晶硅太阳电池TiO_2陷光薄膜
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高光电转换效率、降低成本是太阳能电池技术发展中不变的主题。太阳能电池陷光薄膜及陷光结构可以有效降低电池表面太阳光的反射率,增加进入到电池内部的光子数量,进而提高太阳能电池的光电转换效率。现有的陷光结构不能在广角谱、宽光谱范围内降低电池光学损失。该问题在薄膜电池、以及第三代太阳能电池中更加突出,为太阳能电池技术发展的瓶颈之一。
     本文以TiO2单层、双层及梯度折射率减反膜为研究对象。研究了薄膜制备工艺、沉积模式、显微结构及光学特性之间的相互关系;提出了TiO2陷光薄膜的相变模型;探索了TiO2薄膜折射率调控及纳米结构化的新方法,并研究了杂质光伏效应与陷光结构之间的关系;为高效太阳能电池技术发展提供了理论及实验支撑。
     采用直流反应磁控溅射技术制备了TiO2薄膜,研究了工艺条件对薄膜沉积模式、晶体结构、表面形貌、光学特性的影响,研究了晶体结构、表面形貌对光学特性的影响。结果表明:薄膜中悬空键的光吸收作用、晶界散射和薄膜表面的光散射作用为影响薄膜光透过率的主要因素。薄膜结构特性和沉积速率由沉积过程中产生的Ti+、TiO+、TiO2+数量决定,当氧流量小于3mL/min,且溅射功率大于400W时,Ti+主导沉积过程,沉积模式为金属模式,获得的薄膜为Ti金属色泽;当氧流量在3mL/min与5mL/min之间时,Ti+、TiO+主导沉积过程,薄膜表现为金黄色;当氧流量大于7mL/min时,TiO2+主导沉积过程,薄膜为透明状态。
     首次制备了锐钛矿相与金红石相混合结构的沉积态TiO2薄膜,并对TiO2薄膜中存在的相变过程进行了研究。结果发现:纳米柱状结构对相变过程有抑制作用,相变后薄膜晶粒尺寸为相变前的二倍。薄膜相变过程分为三个阶段:第一阶段,在退火过程中薄膜中的锐钛矿相晶粒首先生长,直至彼此相接;第二阶段,金红石相在两个锐钛矿相晶粒的相接处成核;第三阶段,金红石相晶粒向外扩张,最后将两个锐钛矿相晶粒转化为一个金红石相晶粒。
     首次在直流反应磁控溅射中采用改进的倾斜沉积方法对TiO2薄膜折射率进行调控研究。结果表明:当沉积角度增加到30°时,薄膜中的柱状颗粒开始分离;当沉积角度增加到60°时,薄膜中出现分离的柱状颗粒,特别是增加到80°时,薄膜中出现了贯穿薄膜的孔洞。薄膜中的柱状结构的倾斜角度β与沉积角度α之间有β=tan-1(0.347tan α)关系,薄膜的折射率n与沉积角度α有n=2.50619-1.1×10-42关系。改进的倾斜沉积方法获得了折射率在1.81-2.53之间可调的TiO2薄膜。该方法可降低薄膜晶粒尺寸,并减小薄膜柱体结构半径,两者分别提高了可见光中长波段与短波段的透过率。
     对TiO2薄膜的单层、双层及梯度折射率减反膜的电池输出特性进行了仿真研究。发现减反膜可有效提高太阳能电池的短路电流密度和转换效率,双层减反膜的减反射效果优于单层减反膜。TiO2单层减反膜的光伏电池短路电流密度与转换效率分别提高了66%与65%,加权平均反射率最低达7.8%。SiO2/TiO2、TiO2/TiO2双层减反膜具有更低的反射率,加权平均反射率可降低至1.5%与4.6%。当玻璃封装的太阳能电池梯度折射率减反膜全部由TiO2组成,其折射率梯度满足三次方关系,加权平均反射率为1.5%,太阳能电池短路电流密度和开路电压分别提高了76%和75%;当太阳光入射角小于70°时,全TiO2结构的梯度折射率减反膜在全波段范围内都能起到很好的减反射效果。未封装的太阳能电池中,全Ti02结构的梯度折射率由于缺少低折射率材料,减反射效果仅与双层减反膜效果相当,采用了SiO2薄膜后,梯度折射率减反膜效果更佳。研究发现深能级杂质能有效提高电池对红外光波段光子的吸收。随深能级杂质铊掺入量的增加,短路电流密度与转换效率先增加后下降,最优掺杂浓度为Nt=ND=1017cm-3。深能级杂质在晶硅太阳能电池内引入两个主要的光激发过程,一是光子将电子从硅的价带激发到铊能带,另一个是光子将电子从铊能带激发到硅的导带,这两个光激发过程相互竞争共同完成以能量小于硅带隙的光子将电子从硅价带激发到导带的过程;它提高了晶硅电池的红外光波段特别是1000~1400nm波段响应性能。良好的陷光结构是发挥杂质光伏效应的重要条件。在良好的陷光结构以及最优化铊掺杂浓度条件下,杂质光伏效应将晶硅太阳能电池的短路电流密度提高了9mA/cm2,转换效率增加值△η达到2%。
Improving conversion efficiency and reducing cost are the focus of the research on the solar cell. The light trapping layers and structure can minimize the light reflection and enhance the transmittance, therefore, improve the solar collection efficiency and the overall solar-to-electricity efficiency. However, the light trapping structure, which has been developed in the solar cell, works only at a certain spectral range and at the normal incidence. The omni-directional broadband antireflection characteristic is important, especially in thin film solar cell and third generation solar cell.
     In this present study, the TiO2single layer, double layers and gradient-index antireflection coatings were investigated. The preparation parameters, deposition model, structure, optical properties of the TiO2thin films and their correlationships have been investigated; The mechanism for the transition of anatase to rutile has been found; The novel methods, which are developed to adjust the refractive index of the TiO2films, have been used to prepare the nanostructured antireflection coatings; The effect of light trapping structure on the impurity photovoltaics effect has been studied. These researches have provided theoretical and experimental support for the development of the high efficient solar cells.
     TiO2thin films were deposited by direct current reactive magnetron sputtering. The relationship between the deposition model, structure, optical properties and the preparation parameters were investigated. It is demonstrated that the light absorption of the dangling bond, and the scattering of the grain boundaries and surface reduce the transmission of the films. The deposition model of the TiO2thin films is determined by the intensity of the Ti+, TiO+and TiO2+present in the plasma. When the oxygen flow rate is less than3mL/min and the sputtering power is greater than400W, the deposition is dominated by Ti+, this deposition is in the metal model. When the oxygen flow rate increases from3to5mL/min, the deposition is dominated by both Ti+and TiO+, the films are golden yellow. When the oxygen flow rate is bigger than7mL/min, the deposition is dominated by TiO2+and the films are transparent.
     The films with mixtures of anatase and rutile phases were deposited for the first time. The research on the transition of anatase to rutile demonstrates that the columnar structure restricts the transition, and the crystallite size is doubled by the transition. It is because that the transition of anatase to rutile was carried out in three stages:Firstly, the anatase particles grow large enough to meat each other during the annealing. Secondly, the rutile starts to locally nucleate at the boundary of two anatase particles. Thirdly, the rutile further migrates towards the exterior of the new larger particle, and two anatase particles combine together to form one rutile particle.
     The oblique angle deposition method was developed to adjust the nano structure and the refractive index of the TiO2thin films. Results confirm that the column particles start to separate from each other at the deposition angle of30°, some separated column particles appeared in the films at deposited angle60°, many holes penetrated through the films at deposition angel of80°. The column structure angle (3has a relationship of β=tan-1(0.347tanα) with the deposition angle a, while the relationship between the films refractive index n and deposition angle is n=2.50619-1.1×10-4α2. The oblique angle deposition methods can prepare the film with a refractive index of1.81~2.53, this controllable refractive index allows the realization of grade-index profile. With this method, the decrease of the grain size increases the optical transmittance in the visible-light region, while the decrease of the nanorod diameter increases the optical transmittance in the ultraviolet region.
     Properties of the solar cell with the single layer, double layers and gradient-index TiO2based antireflection coating were simulated. The results show that, the solar cell with antireflection coating has a main improvement in the short-circuit current density and the efficiency, and this improvement is more remarkable in double layers antireflection coating. The least weighted average reflection can be acquired is7.8%in single layer TiO2antireflection coating, and an increase of66and65%can be gotten for short-circuit current density and the efficiency respectively. A weighted average reflection of1.5%and4.6%can be got in the SiO2/TiO2and TiO2/TiO2double layers antireflection coating, respectively. When used in the encapsulated solar cell, the gradient-index antireflection coating constructed all by TiO2has a very small weighted average reflection of1.5%. The short-circuit current density and the efficiency have an increase of76%and75%, respectively; This gradient-index antireflection coating has a cubic-index profile, and can work well if the light incidence angle is lower than70°. Used in the non-encapsulated solar cell, its reflection increases due to lake of low index material. After using of SiO2thin films, the antireflection property was improved.
     The solar cell with dopping of the deep level impurity can absorb more near-infrared photons. The short-circuit current density and the efficiency increase first then decrease as the increase of T1impurity concentration. The highest efficiency was acquired at Nt=ND=1017cm-1. In the impurity photo voltage effect, there are two competing absorption mechanisms for the photons with energy between mid gap and the full band gap. One photon is needed to excite an electron from the valence band to the defect level, and another photon is needed to excite the electron from the defect level to the conduction band. The impurity photo voltage effect of thallium extends the spectral sensitivity in the sub-band gap range from1000nm to about1400nm. If higher values of the light trapping were possible, the IPV effect becomes appreciable (ΔJsc≈9mA/cm2and Δη≈2%).
引文
[1]Roedern B, Zweibel K, Ullal H S. The role of polycrystalline thin-film PV technologies for achieving midterm market-competitive PV modules [C]; Proceedings of the Photovoltaic Specialists Conference,2005 Conference Record of the Thirty-first IEEE,2005:185-188.
    [2]Kazmerski L L. Solar photovoltaics R&D at the tipping point:A 2005 technology overview [J]. Journal of Electron Spectroscopy and Related Phenomena,2006,150(2-3):105-135.
    [3]Green M A. Third generation photovoltaics:solar cells for 2020 and beyond [J]. Physica E,2002,14(1-2):65-70.
    [4]熊绍真,朱美芳.太阳能电池基础与应用[M].北京:科学出版社,2009:461-464
    [5]王海燕.硅基太阳能电池陷光材料及陷光结构的研究[D].博士论文,郑州:郑州大学,2005
    [6]Pelanchon F, Mialhe P. Toward a theoretical limit of solar cell efficiency with light trapping and sub-structure [J]. Solar Energy,1995,54(6):381-385.
    [7]Conibeer G. Third-generation photovoltaics [J]. Mater Today,2007,10(11): 42-50.
    [8]Khelifi S, Verschraegen J, Burgelman M. Numerical simulation of the impurity photovoltaic effect in silicon solar cells [J]. Renewable Energy,2008, 33(2):293-298.
    [9]Conibeer G, Green M, Corkish R. Silicon nanostructures for third generation photovoltaic solar cells [J]. Thin Solid Films,2006,511-512:654-662.
    [10]Bauer G. Absolute values of the optical absorption constants of the alkali halide crystals in the region of their ultraviolet characteristic frequencies [J]. Ann Physik,1934,19:434-464.
    [11]Yariv A, Yeh P. Optical Waves in Crystals:Propagation and Controlof Laser Radiation [M]. Wiley-Interscience, New York,2002:120-124
    [12]Bouhafs D, Moussi A, Chikouche A. Design and simulation of antireflection coating systems for optoelectronic devices:Application to silicon solar cells [J]. Solar Energy Materials and Solar Cells,1998,52(1-2):79-93.
    [13]Southwell W H. Gradient-index antireflection coatings [J]. Optics Letters, 1983,8(11):584-586.
    [14]Yablonovitch E. Statistical ray optics [J]. Journal of the Optical Society of America,1982,72(7):899-907.
    [15]Campbell P, Green M A. Light trapping properties of pyramidally textured surfaces [J]. Journal of Applied Physics,1987,62(1):243-249.
    [16]Zhou W, Tao M, Chen L. Microstructured surface design for omnidirectional antireflection coatings on solar cells [J]. Journal of Applied Physics,2007, 102(10):103105-103109.
    [17]Kuo M L, Poxson D J, Kim Y S. Realization of a near-perfect antireflection coating for silicon solar energy utilization [J]. Optics Letters,2008,33(21): 2527-2529.
    [18]Tao M, Zhou W, Yang H. Surface texturing by solution deposition for omnidirectional antireflection [J]. Applied Physics Letters,2007,91(8): 081118-081113.
    [19]Richards B S. Comparison of TiO2 and other dielectric coatings for buried-contact solar cells:a review [J]. Progress in Photovoltaics:Research and Applications,2004,12(4):253-281.
    [20]Narayanan S, Creager J, Roncin S. Process improvements for large area polycrystalline silicon buried contact solar cell sequence [C]; Proceedings of the Photovoltaic Energy Conversion,1994:1319-1322.
    [21]Nagel H, Aberle A G, Hezel R. Optimised antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide [J]. Progress in Photovoltaics:Research and Applications,1999,7(4): 245-260.
    [22]Wenham S R, Honsberg C B, Edmiston S. Simplified buried contact solar cell process [C]; proceedings of the Photovoltaic Specialists Conference,1996, Conference Record of the Twenty Fifth IEEE,1996:389-392.
    [23]Richards B S, Richards S R, Boreland M B. High temperature processing of TiO2 thin films for application in silicon solar cells [J]. Journal of Vacuum Science and Technology A,2004,22(2):339-348.
    [24]Kern K, Tracy E. Titanium dioxide antireflection coating for silicon solar cells by spray deposition [J]. RCA Review,1980,41:133-180.
    [25]Richards B S. Single-material TiO2 double-layer antireflection coatings [J]. Solar Energy Materials and Solar Cells,2003,79(3):369-390.
    [26]Winderbaum S, Yun F, Reinhold O. Application of plasma enhanced chemical vapor deposition silicon nitride as a double layer antireflection coating and passivation layer for polysilicon solar cells [J]. Journal of Vacuum Science and Technology A,1997,15(3):1020-1025.
    [27]Xi J Q, Schubert M F, Kim J K. Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection [J]. Nat Photon,2007, 1(3):176-179.
    [28]Kennedy S R, Brett M J. Porous Broadband Antireflection Coating by Glancing Angle Deposition [J]. Applied Optics,2003,42(22):4573-4579.
    [29]肖秀娣,董国平,余华.倾斜沉积制备雕塑薄膜的研究进展[J].稀有金属材料与工程,2008,37(8):1317-1322.
    [30]Cansizoglu M F, Engelken R, Seo H W. High Optical Absorption of Indium Sulfide Nanorod Arrays Formed by Glancing Angle Deposition [J]. Acs Nano, 2010,4(2):733-740.
    [31]Wang Y, Tummala R, Chen L. Solution-processed omnidirectional antireflection coatings on amorphous silicon solar cells [J]. Journal of Applied Physics,2009,105(10):103501-103506.
    [32]Min W L, Jiang B, Jiang P. Bioinspired Self-Cleaning Antireflection Coatings [J]. Advanced Materials,2008,20(20):3914-3918.
    [33]Chen Q, Hubbard G, Shields P A. Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting [J]. Applied Physics Letters,2009, 94(26):263118-263113.
    [34]Li Y, Zhang J, Zhu S. Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings [J]. Journal of Materials Chemistry,2009,19(13):1806-1810.
    [35]Lee D, Rubner M F, Cohen R E. All-Nanoparticle Thin-Film Coatings [J]. Nano Letters,2006,6(10):2305-2312.
    [36]Zhang X, Fujishima A, Jin M. Double-Layered TiO2-SiO2 Nanostructured Films with Self-Cleaning and Antireflective Properties[J]. The Journal of Physical Chemistry B,2006,110(50):25142-25148.
    [37]Kesmez O, Erdem Camurlu H, Burunkaya E. Sol-gel preparation and characterization of anti-reflective and self-cleaning SiO2-TiO2 double-layer nanometric films [J]. Solar Energy Materials and Solar Cells,2009,93(10): 1833-1839.
    [38]Prado R, Beobide G, Marcaide A. Development of multifunctional sol-gel coatings:Anti-reflection coatings with enhanced self-cleaning capacity [J]. Solar Energy Materials and Solar Cells,2010,94(6):1081-1088.
    [39]Choi S J, Huh S Y. Direct Structuring of a Biomimetic Anti-Reflective, Self-Cleaning Surface for Light Harvesting in Organic Solar Cells [J]. Macromolecular Rapid Communications,2010,31(6):539-544.
    [40]刘恩科,朱秉升,罗晋生.半导体物理学(第六版)[M].北京:电子工业出版社,2007,174-325.
    [41]Roos O. A simple theory of back surface field (BSF) solar cells [J]. Journal of Applied Physics,1978,49(6):3503-3511.
    [42]Kaminski A, Vandelle B, Fave A. Aluminium BSF in silicon solar cells [J]. Solar Energy Materials and Solar Cells,2002,72(1-4):373-379.
    [43]Heine C, Morf R H. Submicrometer gratings for solar energy applications [J]. Appl Opt,1995,34(14):2476-2482.
    [44]Lin A, Phillips J. Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms [J]. Solar Energy Materials and Solar Cells,2008,92(12):1689-1696.
    [45]Shvarts M Z, Chosta O I, Kochnev I V. Radiation resistant AlGaAs/GaAs concentrator solar cells with internal Bragg reflector [J]. Solar Energy Materials and Solar Cells,2001,68(1):105-122.
    [46]Zhao L, Zuo Y H, Zhou C L. A highly efficient light-trapping structure for thin-film silicon solar cells [J]. Solar Energy,2009,84(1):110-115.
    [47]Steele J J, van Popta A C, Hawkeye M M. Nanostructured gradient index optical filter for high-speed humidity sensing [J]. Sensors and Actuators B: Chemical,2006,120(1):213-219.
    [48]Popta A C, Hawkeye M M, Sit J C. Gradient-index narrow-bandpass filter fabricated with glancing-angledeposition [J]. Optics letters,2004,29(21): 2545-2547.
    [49]Zeng L, Yi Y, Hong C. Efficiency enhancement in Si solar cells by textured photonic crystal back reflector [J]. Applied Physics Letters,2006,89(11): 111111.
    [50]Bermel P, Luo C, Zeng L. Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals [J]. Optics Express,2007,15(25): 16986-17000.
    [51]羊亚平,林志新,谢双媛.光子晶体中三能级原子的自发发射[J].物理学报,1999,48(4):603-610.
    [52]Kirkengen M, Bergli J, Galperin Y M. Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles [J]. Journal of Applied Physics, 2007,102(9):093713.
    [53]Rath H, Dash P, Som T. Structural evolution of TiO2 nanocrystalline thin films by thermal annealing and swift heavy ion irradiation [J]. Journal of Applied Physics,2009,105(7):074311.
    [54]Hou Y Q, Zhuang D M, Zhang G. Influence of annealing temperature on the properties of titanium oxide thin film [J]. Applied Surface Science,2003, 218(1-4):97-105.
    [55]Amor S B, Guedri L, Baud G. Influence of the temperature on the properties of sputtered titanium oxide films [J]. Materials Chemistry and Physics,2002, 77(3):903-911.
    [56]Tian G, Dong L, Wei C. Investigation on micro structure and optical properties of titanium dioxide coatings annealed at various temperature [J]. Optical Materials,2006,28(8-9):1058-1063.
    [57]Hunsche B, Verghl M, Ritz A. Investigation of TiO2 based thin films deposited by reactive magnetron sputtering for use at high temperatures [J]. Thin Solid Films,2006,502(1-2):188-192.
    [58]Richards B S. Novel uses of titanium dioxide for silicon solar cell [D]. Australia:University of New South Wales,2002,
    [59]Amores J M G, Escribano V S, Busca G. Anatase crystal growth and phase transformation to rutile in high-area TiO2, MoO3-TiO2 and other TiO2-supported oxide catalytic systems [J]. Journal of Materials Chemistry, 1995,5(8):1245-1249.
    [60]Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode [J]. Nature,1972,238(5358):37-38.
    [61]Ni M, Leung M K H, Leung D Y C. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production [J]. Renewable and Sustainable Energy Reviews,2007,11(3):401-425.
    [62]Teh C M, Mohamed A R. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions:A review [J]. Journal of Alloys and Compounds,2011,509(5):1648-1660.
    [63]Asahi R, Morikawa T, Ohwaki T. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides [J]. Science,2001,293(5528):269-271.
    [64]洪洁,张亚雷,范建伟.Ti02光催化剂固定化技术研究进展[J].工业用水与废水,2009,40(6):1-3.
    [65]Turkevych I, Pihosh Y, Goto M. Photocatalytic properties of titanium dioxide sputtered on a nanostructured substrate [J]. Thin Solid Films,2008,516(9): 2387-2391.
    [66]Sohn Y S, Smith Y R, Misra M. Electrochemically assisted photocatalytic degradation of methyl orange using anodized titanium dioxide nanotubes [J]. Applied Catalysis B:Environmental,2008,84(3-4):372-378.
    [67]Pihosh Y, Turkevych I, Ye J H. Photocatalytic Properties of TiO2 Nanostructures Fabricated by Means of Glancing Angle Deposition and Anodization [J]. Journal of the Electrochemical Society,2009,156(9): K160-K165.
    [68]He Y P, Zhang Z Y, Zhao Y P. Optical and photocatalytic properties of oblique angle deposited TiO2 nanorod array [J]. Journal of Vacuum Science and Technology B,2008,26(4):1350-1358.
    [69]Wang R, Hashimoto K, Fujishima A. Light-induced amphiphilic surfaces [J]. Nature,1997,388(6641):431-432.
    [70]柳清菊.TiO2系光催化超亲水性薄膜的研究[D].博士论文,昆明:昆明理工大学,2003.
    [71]Sun T, Feng L, Gao X. Bioinspired Surfaces with Special Wettability [J]. Accounts of Chemical Research,2005,38(8):644-652.
    [72]宋姝.TiO2纳米晶的表面活性剂修饰及其超亲水性薄膜的设计合成[D].,硕士论文,哈尔滨:黑龙江大学,2008.
    [73]Kanta A, Sedev R, Ralston J. Thermally and Photoinduced Changes in the Water Wettability of Low-Surface-Area Silica and Titania [J]. Langmuir,2005, 21(6):2400-2407.
    [74]Li Y, Sasaki T, Shimizu Y. Hexagonal-Close-Packed, Hierarchical Amorphous TiO2 Nanocolumn Arrays:Transferability, Enhanced Photocatalytic Activity, and Superamphiphilicity without UV Irradiation [J]. Journal of the American Chemical Society,2008,130(44):14755-14762.
    [75]Chen S, Mason M G, Gysling H J. Ultrahigh vacuum metalorganic chemical vapor deposition growth and in situ characterization of epitaxial TiO[sub 2] films [J]. Journal of Vacuum Science and Technology A,1993,11(5): 2419-2429.
    [76]Revesz A. Vitreous oxide antireflection films in high-efficiency solar cells [J]. Proceedings of the 10th IEEE Photovoltaics Specialists Conference,1973 180-181.
    [77]Robbie K, Beydaghyan G, Brown Tim. Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure[J]. Review of Scientific Instruments,2004,75(4):1089-1097.
    [78]Jensen M O, Brett M J. Porosity engineering in glancing angle deposition thin films [J]. Applied Physics A,2005,80(4):763-768.
    [79]Ni J, Zhu Y, Wang S H. Nanostructuring HfO2 thin films as antireflection coatings [J]. Journal of the American Ceramic Society,2009,92(12): 3077-3080.
    [80]Yang H Y, Lee M F, Huang C H. Glancing angle deposited titania films for dye-sensitized solar cells [J]. Thin Solid Films,2009,518(5):1590-1594.
    [81]Krause K M, Taschuk M T, Harris K D. Surface area characterization of obliquely deposited metal oxide nanostructured thin films [J]. Langmuir,2009, 26(6):4368-4376.
    [82]Leontyev V, Wakefield N G, Tabunshchyk K. Selective transmittance of linearly polarized light in thin films rationally designed by FDTD and FDFD theories and fabricated by glancing angle deposition [J]. Journal of Applied Physics,2008,104(10):104302.
    [83]Berg S, Blom H-O, Larsson T. Modeling of reactive sputtering of compound materials [J]. Journal of Vacuum Science and Technology A,1987,5(2): 202-207.
    [84]Snyders R, Dauchot J P, Hecq M. Synthesis of metal oxide thin films by reactive magnetron sputtering in Ar/O2 mixtures:An experimental study of the chemical mechanisms [J]. Plasma Processes and Polymers,2007,4(2): 113-126.
    [85]Kadlec S. Computer simulation of magnetron sputtering-Experience from the industry [J]. Surface and Coatings Technology,2007,202(4-7):895-903.
    [86]Nanbu K, Mitsui K, Kondo S. Self-consistent particle modelling of dc magnetron discharges of an O2/Ar mixture [J]. Journal of Physics D:Applied Physics,2000,33(18):2274-2283.
    [87]Touzeau M, Pagnon D, Bretagne J. Spectroscopic study and modelling of a reactive magnetron discharge in Ar/O2 and in air [J]. Vacuum,1999,52(1-2): 33-40.
    [88]Vancoppenolle V, Jouan P Y, Ricard A. Oxygen active species in an Ar-O2 magnetron discharge for titanium oxide deposition [J]. Applied Surface Science,2003,205(1-4):249-255.
    [89]Vick D, Friedrich L J, Dew S K. Self-shadowing and surface diffusion effects in obliquely deposited thin films [J]. Thin Solid Films,1999,339(1-2):88-94.
    [90]Xi J Q, Kim J K, Schubert E F. Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods [J]. Optical Letters,2006,31(5): 601-603.
    [91]Popta A C, Cheng J, Sit J C. Birefringence enhancement in annealed TiO2 thin films [J]. Journal of Applied Physics,2007,102(1):013517.
    [92]Sobahan K M A, Park Y J, Hwangbo C K. Effect of Deposition Angle on the Optical and the Structural Properties of Ta2O5 Thin Films Fabricated by Using Glancing Angle Deposition [J]. Journal of the Korean Physical Society,2009, 55(3):1272-1277.
    [93]Snyders R, Gouttebaron R, Dauchot J P. Increasing the deposition rate of oxide films by increasing the plasma reactivity [J]. Surface and Coatings Technology,2005,200:448-452.
    [94]R. Gouttebaron D C, R. Snyders, J. P. Dauchot, M. Wautelet, M. Hecq,. XPS study of TiOx thin films prepared by d.c. magnetron sputtering in Ar-O2 gas mixtures [J]. Surface and Interface Analysis,2000,30(1):527-530.
    [95]刘化然,盛英卓,宋宇.氧分压对氧化镍薄膜表面形貌和光电性能的影响 [J].功能材料,2008,39(8):1246-1248.
    [96]Vancoppenolle V, Jouan P Y, Wautelet M. DC. magnetron sputtering deposition of TiO2 films in argon-oxygen gas mixtures:Theory and experiments [J]. Surface and Coatings Technology,1999,116-119:933-937.
    [97]Andersen H H, Behrisch R. Sputtering by particle bombardment I [M]. Berlin; New York::Springer-Verlag,1981.
    [98]陈国良,郭太良.直流磁控溅射制备铝薄膜的工艺研究[J].真空,2007,44(6):40-42.
    [99]Lobl P, Huppertz M, Mergel D. Nucleation and growth in TiO2 films prepared by sputtering and evaporation [J]. Thin Solid Films,1994,251(1):72-79.
    [100]Li Z G, Wu Y X, Miyake S. Metallic sputtering growth of high quality anatase phase TiO2 films by inductively coupled plasma assisted DC reactive magnetron sputtering [J]. Surface and Coatings Technology,2009,203(23): 3661-3668.
    [101]宋登元,王永青,孙荣霞.Ar气压对射频磁控溅射铝掺杂ZnO薄膜特性的影响[J].半导体学报,2002,23(10):1083-1087.
    [102]Ye D-X, Karabacak T, Lim B K. Growth of uniformly aligned nanorod arrays by oblique angle deposition with two-phase substrate rotation [J]. Nanotechnology,2004,15(7):817-821.
    [103]Starbov N, Starbova K. Columnar architectured thin films-deposition, microstructure and related properties [J]. Journal of Optoelectronics and Advanced Materials,2009,11(9):1093-1100.
    [104]Tait R N, Smy T, Brett M J. Modeling and characterization of columnar growth in evaporated films [J]. Thin Solid Films 1993,226(196-201.
    [105]Pulker H K. Characterization of optical thin films [J]. Applied Optics,1979, 18(12):1969-1977.
    [106]Zhang M, Lin G, Dong C. Amorphous TiO2 films with high refractive index deposited by pulsed bias arc ion plating [J]. Surface and Coatings Technology, 2007,201(16-17):7252-7258.
    [107]Swanepoel R. Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films [J]. Journal of Physics E,1984, 17(10):896-903.
    [108]Marquez E, Ramirez-Malo J, Villares P. Calculation of the thickness and optical constants of amorphous arsenic sulphide films from their transmission spectra [J]. Journal of Physics D,1992,25(3):535-541.
    [109]Schubert M F, Poxson D J, Mont F W. Performance of Antireflection Coatings Consisting of Multiple Discrete Layers and Comparison with Continuously Graded Antireflection Coatings [J]. Applied Physics Express,2010,3: 082502.
    [110]Hodgkinson I, Wu Q h, Hazel J. Empirical Equations for the Principal Refractive Indices and Column Angle of Obliquely Deposited Films of Tantalum Oxide, Titanium Oxide, and Zirconium Oxide [J]. Applied Optics, 1998,37(13):2653-2659.
    [111]Shukla G, Mishra P K, Khare A. Effect of annealing and O2 pressure on structural and optical properties of pulsed laser deposited TiO2 thin films [J]. Journal of Alloys and Compounds,2010,489(1):246-251.
    [112]Ogawa H, Higuchi T, Nakamura A. Growth of TiO2 thin film by reactive RF magnetron sputtering using oxygen radical [J]. Journal of Alloys and Compounds,2008,449(1-2):375-378.
    [113]Tang R, Zhang W, Li Y. Annealing environment effects on the micro structure and magnetic properties of FePt-TiO2 and CoPt-TiO2 nanocomposite films [J]. Journal of Alloys and Compounds,2010,496(1-2):380-384.
    [114]Liao S C, Mayo W E, Pae K D. Theory of high pressure/low temperature sintering of bulk nanocrystalline TiO2 [J]. Acta Materialia,1997,45(10): 4027-4040.
    [115]Nakaruk A, Lin C, Perera D. Effect of annealing temperature on titania thin films prepared by spin coating [J]. Journal of Sol-Gel Science and Technology, 2010,55(3):328-334.
    [116]Kim W-G, Rhee S-W. Effect of post annealing on the resistive switching of TiO2 thin film [J]. Microelectronic Engineering,2009,86(11):2153-2156.
    [117]Wang M C, Lin H J, Yang T S. Characteristics and optical properties of iron ion (Fe3+)-doped titanium oxide thin films prepared by a sol-gel spin coating [J]. Journal of Alloys and Compounds,2009,473(1-2):394-400.
    [118]Hasan M M, Haseeb A S M A, Saidur R. Influence of substrate and annealing temperatures on optical properties of RF-sputtered TiC^ thin films [J]. Optical Materials,2010,32(6):690-695.
    [119]Hass G. preparation, properties and optical applications of thin films of titanium dioxide [J]. Vacuum,1952,2(4):331-345.
    [120]Mardare D, Rusu G I. The influence of heat treatment on the optical properties of titanium oxide thin films [J]. Materials Letters,2002,56(3):210-214.
    [121]Wang W-H, Chao S. Annealing effect on ion-beam-sputtered titanium dioxide film [J]. Optical Letters,1998,23(18):1417-1419.
    [122]Yoo D, Kim I, Kim S. Effects of annealing temperature and method on structural and optical properties of TiO2 films prepared by RF magnetron sputtering at room temperature [J]. Applied Surface Science,2007,253(8): 3888-3892.
    [123]Liljeholm L, Nyberg T, Kubart T. Reactive sputtering of SiO2-TiO2 thin film from composite Six/TiO2 targets [J]. Vacuum,2010,85(2):317-321.
    [124]Szlufcik J, Duerinckx F, Horzel J. High-efficiency low-cost integral screen-printing multicrystalline silicon solar cells [J]. Solar Energy Materials and Solar Cells,2002,74(1-4):155-163.
    [125]Luque A, Mart A. Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels [J]. Physical Review Letters,1997, 78(26):5014.
    [126]Trupke T, Green M A, Wurfel P. Improving solar cell efficiencies by up-conversion of sub-band-gap light [J]. Journal of Applied Physics,2002, 92(7):4117-4122.
    [127]Cuadra L, Mart A, Luque A. Present status of intermediate band solar cell research [J]. Thin Solid Films,2004,451-452:593-599.
    [128]Gonzalez-Diaz G, Olea J, Martil I. Intermediate band mobility in heavily titanium-doped silicon layers [J]. Solar Energy Materials and Solar Cells, 2009,93(9):1668-1673.
    [129]Schmeits M, Mani A A. Impurity photovoltaic effect in c-Si solar cells. A numerical study [J]. Journal of Applied Physics,1999,85(4):2207-2212.
    [130]Khelifi S, Burgelman M, Verschraegen J. Impurity photovoltaic effect in GaAs solar cell with two deep impurity levels [J]. Solar Energy Materials and Solar Cells,2008,92(12):1559-1565.
    [131]Karazhanov S Z. Impurity photovoltaic effect in indium-doped silicon solar cells [J]. Journal of Applied Physics,2001,89(7):4030-4036.
    [132]Chih-Tang S, Phillip Ching Ho C, Chi-Kuo W. Effect of zinc impurity on silicon solar-cell efficiency [J]. IEEE Transactions on Electron Devices,1981, 28(3):304-313.
    [133]Verschraegen J, Khelifi S, Burgelman M. Numerical modelling of the impurity photovoltaic effect (IPV) in SCAPS [J]. Proceedings of the 21th European Photovoltaic Solar Energy Conference, Germany,2006,396-399.
    [134]Lucovsky G. On the photoionization of deep impurity centers in semiconductors [J]. Solid State Communications,1965,3(9):299-302.
    [135]Olea J, Toledano-Luque M, Pastor D. Titanium doped silicon layers with very high concentration [J]. Journal of Applied Physics,2008,104(1):016105.
    [136]Keevers M J, Green M A. Efficiency improvements of silicon solar cells by the impurity photovoltaic effect [J]. Journal of Applied Physics,1994,75(8): 4022-4031.