.J.Opt.Soc.Amer.B,2007,24(6): 1276-1282.
    [163]Y. Hong, P. S. Spencer, K. A. Shore. Suppression of polarization switching in vertical-cavity surface-emitting lasers by use of optical feedback. Opt. Lett., 2004, 29(18): 2763-2765.
    [164]W. L. Zhang, W. Pan, B. Luo et al.. Phase conjugation in weakly injected vertical-cavity surface-emitting lasers. Chinese Phys, 2008, 17(5): 1821-1825.
    [165]S. Bandyopadhyay, Y. Hong, P. S. Spencer et al.. VCSEL polarization control by optical injection. IEEE J. Lightwave Technol., 2003, 21(10): 2395-2404.
    [166]F. Prati, P. Caccia, M. Bache et al.. Analysis of elliptically polarized states in vertical-cavity surface-emitting lasers. Phys. Rev. A, 2004, 69(3): 033810.
    [167]W. L. Zhang, W. Pan, B. Luo et al.. Polarization switching and hystersis of VCSELs with time-varying optical injection. IEEE J. Sel. Top. Quantum Electron., 2008. 14(3): 889-894.
    [168]J. R. Tredicce, G. L. Lippi, P. Mandel et al.. Critical slowing down at a bifurcation. Am. J. Phys., 2004, 72(6): 799-809.
    [169] J. Mork, B. Tromborg, J. Mark. Chaos in semiconductor lasers with optical feedback: theory and experiment. IEEE J. Quantum Electron., 1992, 28(1): 93-108.
    [170]W. L. Zhang, W. Pan, B. Luo et al.. Polarization-resolved dynamics of asymmetrically coupled vertical-cavity surface-emitting lasers. J. Opt. Soc. Amer. B, 2008, 25(2): 153-158.
    [171]W. L. Zhang, W. Pan, B. Luo et al.. Separate polarization modes synchronization and synchronization switches between VCSELs. Opt. Rev., 2006, 13(6): 443-448.