碲镉汞红外探测器光电响应特性的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碲镉汞(HgCdTe)红外探测器被广泛应用于红外探测系统,可以工作在1-3,3-5和8-12μm的大气窗口。近50年来随着HgCdTe红外探测技术的发展,HgCdTe材料在红外探测领域中的地位已经如同硅材料在微电子领域的地位一样重要。但目前HgCdTe器件的性能水平还难以满足军用和民用技术发展的需要。为了进一步提高HgCdTe器件的性能,建立可与不同工艺水平相适应的器件模拟平台是十分必要的。HgCdTe器件的制作过程非常复杂,周期长且价格昂贵,这使得器件模拟技术成为器件发展的一个重要工具。通过器件仿真和模拟技术,人们容易弄清哪些物理因素制约了器件的性能,进而提出改善器件性能的工艺和方法。它不仅减少了开发的费用,而且为提高产品的质量、可靠性、性能和器件的优化提供了一种切实可行、省时省力的方法。目前器件模拟技术已经成为HgCdTe器件设计和制作中的一个重要工具。
     本文主要以提高HgCdTe器件性能所面临的主要问题和难点为出发点,致力于应用器件的数值模型和解析模型,对HgCdTe器件进行性能分析、优化和设计。其主要内容如下:
     1.针对高掺杂HgCdTe红外探测二极管,研究了HgCdTe光电二极管高掺杂n区光伏蓝移机理,通过考虑以下效应:(Ⅰ)考虑HgCdTe材料导带非抛物线特性的BM(Burstein-Moss)效应;(Ⅱ) BGN(band gap narrowing)效应;(Ⅲ)Hg空位掺杂所引起的受主缺陷能级,结果表明n反型区的光伏响应峰位相对于p区具有明显的蓝移现象。这个结果很好地澄清了实验上观察到的高掺杂n区光响应的蓝移现象。因此我们能够得出结论,能带变窄效应和导带非抛物线效应对高掺杂n+-on-p型HgCdTe红外探测二极管的光伏响应具有重要影响。
     2.研究了不同载流子统计近似模型对HgCdTe器件性能分析的影响,通过与大量实验数据的比较得出最准确的HgCdTe载流子统计近似模型。讨论了三种不同的载流子统计近似模型适用条件,(Ⅰ)抛物线近似,(Ⅱ) Bebb等人所采用的导带非抛物线近似,和(Ⅲ) Harman等所采用的导带非抛物线近似模型被用来计算HgCdTe光伏器件的光学带隙和光伏响应。结合实验结果表明忽略导带非抛物线效应将导致能带计算的巨大偏离,尤其在器件高掺杂情况下;利用抛物线模型和Harman等采用的非抛物线近似模型计算得到的结果导致光伏响应峰值分别向短波和长波方向移动。
     3.建立了非晶HgCdTe红外探测器载流子输运模型,研究了80-300K温度下硅基非晶HgCdTe红外探测器的暗电流和光电流的温度依赖关系。发现该器件的探测率在210K具有最大值,结果表明硅基生长的非晶HgCdTe薄膜可用于制备高温工作的硅基集成的非晶红外探测器。基于Mott的载流子输运模型,揭示了非晶HgCdTe材料定域态向扩展态导电的转变是器件光电流和暗电流比峰值出现在210K的原因。
     4.针对红外光伏探测器暗电流特性,利用解析的非线性拟合方法对砷掺杂长波HgCdTe光伏探测器在不同温度下的暗电流特性进行研究。获得了器件物理参数随温度的变化规律;并对实验数据进行了拟合获得了大量砷掺杂长波HgCdTe光伏器件的基本物理参数,获得了制约该器件性能的主要物理机制。同时针对利用单极阻挡层结构抑制暗电流的红外探测器,研究了单极阻挡层和传统pn结构红外光电二极管的I-V特性和R0A随温度的变化关系。通过数值模拟分析了单极阻挡层结构红外光电二极管不同暗电流成份的抑制机理。结果表明与传统pn结构红外光电二极管相比单极阻挡层结构红外光电二极管在性能上有了很大提高。
Mecury cadmium telluride (HgCdTe) infrared photodetectors are widely used in advanced infrared detector systems operating in1-3,3-5and8-12μm atmospheric windows. With the development of the HgCdTe infrared detector technology in recent50years, the material of HgCdTe is almost on the similar position in infrared technology field as Si in microelectronics. However, current property of HgCdTe can hardly meet the demand in civilian and military fields. Since fabrications of HgCdTe devices are very complicated and expensive, device simulation has become a critical tool for the development of HgCdTe devices. Device simulation can reveal the physical limits of device performance and provide information for further improvement. Not only does it reduce the research cost, but it also provide a practical applicable and time-and labor-saving means for improving the device quality, reliability and performance for the device optimizations. Device simulation has become one of important steps in design and fabrication of HgCdTe devices.
     The emphasis of this dissertation is the establishment of the applicable numerical model and analytic model for HgCdTe device simulations, and using them in the analyzing, optimization and design of HgCdTe photodectectors. The main contents are given as follows:
     1. Modeling of the highly doped HgCdTe infrared photodiode. The photo-response blueshift of the n-type conversion region for HgCdTe infrared photodiode is numerically investigated. The following three contributions are considered:(i) the Burstein-Moss (BM) shift considering a nonparabolic conduction band,(ii) the band gap narrowing (BGN) effect, and (iii) the Hg-vacancy-induced acceptor trap level. It has been shown that the photoresponse curve of the n-type conversion region shifts remarkably toward high energy than p region. The result can be used to explain quantitatively the recent experimental observation of the blueshift of the photoluminescence peak for the n-type conversion region. It is concluded that the BGN and nonparabolic effects play an important role in the photoresponse of n+-on-p HgCdTe infrared photodiode with heavy doping concentration.
     2. Different carrier statistics approximations for the performance analysis of infrared HgCdTe devices. Comparing the calculated results to the experiments, we get the most accurate model of HgCdTe carrier statistic approximation. Three different carrier statistics approximations:(i) parabolic conduction-band approximation,(ii) Bebb's nonparabolic expression, and (iii) Harman's nonparabolic approximation, are proposed to calculate the optical bandgap and photoresponse of HgCdTe photovoltaic devices by considering the carrier degeneracy and the nonparabolic conduction band. It is found that omitting nonparabolic effect can lead to an enormous deviation in the simulation result, especially for heavily doped HgCdTe devices. On the basis of the calculated results of photoresponse, the parabolic conduction band and Harman's nonparabolic approximations can lead to the photoresponse peak shift to short and long wavelengths, respectively.
     3. Establish the transport model of amorphous HgCdTe (a-MCT) infrared detector. Temperature dependence of dark current and photo current are investigated for a-MCT infrared detector at80-300K. The maximal value of detectivity is formed at above200K. It is indicated that an uncooled a-MCT infrared detector may be fabricated based on the Si-based a-MCT. Based on Mott and Davis carriers transport model, we point out that the transport transition between the localized and extended state leads to the maximal Iph/Id at about210K.
     4. Based on the dark current characteristics of infrared photovoltaic detectors, a simultaneous mode nonlinear curve fitting approach is used to analysis the dark current mechanisms of long-wavelength arsenic doped HgCdTe infrared photovoltaic detector at various temperatures. Using this method, the dark current mechanisms of devices can be analyzed, and devices parameters can be extracted. This method has been used to fit the R-V curves of arsenic doped HgCdTe infrared photovoltaic devices at different temperatures. The dependence of devices parameters on temperature have been obtained, and get the main restriction physical mechanism for improving the performance of long-wavelength arsenic doped HgCdTe infrared photovoltaic devices. Study on the dark current suppression effect of unipolar barrier infrared detectors. Numerical simulation was used to calculate the current-voltage (Ⅰ-Ⅴ) characteristics and R0A values for unipolar barrier photodiodes and traditional pn junction photodiodes. Furthermore, the physical mechanisms of several dark current components of the unipolar barrier structure have been investigated. Comparing to conventional devices, the unipolar barrier device has shown significant performance improvements.
引文
[1]Smith R A, Jones F E, and Chasmar R P.1958. The Detection and Measurement of Infrared Radiation [M]. Clarendon:Oxford.
    [2]Kruse P W, McGlauchlin L D, and McQuistan R B.1962. Elements of Infrared Technology [M]. New York:Wiley.
    [3]Barr E S.1960. Historical survey of the early development of the infrared spectral region [J]. Am. J. Phys.,28:42-54.
    [4]Walker H J.2000. A brief history infrared astronomy [J]. Astron. Geophys.,41:10-13.
    [5]Case T W.1917. Notes on the Change of Resistance of Certain Substances in Light [J]. Phys. Rev.,9:305-310.
    [6]Norton P R,1999. Infrared detectors in the next millennium [J]. Proc. SPIE,3698:652-665.
    [7]Rogalski A, Antoszewski J.2009. Third-generation infrared photodetector arrays [J]. Journal of Applied Physics,105:091101.
    [8]Norton J, Campbell J, Horn S, and Reago D.2000. Third-generation infrared imagers [J]. Proc. SPIE,4130:226-236.
    [9]Reago D, Horn S, Campbell J, and Vollmerhausen R.1999. Third-generation imaging sensor system concepts [J]. Proc. SPIE,3701:108-118.
    [10]Reine M B.2005. Fundamental properties of mercury cadmium telluride [M]//R. D. Guenther, D. G. Steel, and L. Bayvel. Encyclopedia of modern optics. London:Academic, 392-402.
    [11]Rogalski A.2005. HgCdTe infrared detector material:history, status and outlook [J]. Rep. Prog. Phys.,68:2267-2236.
    [12]Verie C and Granger R.1965. Proprietes de jonction p-n d'alliages HgCdTe [J]. C. R. Acad. Sci. Paris,261:3349-3352.
    [13]Siliquini J F, Dell J M, Musca C A, and Faraone L.1997. Scanning laser microscopy of reactive ion etching induced n-type conversion in vacancy-doped p-type HgCdTe [J]. Applied Physics Letters,70:3443-3445.
    [14]Zha F X, Zhou S M, Ma H L, Yin F, Zhang B, Li T X, Shao J, and Shen X C.2008. Laser drilling induced electrical type inversion in vacancy-doped p-type HgCdTe [J]. Applied Physics Letters,93:151113.
    [15]Tribolet P, Destefanis G.2005. Third generation and multi-color IRFPA development:a unique approach based on DEFIR. Proc. of SPIE.,5783:350-365.
    [16]Norton.P.2002. HgCdTe infrared detectors [J]. Opto-Electronics Review,10(3):159-174.
    [17]汤定元,糜正瑜等.1989.光电器件概论[M].上海:上海科学技术出版社,320-321.
    [18]Arias J M, Shin S H et al.1989. Long and middle wavelength infrared photodiodes fabricated with Hg1-xCdxTe grown by molecular-beam epitaxy [J]. J. Appl. Physics,65:1747-1753.
    [19]Turner A et al.1994. Producibility of VIPTM scanning focal plane arrays [J]. Proc. SPIE, 2228:237-248.
    [20]Baker I M.1997. Photovoltaic IR detectors Narrow-gap Ⅱ-Ⅵ Compounds for Optoelectronic and Electromagnetic Applications [M]//Capper P, Electronic Materials Series:Vol.3, London:Chapman and Hall,450-473.
    [21]Tribolet P, Chatard J P, Costa P and Manissadjian A.1998. Progress in HgCdTe homojunction infrared detectors [J]. J. Cryst. Growth,184:1262-1271.
    [22]Bajaj J.1998. State-of-the-art HgCdTe materials and devices for infrared imaging [J]. Proc. SPIE,3316:1297-1309.
    [23]Varavin V S, Vasiliev V V, Dvoretsky S A, Mikhailov N N, Ovsyuk V N, Sidorov Y G, Suslyakov A O, Yakushev M V, Aseev A L.2003. HgCdTe epilayers on GaAs:growth and devices [J]. Opto-Electron. Rev.,11:99-111.
    [24]Pultz G N, Norton P R, et al.1991. Growth and characterization of p-on-n HgCdTe liquid-phase epitaxy heterojunction material for 11-18μm applications [J]. J. Vac. Sci. Technol. B,9:1724-1730.
    [25]Mitra P, Case F C and Reine M B.1998. Progress in MOVPE of HgCdTe for advanced infrared detectors [J]. J. Electron. Mater.27:510-520.
    [26]Tung T, Kalisher M H, Stevens A P and Herning P E 1987. Liquid-phase epitaxy of Hg1-xCdxTe from Hg solution:a route to infrared detector structures [J]. Mat. Res. Symp. Proc.90:321-356.
    [27]DeLyon T J, Jensen J E, Gorwitz M D, Cockrum C A, Johnson S M and Venzor G M.1999. MBE growth of HgCdTe on silicon substrates for large-area infrared focal plane arrays:a review of recent progress [J]. J. Electron. Mater.28:705-11.
    [28]叶振华等.2004.不同结构的碲镉汞长波光伏探测器的暗电流的研究[J].红外与毫米波学报,23:86-90.
    [29]叶振华等.2004.碲镉汞p+-on-n长波异质结探测器的研究.[J].红外与毫米波学报,23:423-426.
    [30]全知觉.2007.碲镉汞红外探测器的性能分析研究[D]:[博士].上海:中科院上海技术物理研究所.
    [31]叶振华,吴俊,胡晓宁,等.2004.集成式HgCdTe红外双色探测器列阵.红外与毫米波学报,23:193-196.
    [32]叶振华.2005.集成HgCdTe双色探测芯片技术研究[D]:[博士].上海:中国科学院上海技术物理研究所.
    [33]Ye Z H.2004. A preliminary study on MBE grown HgCdTe two-color FPAs [J]. Proc. SPIE, 5640:66-73.
    [34]Hu W D, Chen X S, Ye Z H, et al.2010. An improvement on short-wavelength photoresponse for a heterostructure HgCdTe two-color infrared detector [J]. Semicond. Sci. Technol.,25: 045028.
    [35]Wilson J A, Patten E A, Chapman G R, et al.1994. Integrated 2-Color Detection for Advanced FPA Applications [J]. Proc. SPIE,2274:117-125.
    [36]Rajavel R D, Jamba,D M, Jensen J E, et al.1998. Molecular beam epitaxial growth and performance of HgCdTe-based simultaneous-mode two-color detectors [J]. Journal of Electronic Materials,27:747-751.
    [37]Radford W A, Patten E A, King D F, et al.2005. Third generation FPA development status at Raytheon Vision Systems [J]. Proc. SPIE,5783:331.
    [38]Smith E P, Pham L T, Venzor G M, et al.2004. HgCdTe focal plane arrays for dual-color mid-and long-wavelength infrared detection [J]. Journal of Electronic Materials,33:509-516.
    [39]Smith E R, Patten E A, Gpetz P M, et al.2006. Fabrication and characterization of two-color midwavelength/long wavelength HgCdTe infrared detectors [J]. Journal of Electronic Materials,35:1145-1152.
    [40]Reine M B, Hairston A W, O' Dette P, et al.1998. Simultaneous MW/LW dual-band MOVPE HgCdTe 64x64 FPAs [J]. Proc. SPIE,3379:200.
    [41]Sze S M, and Ng K K.2007. Physics of Semiconductor Devices [M],3rd ed. Hoboken, New Jersey:Wiley,62-63.
    [42]Ahmad I, Kasisomayajula V, Holtza M, Berg J M, Kurtz S R, Tigges C P, Allerman A A, and Baca A G. 2005. Self-heating study of an AlGaN/GaN-based heterostructure field-effect transistor using ultraviolet micro-Raman scattering [J]. Appl. Phys. Lett.,86:173503.
    [43]何力,杨定江,倪国江,等.2011.先进焦平面技术导论[M].北京:国防工业出版社,13-105.
    [44]Sood A K. et al.2004. Design and development of multi-color detector arrays [J]. Proc. SPIE,5564:27-33.
    [45]Bellotti E et al.2006. Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors [J]. IEEE Journal of Quantum Electronics,42:418-426.
    [46]Hu W D, Chen X S, Ye Z H, et al.2009. Numerical analysis of two-color HgCdTe infrared photovoltaic heterostructure detector [J]. Opt. Quant. Electron.,41:699-704.
    [47]Kocer H, Arslan Y, Besikci C.2011. Numerical analysis of long wavelength infrared HgCdTe photodiodes [J]. Infrared Physics & Technology,55:49-55.
    [48]Jozwikowska A et al.2005. Generation-recombination effects on dark currents in CdTe-passivated midwave infrared HgCdTe photodiode [J]. J. Appl. Phys.,98:014504.
    [49]Jozwikowski K.2000. Computer simulation of non-cooled long-wavelength multi-junction (Cd, Hg)Te photodiodes [J]. Infrared physics & technology,41:353-359.
    [50]Dai H M. et al.2000. Computation for crosstalk effects in p-on-n HgCdTe heterojunction IRFPA radiated by using uniformly parallel light [J]. Proc. SPIE.,4028:365-372.
    [51]Hess G T, et al.2001. Focal Plane Array design using 1R-SIM software system [J]. Proc. SPIE.,4372:85-95.
    [52]Jo N H, et al.1998. Two-dimensional numerical simulation of HgCdTe infrared detectors [J]. Proc. SPIE.,3436:50-60.
    [53]Jozwikowski K, et al.2001. Computer modeling of dual-band HgCdTe photovoltaic detectors [J]. J.Appl. Physics,90:1286-1291.
    [54]Ajisawa A, Oda N.1995. Improvement in HgCdTe diode characteristics by low temperature post-implantation annealing [J]. J. Electron. Mater.24:1105-1111.
    [55]Gilmore A S, Bangs J, Gerrish A.2006. VLW1R HgCdTe detector current-voltage analysis [J]. J. Electron. Mater.,35:1403-1401.
    [56]Gilmore A S, et al.2005. Current voltage modeling of current limiting mechanisms in HgCdTe Focal Plane Array photodetector [J]. J. Electr. Mater.,34:913-921.
    [1]Kane E.1957. Band structure of indium antimonide [J]. Journal of Physics and Chemistry of Solids,1:249-261.
    [2]Schmit J L.1970. Intrinsic carrier concentration of Hg1-xCdxTe as a function of x and T using k.p calculations [J]. J. Appl. Physics,41:2876-2879.
    [3]Leonard E F, et al.1974. Carrier concentration of Hg1-xCdxTe. J. App1. Physics,45:958-960.
    [4]Hansen G L, et al.1983. Calculation of intrinsic carrier concentration in Hg1-xCdxTe [J]. J. Appl. Physics,54:1639-1640.
    [5]Lowney J L, et al.1992. Intrinsic carrier concentration of narrow-gap mercury cadmium telluride based on the nonlinear temperature dependence of the band gap [J]. J. Appl. Physics, 71:1253-1258.
    [6]Zha F X, Shao J, Jiang J, Yang W Y.2007. "Blueshift" in photoluminescence and photovoltaic spectroscopy the ion-milling formed n-on-p HgCdTe photodiodes [J]. Applied Physics Letters,90:201112.
    [7]Zha F X, Shao J.2008. The Blue-shift effect of the ion-milling-formed HgCdTe photodiodes [J]. Proc. of SPIE.,6984:69840G.
    [8]Device simulator SENTAURUS DEVICE (former ISE-DESSIS) Ver.2007.03.
    [9]Nemirovsky Y, and Finkman E.1979. Intrinsic carrier concentration of Hg1-xCdxTe [J]. J. Appl. Phys.,50:8107.
    [10]Madarasz F L, and Szmulowicz F.1985. Intrinsic carrier concentrations in Hg1-xCdxTe with the use of Fermi-Dirac statistics [J]. J. App1. Phys.,58:2770.
    [11]Mao D H, Robinson H G, Bartholomew D U, and Helms C R.1997. Device Modeling of HgCdTe Vertically Integrated Photodiodes [J]. J. Electron. Mater.,26:678-682.
    [12]Lowney J, Seiler D, Ltter C, and Yoon I.1992. Intrinsic carrier concentration of narrow-gap mercury cadmium telluride based on the nonlinear temperature dependence of the band gap [J]. J.Appl. Phys.,71,1253-1258.
    [13]Bebb H B, and Ratliff C R.1971. Numerical Tabulation of Integrals of Fermi Functions Using k·p Density of States [J] J. Appl. Phys.,42:3189-3194.
    [14]Ariel-Altschul V, Finkman E, and Bahir G. 1992. Approximations for Carrier Density in Non-Parabolic Semiconductors [J]. IEEE Trans. Electron. Dev.,39:1312-1316.
    [15]Gupta S, Bhan R K, and Dhar V.2008. Unified carrier density approximation for non-parabolic and highly degenerate HgCdTe semiconductors covering SWIR, MWIR and LWIR bands [J]. Infrared Phys. Technol.,51:259-262.
    [16]Abram R A, Rees G L, and Wilson B L H.1978. Heavily doped semiconductors and devices [J]. Adv. Phys.,27:799-892.
    [17]Li J C, Sokolich M, Hussain T, and Asbeck P M.2006. Physical modeling of degenerately doped compound semiconductors for high-performance HBT design [J]. Solid-State Electron., 50:1440-1449.
    [18]Anderson B L, Anderson R L.2005. Fundamentals of Semiconductor Devices [M].Boston: McGraw-Hill Higher Education.
    [19]Lindefelt U.1998. Doping-induced band edge displacements and band gap narrowing in 3C-, 4H-,6H-SiC, and Si [J]. J. Appl. Phys.84:2628-2637.
    [20]Hudait M K, Modak P, Hardikar S, and Krupanidhi S B.1997. Zn incorporation and band gap shrinkage in p-type GaAs [J]. J. Appl. Phys.82:4931-4937.
    [21]Hudait M K, Modak P, K. Rao K S R K, and Krupanidhi S B.1998. Low temperature photoluminescence properties of Zn-doped GaAs [J]. Mater. Sci. Eng:B,57:62-70.
    [22]Lee I H, Lee J J, Kung P, Sanchez F J, and Razeghi M.1999. Band-gap narrowing and potential fluctuation in Si-doped GaN [J], Appl. Phys. Lett.74:102-104.
    [23]Yang H C, Lin T Y, Huang M Y, and Chen Y F.1999. Optical properties of Si-doped GaN films [J]. J. Appl. Phys.86:6124-6127.
    [24]Ye J D, Gu S L, Zhu S M, Liu S M, Zheng Y D, Zhang R, and Shi Y.2005. Fermi-level band filling and band-gap renormalization in Ga-doped ZnO [J]. Appl. Phys. Lett.86: 192111-192113.
    [25]Kim K J, and Park Y R.2001. Large and abrupt optical band gap variation in In-doped ZnO [J]. Appl. Phys. Lett.78:475-477.
    [26]Jain S C, McGregor J M, and Roulston D J.1990. Band-gap narrowing in novel Ⅲ-Ⅴ semiconductors [J]. J. Appl. Phys.,68:3747-3749.
    [27]Wolff P A.1962. Theory of the Band Structure of Very Degenerate Semiconductors [J]. Phys. Rev.,126:405-412.
    [28]Auvergne D, Camassel J, and Mathieu H.1975. Band-gap shrinkage of semiconductors [J]. Phys. Rev. B,11:2251-2259.
    [29]Burstein E.1954. Anomalous Optical Absorption Limit in InSb [J]. Phys. Rev.,93:632-633..
    [30]Moss T S.1954. The Interpretation of the Properties of Indium Antimonide [J]. Proc. Phys. Soc. Sect. B,67:775-782.
    [31]Yue F Y, Shao J, Lu X, Huang W, Chu J H, Wu J, Lin X, and He L.2006. Anomalous temperature dependence of absorption edge in narrow-gap HgCdTe semiconductors [J]. App1. Phys. Lett.,89:021912.
    [32]Li B, Gui Y S, Chen Z H, Ye H J, and Chu J H.1998. Study of impurity states in p-type Hg1-xCdxTe using far-infrared spectroscopy [J]. Appl. Phys. Lett.73:1538.
    [33]Wenus J, Rutkowski J, and Rogalski A.2001. Two-Dimensional Analysis of Double-Layer Heterojunction HgCdTe Photodiodes [J]. IEEE Transactions on Electron Devices,48: 1326-1332.
    [34]褚君浩.2005.窄禁带半导体物理学[M].北京:科学出版社,233-237.
    [35]Chu J H, Qian D R, Tang D Y.1986. Burstein-Moss Effect in Hg1-xCdxTe [J]. Phys. Scr., T T14:37-41.
    [1]苏汝铿.2003.统计物理学[M].第2版.北京:高等教育出版社,153-245.
    [2]Kittel C, Herbert K.1980. Thermal Physics [M],2nd ed. San Francisco:W. H. Freeman, 357-357.
    [3]Sapoval B, Hermann C.1995. Physics of Semiconductors [M]. Berlin:Springer-Verlag,91-92.
    [4]Sze S M, and Ng K K.2007. Physics of Semiconductor Devices [M]. New York:Wiley,17-21.
    [5]施敏.2002.半导体器件物理与工艺[M].赵鹤鸣,钱敏,黄秋萍,译.第二版.苏州:苏州大学出版社,523-524.
    [6]Jo N H, et al.1998. Two-dimensional numerical simulation of HgCdTe infrared detectors [J]. Proc. SP1E.,3436:50-60.
    [7]Gupta S, Bhan R K, Dhar V.2007. Unified carrier density approximation for non-parabolic and highly degenerate HgCdTe semiconductors covering SW1R, MWIR and LWIR bands [J]. Infrared Physics & Technology,51:259-262.
    [8]全知觉.2007.碲镉汞红外探测器的性能分析研究[D]:[博士].上海:中科院上海技术物理研究所.
    [9]Bebb H B, and Ratiff C R.1971. Numerical tabulation of integrals of Fermi functions using k·p density of states [J]. J. Appl. Phys.42:3189-3194.
    [10]Ariel-Altschul V, Finkman E, and Bahir G. 1992. Approximations for Carrier Density in Non-Parabolic Semiconductors [J]. IEEE Trans. Electron. Dev.,39:1312-1316.
    [11]Bhan R K, et al.2004. Carrier density approximation for non-parabolic and highly degenerate HgCdTe semiconductors [J]. Semicond. Sci. Techonol.,19:413-416.
    [12]Bhan R K, et al.2003. Improved model for surface shunt resistance due to passivant for HgCdTe photoconductive detectors [J]. Semicond. Sci. Techonol.,18:1043-1054.
    [13]Quan Z J, Chen G B, Sun L Z, Ye Z H, Li Z F, Lu W.2007. Effects of carrier degeneracy and conduction band non-parabolicity on the simulation of HgCdTe photovoltaic devices [J]. Infrared Physics & Technology,50:1-8.
    [14]Harman T C, and Strauss A J.1961. Band structure of HgSe-HgTe Alloys[J]. J. Appl. Phys., 32:2265-2270.
    [15]Harman T C, Kleiner W H, Strauss A J, Wright G B, Mavroides J G, Honig J M, Dickey D H. 1964. Band structure of HgTe and HgTe-CdTe alloys [J]. Solid State Communications,2: 305-308.
    [16]Leonard W F, Michael M E.1974. Carrier concentration of Hg1-xCdxTe [J]. J. Appl. Phys., 45:958-960.
    [17]Finkman E.1983. Determination of band-gap parameters of Hgl-xCdxTe based on high-temperature carrier concentration [J]. J. Appl. Phys.,54:1883-1886.
    [18]Chu J H, XU S H, Tang D Y.1983. Energy gap versus alloy composition and temperature in Hgl-xCdxTe [J]. Appl. Phys. Lett.,43:1064-1066.
    [19]褚君浩.2005.窄禁带半导体物理学[M].北京:科学出版社,233-237.
    [20]Chu J H, Qian D R, Tang D Y.1986. Burstein-Moss Effect in Hg1-xCdxTe [J]. Phys. Scr., T T14:37-41.
    [21]Rosbeck J P, Star R E, Price S L, and Riley K J.1982. Background and temperature dependent current-voltage characteristics of Hg1-xCdxTe photodiodes [J]. J. Appl. Phys.,53: 6430-6440.
    [22]Zha F X, Shao J, Jiang J, and Yang W Y.2007.'Blueshift' in photoluminescence and photovoltaic spectroscopy of the ion-milling formed n-on-p HgCdTe photodiodes [J]. Appl. Phys. Lett.90:201112.
    [1]Bube R H.1960. Photoconductivity of solids [M]. New York:John Wiley and Sons.
    [2]沈学础.2002.半导体光谱和光学性质[M].第二版.北京:科学出版社,363-364.
    [3]褚君浩.2005.窄禁带半导体物理学[M].北京:科学出版社,772-773.
    [4]Szmulowicz F, Madarsz F L.1987. blocked impurity band detectors-An analytical model: Figures of merit [J]. J. Appl. Phys.,62(6):2533-2540.
    [5]Ariyawansa G, Rinzan M B M, Alevli M, Strassburg M, Dietz N, Perera A G U, et al.2006. GaN/AlGaN ultraviolet/infrared dual-band detector [J]. Appl. Phys. Lett.,89:091113.
    [6]汤定元,糜正瑜.1989.光电器件概论[M].上海.上海科学技术文献出版社,319-320.
    [7]何宇亮,陈光华,张仿清.非晶态半导体物理学[M].北京:高等教育出版社,1-2.
    [8]Kasap S, Capper P.2006. Springer Handbook of Electronic and Photonic Materials [M]. Berlin: Springer Science+Business Media, Inc.,565-580.
    [9]Anderson P W.1958. Absence of Diffusion in Certain Random Lattice [J]. Phys. Rev.,109(5): 1492-1505.
    [10]Cohen M H, Fritsche H, Ovshinsky S R.1969. Simple Band Model for Amorphous Semiconducting Alloys [J]. Phys. Rev. Lett.,22(20):1065-1068.
    [11]Nagles P.1979. Electronic transport in amorphous semiconductors [M]//Brodsky M H. Amorphous Semiconductors in Topics in Applied Physics:Vol.36, Berlin:Springer-Verlag, 120-125.
    [12]Mott N F.1970. Conduction in non-Crystalline systems. Ⅳ. Anderson localization in a disordered lattice [J]. Phil. Mag.,22:7-29.
    [13]Mott N.F.1969. Conduction in non-crystalline materials. Ⅲ. Localized states in a pseudogap and near extremities of conduction and valence bands [J]. Phil. Mag.,19:835-52.
    [14]Cody G L.1984. The optical absorption edge of a-Si:H [M]//Willardson R K, and BeerA C, Semiconductors and Semimetals, Vol.21:HydrogenatedAmorphous Silicon, Part B:Optical Properties, New York:Academic Press.
    [15]何力,杨定江,倪国江,等.2011.先进焦平面技术导论[M].北京:国防工业出版社,146-186.
    [16]Chen Y P, Sivananthan S, Faurie J P.1993. Structure of CdTe (111) B grown by MBE on misoriented Si (001) [J]. J. Electron. Mater.,22 (8):951-957.
    [17]Chadi D J.1984. Theoretical study of the atomic structure of Silicon (211), (111), (311) Surfaces [J]. Phys. Rev. B.,29 (2):785-792.
    [18]Peterson J M, Franklin J A, Readdy M, Johnson S M, Smith E, Radford W A, and Kasai I. 2006. High-quality large-area MBE HgCdTe/Si [J]. J. Electron. Mater.,35:1283-1286.
    [19]Varesi J B, Burell A A, Peterson J M, et al.2003. Performance of molecular-beam epitaxy-grown midwave infrared HgCdTe detectors on four-inch Si substrates and the impact of defects [J]. J. Electron. Mater.,32(7):661-666.
    [20]Niraula M, Yasuda K, Ohnishi H, et al.2006. Direct growth of high-quality thick CdTe epilayers on Si (211) substrates by metalorganic vapor phase epitaxy for nuclear radiation detection and imaging [J]. J. Electron. Mater.35(6):1257-1261.
    [21]Wang Y Z, Chen L, Wu Y, et al.2006. Heteroepitaxy of CdTe on tilting Si(211) substrates by molecular beam epitaxy [J]. J. Cryst. Growth,290(2):436-440.
    [22]Million A, Dhar N K, Dinan J H.1996. Heteroepitaxy of CdTe on{211}Si substrates by molecular beam epitaxy [J]. J. Cryst. Growth,159:76-80.
    [23]Rujirawat S, Almeida L A, Chen Y P, et al.1997. High quality large-area CdTe(211)B on Si(211) grown by molecular beam epitaxy [J]. Appl. Phys. Lett.,71(13):1810-1812.
    [24]Bornfreund R, Rosbeck J P, Thai Y N, Smith E P, Lofgreen D D, Vilela M F, Buell A A, Newton M D, Kosai K, Johnson S M, DeLyon T J, Jensen J J, and Tidrow M Z.2007. High-performance LWIR MBE-Grown HgCdTe/Si focal plane arrays [J]. J. Electron. Mater. 36:1085-1091.
    [25]Maruyama E, Okamoto S, Terakawa A, Shinohara W, Tanaka M, and Kiyama S.2002. Toward stabilized 10% efficiency of large-area (>5000 cm2) a-Si/a-SiGe tandem solar cells using high-rate deposition [J]. Sol. Energy. Mater. Sol. Cell,74:339-349.
    [26]Yu H A, Kaneko Y, Yoshimura S, Otani S.1996. Photovoltaic cell of carbonaceous film/n-type silicon [J]. Appl. Phys. Lett.,68:547-549.
    [27]孔金丞,孔令德,赵俊,张鹏举,李竑志,李雄军,王善力,姬荣斌.2007.非晶态碲镉汞薄膜的射频磁控溅射生长及其晶化过程研究[J].红外技术,29(10):559-562.
    [28]Broundy R M, and Mazurczyck V J.1981. Mercury Cadmium Telluride [M]//Edited by Willarason R K, and Beer A C, Semiconductors and Semimetals:Vol.18, New York: Academic Press,159-160.
    [29]Rogalski A.2005. HgCdTe infrared detector material:history, status, and outlook [J]. Rep. Prog. Phys.,68:2267-2336.
    [30]刘恩科,朱秉升,罗晋生等.2005.半导体物理学[M].第四版.北京:国防工业出版社,267-268.
    [31]Davis E A, Mott N F.1970. Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors [J]. Phil. Mag.,22: 0903-0922.
    [32]Mott N F, and Davis E A.1971. Electronic Processes in Non-Crystalline Materials [M]. New York:Oxford University Press.
    [33]Seto J Y W.1975. The electrical properties of polycrystalline silicon films [J]. J. Appl. Phys. 46:5247-5254.
    [34]Baccarani G, Ricco B, Spadini G. 1978. Transport properties of polycrystalline silicon films [J]. J. Appl. Phys.49:5565-5570.
    [35]Schon J H, and Kloc C.2001. Charge transport through a single tetracene grain boundary [J]. Appl. Phys. Lett.78:3821-3823.
    [36]Orton J W, and Powell M J.1980. The Hall effect in polycrystalline and powdered semiconductors [J]. Rep. Prog. Phys.,43:1263-1307.
    [37]Sze S M, and Ng K K.2007. Physics of Semiconductor Devices [M].3nded. Hoboken, New Jersey:John Wiley & Sons,25-26.
    [38]Overhof H, and Thomas P.1989. Electronic Transport in Hydrogenated Amorphous Semiconductors [M]. Springer Tracts in Modern Physics, Vol.114, Berlin:Springer,24-24.
    [1]Graft R, Fischer T, Gray A, and Kennerly S.1993. Illumination-dependent dynamic resistance of Hg1-xCdxTe heterojunction photodiodes [J]. J. Appl. Phys.74:5705.
    [2]Gopal V, Gupta S, Bhan R K, Pal R, Chaudhary P K, and Kumar V.2003. Modeling of dark characteristics of mercury cadmium telluride n+-p junctions [J]. Infra. Phys. Technol.,44: 143-152.
    [3]Nemirovsky Y, Rosenfeld D, Adar R, and Kornfeld A.1989. Tunneling and dark currents in HgCdTe photodiodes [J]. J. Vac. Sci. Technol. A7:528-535.
    [4]Sah C T, Noyce R N, and Shockley W.1957. Carrier Generation and Recombination in p-n Junction and p-n Junction Characteristics [J]. Procedings of IRE,45:1228-1243.
    [5]Choo S C.1968. Carrier Generation-Recombination in the Space-Charge Region of an Asymmetrical p-n Junction [J]. Solid-State Electronics 11:1069-1077.
    [6]Reine M B, Sood A K, and Tredwell T J.1981. Photovoltaic Infrared Detectors [M]// Willardson R K, and Beer A C, Semiconductors and Semimetals, Vol.18:Mercury Cadmium Telluride, New York:Academic Press,216-220.
    [7]Rogalski A.2011. Infrared Detectors [M].2nd ed. Boca Raton, Florida:CRC Press,206-208.
    [8]Sze S M, and Ng K K.2007. Physics of Semiconductor Devices [M].3rd ed. Hoboken, New Jersey:Wiley,80-84.
    [9]Singh S K, Gopal V, and Mehra R M.2001. Relationship between deep levels and R0A product in HgCdTe diodes [J]. Opto-Electro. Rev.,9(4):385-390.
    [10]Gopal V, Singh S K, Mehra R M.2002. Analysis of dark current contributions in mercury cadmium telluride junction diodes [J]. Infra. Phys. Technol.,43:317-326.
    [11]Gopal V, Gupta S, Bhan R K, Pal R, Chaudhary P K, Kumar V.2003. Modeling of dark characteristics of mercury cadmium telluride n-p junctions [J]. Infra. Phys. Technol.,44: 143-152.
    [12]Singh S K, Gopal V, Bhan R K, and Kumar V.2000. Analysis of the dynamic resistance variation as a function of reverse bias voltage in an HgCdTe diode [J]. Semicond. Sci. Technol.15:752-755.
    [13]Rosenfeld D, and Bahir G. 1992. A model for trap-assisted tunnelling mechanism in diffused n-p and implanted n+-p HgCdTe photodiodes [J]. IEEE Trans. Electron Devices,39: 1638-1645.
    [14]Blanks D K, Beck J D, Kinch M A, and Colombo L.1988. Band-to-band tunnel processes in HgCdTe:Comparison of experimental and theoretical studies [J]. J. Vac. Sci. Technol. A 6: 2790-2794.
    [15]Ajisawa A, et al.1995. Improvement in HgCdTe Diode Characteristics by Low Temperature Post-Implantation Annealing [J]. J. Electr. Mater.,24:1105-1111.
    [16]Gilmore A S, et al.2005. Current voltage modeling of current limiting mechanisms in HgCdTe Focal Plane Array photodetector [J]. J. Electr. Mater.,34:913-921.
    [17]Gilmore A S, Bangs J, and Gerrish A.2006. VLWIR HgCdTe detector current-voltage analysis [J]. J. Electr. Mater.,35:1403-1410.
    [18]全知觉.2007.碲镉汞红外探测器的性能分析研究[D]:[博士].上海:中科院上海技术物理研究所.
    [19]Quan Z J, Li Z F, Hu W D, Ye Z H, Hu X N and Lu W.2006. Parameter determination from resistance-voltage curve for long-wavelength HgCdTe photodiode [J]. J. Appl. Phys.,100: 084503.
    [20]陆卫,陶凤翔,穆耀明,陈效双,李宁,刘兴权,刘京郊,沈学础,陆红.1999.固体中结晶过程在函数最小值求解中的应用[M].计算物理,16:141-144.
    [21]Jozwikowski K, Kopytko M, Rogalski A, and Jozwikowska A.2010. Enhanced numerical analysis od current-voltage characteristics of long wavelwngth infrared n-on-p HgCdTe photodiodes [J]. J. Appl. Phys.108:074519.
    [22]Destefanis G, and Chamonal J P.1993. Large improvement in HgCdTe photovoltaic detector performances at LETI [J]. J. Electr. Mater.,22:1027-1032.
    [23]Wijewarnasuriya P S, and Sivananthan S.1998. Arsenic incorporation in HgCdTe grown by molecular beam epitaxy [J]. Appl. Phys. Lett.72:1694.
    [24]Kinch M A, Chandra D, Schaake H F, Shih H D, and Aqariden A.2004. Arsenic-doped mid-wavelength infrared HgCdTe photodiodes [J]. J. Electron. Mater.33,590-595.
    [25]Mynbaev K D, and Ivanov-Omaskii V I.2006. Doping of Epitaxial Layers and Heterostructures Based on HgCdTe [J]. Semiconductors,40:1-21.
    [26]Wijewarnasuriya P S, Brill G, Chen Y, Dhar N K, Grein C H, Velicu S, Emelie P Y, Jung H, Sivananthan S, D'Souza A, Stapelbroek M G, and Reekstin J.2007. Pronounced Auger suppression in long wavelength HgCdTe devices grown by molecular beam epitaxy [J]. Proc. SPIE,6542:65420G.
    [27]Rogalski A, Antoszewski J.2009. Third-generation infrared photodetector arrays [J]. Journal of Applied Physics,105:091101.
    [28]Scott W, Stelzer E L, and Hager R J.1976. Electrical and far-infrared optical properties of p-type Hg1-xCdxTe [J]. J. Appl. Phys.47:1408.
    [29]Smith E P G, Pham L T, Venzor G M, et al.2004. HgCdTe focal plane arrays for dual-color mid-and long-wavelength infrared detection [J]. J. Electron. Mater.33,509-516.
    [30]Rogalski A.2011. Recent progress in infrared detector technologies [J]. Infrared Physics & Technology 54:136-154.
    [31]Rajavel R D, Jamba D M, Jensen J E, et al.1998. Molecular beam epitaxial growth and performance of HgCdTe-Based simultaneous-mode two-color detectors [J]. J. Electron. Mater.,27:747-751.
    [32]Mitra P, Barnes S L, Case F C.1997. MOCVD of bandgap-engineered HgCdTe p-n-N-P dual-band infrared detector arrays [J]. J. Electron. Mater.,26:482-487.
    [33]Reine M B,Hairstion A, Dette P O, et al.1998. Simultaneous MW/LW dual-band MOVPE HgCdTe 64×64 FPAs [J], Proc. of SPIE,3379:200-212.
    [34]Reine M B, Norton P W, Starr R.1995. Independently accessed back-to-back HgCdTe photodiodes:a new dual-band infrared detector [J]. J. Electron. Mater.,24:669-679.
    [35]de Borniol E, et al.2003. Dual-band infrared HgCdTe Focal Plane Array [J]. Proc. of SPIE, 2003,4820:491-499.
    [36]Zanatta J P, Ferret P, Loyer R, et al.2000. Single and two color infrared focal plane arrays made by MBE in HgCdTe [J]. Proc. of SPIE,4130:441-451.
    [37]Baylet J, Zanatta J P, et al.2002. Recent development in infrared FPAs with multispectral 1282 IRCMOS [J]. Proc. of SPIE,4650:128-137.
    [38]Baylet J, Zanatta J P, et al.2002. Recent advances in development of infrared multispectral 1282 FPAs [J]. Proc. of SPIE,4721:134-143.
    [39]Baylet J, et al.2004. Study of the pixel-pitch reduction for HgCdTe infrared dual-band detectors [J]. Journal of Electronic Materials,33:690-700.
    [40]Tennant W E, et al. A novel simultaneous unipolar multispectral integrated technology approach for HgCdTe IR detectors and Focal Plane Arrays [J]. Journal of Electronic Material, 30:590-594.
    [41]Almeida L A, Thomas M, et al.2002. Development and fabrication of two-color mid-and short-wavelength infrared simultaneous unipolar multispectral integrated technology Focal-Plane Arrays [J]. J. Electron. Mater.,31:669-676.
    [42]Reibel Y, et al.2011. Infrared dual-band detectors for next generation [J]. Proc. of SPIE, 8021:801238.
    [43]Hipwood L G, Jones C L, Maxey C D, et al.2006. Three-color MOVPE MCT diodes [J]. Proc. of SPIE,6206:620612.
    [44]Gautam N, Naydenkov M, Myers S, et al.2011. Three color infrared detector using InAs/GaSb superlattices withunipolar barriers [J]. Appl. Phys. Lett.,98:121106.
    [45]Maimon S, and Wicks G W.2006. nBn detector, an infrared detector with reduced dark current and higher operating temperature [J]. Appl. Phys. Lett.,89:151109.
    [46]Pedrazzani J R, Maimon S, and Wicks G W.2008. Use of nBn structures to suppress surface leakage currents in unpassivated InAs infrared photodetectors [J]. Electron. Lett.,44: 1487-1488.
    [47]Bishop G, Plis E, Rodriguez J B, Sharma Y D, Kim H S, Dawson L R, and Krishna S.2008. nBn detectors based on InAs/GaSb type-II strain layer superlattice [J]. J. Vac. Sci. Technol. B,26:1145-1148.
    [48]Rodriguez J B, Plis E, Bishop G, Sharma Y D, Kim H, Dawson L R, and Krishna S.2007. nBn structure based on InAs/GaSb type-II strained layer superlattices [J]. Appl. Phys. Lett. 91:043514.
    [49]Savich G R, Pedrazzani J R, Maimon S, and Wicks G W.2008. Suppression of surface leakage currents using molecular beam epitaxy-grown unipolar barriers [J]. J. Vac. Sci. Technol. B 28:C3H18.
    [50]Savich G R, Pedrazzani J R, Sidor D E, Maimon S, and Wicks G W.2011. Dark current filtering in unipolar barrier infrared detectors [J]. Appl. Phys. Lett.99:121112.
    [51]Yang Q K, Fuchs F, Schmitz J, and Pletschen W.2002. Investigation of trap-assisted tunneling current in InAs/(GaIn)Sb superlattice long-wavelength photodiodes. [J]. Appl. Phys. Lett.81:4757.