铁酸铋与P(VDF-TrFE)铁电薄膜的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁电材料具有自发极化强度,其极化方向在外加电场的作用下可以在两个稳态之间翻转,基于这一机理的铁电存储器已得到了商业化的应用。本论文主要对在高密度存储领域有应用潜力的无机铁电材料铁酸铋和适用于低成本RFID存储的有机铁电材料偏二氟乙烯-三氟乙烯共聚物P(VDF-TrFE)进行了薄膜制备和性能研究。针对两种材料在应用中的问题,一方面研究如何提高由薄膜应力导致的具有高度择优取向的铁酸铋薄膜的极化保持性能,另一方面研究如何提高P(VDF-TrFE)有机铁电薄膜存储器的擦写速度,降低擦写电压。本论文主要内容如下:
     一、使用脉冲激光沉积系统(PLD)制备了氧空位掺杂的半导体铁酸铋薄膜,使用原子力显微镜对薄膜的电畴结构进行了微观表征,检验薄膜质量。采用分离铁电畴极化翻转电流和薄膜漏电流的方法获得半导体铁电薄膜的电滞回线,并对结果进行分析。主要结果如下:
     1、使用脉冲激光沉积和射频磁控溅射方法,制备了平整的氧化物底电极薄膜及不同化学配比的铁酸铋薄膜。原子力显微镜结果显示,在原子级平整的底电极表面生长的铁酸铋薄膜具有矩形规则排列的晶粒。运用原子力显微镜分析了不同组分薄膜的电畴结构及微观的电畴弛豫特性,测量结果与宏观电学性能吻合。
     2、对有较大漏电流的半导体铁酸铋薄膜的测量技术进行了研究,通过将铁电薄膜的电畴翻转电流与薄膜漏电流分离并转换为电滞回线的方法,得到了半导体薄膜的矫顽电压及极短时间内的印刻效应和极化保持特性,弥补了以往的测试技术仅能够表征绝缘薄膜的局限性。实验数据证明了该技术测试结果的可靠性,并且发现半导体铁酸铋薄膜的矫顽电场在外加电压增大的情况下基本保持在320kV/cm左右,远高于绝缘薄膜的矫顽电场,证明了半导体薄膜具有与绝缘薄膜不同的电畴翻转机制。
     3、为了研究漏电流对铁酸铋薄膜电学性能的影响,解决应力薄膜保持性能较差的科学难题,分别对三种铁含量的薄膜进行了电学测试。提出运用电荷注入机制改善以上薄膜的保持性能的方案,为应力超薄膜在铁电器件中的应用探索出一条新的解决途径。结果表明,在膜厚下降时由应力造成的薄膜内固定电荷形成的退极化电场使得薄膜的极化保持性能(Retention)普遍下降,但是随薄膜中铁含量的增加情况逐渐有所好转。实验中使用的外加负向电压脉冲对薄膜进行电荷注入的方法,可明显改善薄膜的极化保持性能。得出了薄膜漏电流密度的大小可显著影响电荷补偿作用和极化保持性能的结论,证明了通过电荷注入机制来改善薄膜保持性能的科学性。
     二、为了提高P(VDF-TrFE)有机铁电薄膜存储器的擦写速度、降低擦写电压。我们采用Spin-coating方法制备了P(VDF-TrFE)薄膜,采用串联等效电容电路模型对薄膜的电畴翻转特性进行了分析,从电畴微观极化翻转过程提出问题的解决方案。主要结果如下:
     1、发现P(VDF-TrFE)薄膜较高的矫顽电压很大程度上是薄膜中非铁电相及界面层形成的等效非铁电电容分压的结果。串联等效电容模型的方法可以排除薄膜中非铁电相和界面层的干扰因素,得到薄膜的等效铁电电容和本征的矫顽电压。通过分析不同速度的电畴翻转过程,证明了等效非铁电电容会随测试脉冲频率的增大而减小,从而导致了使用高频电压脉冲测量时薄膜矫顽电压的增大和剩余极化的减小
     2、在采用等效电路提取薄膜等效铁电电容的基础上,通过平行板电容器模型在无需求得等效铁电层厚度的情况下得到计算薄膜本征矫顽电场的方法,通过比较不同厚度的P(VDF-TrFE)薄膜本征矫顽电场得到了与理论计算相近的结果。
     以上模型能够定量地分析铁电薄膜中非铁电成分的含量及其对薄膜电学性能的影响,解决了现有测试分析手段无法定量表征界面非铁电层电容的困难。
A ferroelectric material exhibits reversible spontaneous polarization in which direction can be switched by an applied electrical field. The switchable polarization in two "up" and "down" states has achieved commercial application in FeRAMs. In this thesis, the ferroelectric thin films of bismuth ferrite and Poly(vinylidene fluoride-trifluoroethylene) were fabricated. The former has a large prospect in the application of high-density memory, and the latter can be used in low-cost RFID chips. To address their obstacle driven by rapidly growing application, we emphasized on the enhancement of retention time of bismuth ferrite thin films with preferred domain orientations and the improvement of writing/reading performance of P(VDF-TrFE) copolymer thin films.
     I. The oxygen vacancy-defected bismuth ferrite films deposited by PLD were systematically characterized by atomic force microscopy and pulsed voltage measurement. We can justify the domain switching current from the leakage of the films. The main results are summarized as following.
     Firstly, Atomic force microscopy micrograph of bismuth ferrite films with Fe excess deposited on bottom oxide electrodes reveals the flat film surface of square-like grains. Piezoresponse microscope images illuminated the domain polarization relaxation properties of different components of thin film, in consistence with the macroscopic electrical measurements.
     Secondly, we developed a technique to transfer ferroelectric domain switching currents under the pulses into polarization-voltage (P-V) hysteresis loops. With this transformation, it is doable to derive the remanent polarization and coercive voltage from domain switching current after the shortest imprint and retention time of35ns. After an identification of domain switching component from film leakage current, we measured the P-V hysteresis loop in a semiconducting BiFeO3leaky thin film, where the apparent coercive field highly reaches320kV/cm, implying a domain switching mechanism different from other insulators.
     Thirdly, in order to assess the leakage current effects on the electrical performance of the films and to improve the retention property of highly strained films, three Fe-enriched films were fabricated. Charge injection proved to be an effective way to enhance the retention time, which paves a way to expand the application for ultra-thin films in ferroelectric devices. The results present that the retention worsens when the film thickness decreases due to a strong depolarization field. The field weakens when the Fe content increases. Under a negative field stressing, the polarization was enhanced approaching up to a theoretical value via charge injection, which supplies an effective way to symmetrize the P-E loop of a highly strained ferroelectric thin film.
     Ⅱ. In order to improve the writing/reading performance of the devices, the P (VDF-TrFE) films with various thicknesses prepared by spin coating were modeled using the equivalent in-series capacitance to analyze the electrical domain switching current. The main results are presented.
     Firstly, the results display the high coercive voltage mainly due to the interfacial layer and non-ferroelectric phase in the P(VDF-TrFE) films. Through an electrical equivalent in-series capacitance circuit, the intrinsic capacitance and coercive voltage can be derived from either domain switching current transient or voltage dependence of the switched polarization. Interestingly, the non-ferroelectric capacitance reduces with the enhancement of domain switching speed while the continuous reduction of the remanent polarization, which suggests the thickening of the preceding capacitive layers with enhanced domain switching speed.
     Secondly, on a basis of the equivalent-circuit description of the films and parallel plate capacitor model, we extract the intrinsic coercive field across the ferroelectric layer in the films with unknown thickness of the ferroelectric layer. The derived intrinsic coercive field of different thickness P(VDF-TrFE) thin-films consists with the theoretical prediction reported previously.
     The equivalent in-series capacitance model offers an effective way to quantify the non-ferroelectric capacitor of interfacial layers and its effects on the ferroelectric properties of both organic and inorganic ferroelectric thin-films.
引文
[1]J. F. Scott. Ferroelectric Memories [M]. Berlin:Springer,2000:1.
    [2]Dudley A. Buck, Ferroelectrics for Digital Information Storage and Switching [R].USA: M.I.T.,1952:
    [3]A. Q. Jiang, Y. Y. Lin, and T. A. Tang. Charge injection and polarization fatigue in ferroelectric thin films [J] J. Appl. Phys.,2007,102:074109.
    [4]R. A. Lipeles, B. A. Morgan, and M. S. Leung. Proceedings of the 3rdInternational Symposium on Integrated Ferroelectrics [M]. Colorado:Springs, CO,1991:368.
    [5]H. Ishiwara, M.Okuyama, and Y. Arimoto. Ferroelectric Random Access Memories-Fundamentals and Applications [M].Berlin:Springer,2004:86.
    [6]a) G. A. Smolensky, V. A. Isupov, A. I. Agronovskaya, Sov. Phys. — Solid State,1959,1:150. b) G. A. Smolenskii, A. I. Agranovskaya, S. N. Popov, V. A. Isupov, Zh. Tekh. Fiz.,1958,28: 2152. c) A. Smolenskii, A. I. Agranovskaya, S. N. Popov, V. A. Isupov, Sov. Phys. — Tech. Phys.,1958,3:1981.
    [7]a) G. A. Smolenskii, and I. E. Chupis, Usp. Fiz. Nauk 1982,137:415. b) G. A. Smolenskii, andI. E. Chupis, Sov. Phys. Usp.1982,25:475. c) G. A. Smolenskii, and I. E. Chupis, Sov. Phys.— Solid State,1962,4:807.
    [8]J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures [J].2003, Science,299: 1719.
    [9]J. M. Moreau, C. Michel, R. Gerson, W. J. James. Ferroelectric BiFeO3 X-ray and neutron diffraction study [J]. J. Phys. Chem. Solids,1971,32:1315.
    [10]a) V. S Filip'ev, I. P. Smol'yaninov, E. G. Fesenko, and I.I Belyaev, Kristallografiya,1960,5: 958.
    [11]F. Kubel, H. Schmid. Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3 [J]. Acta Cryst. B,1990,46:698.
    [12]S. K. Singh, H. Ishiwara, and K. Maruyama. Room temperature ferroelectric properties of Mn-substituted BiFeO3 thin films deposited on Pt electrodes using chemical solution deposition [J]. Appl. Phys. Lett.,2006,88:262908.
    [13]R. G. Kepler, R. A. Anderson. Ferroelectric polymers [J]. Adv. Phys.,1992,41:1.
    [14]B. A. Newman, J. I. Sheinbein, J. W. Lee, Y. Takase. A new class of ferroelectric polymers, the odd-numbered nylons [J]. Ferroelectrics,1992,127:229-234.
    [15]J. F. Legrand. Structure and ferroelectric properties of P(VDF-TrFE) copolymers[J]. Ferroelectrics,1989,91:303-317.
    [16]Furukawa, T., Structure and functional properties of ferroelectric polymers [J]. Advances in colloid and interface science,1997,71-72:183-208.
    [17]K. Kimura, H. Ohigashi. Polarization Behavior in Vinylidene Fluoride-Trifluoroethylene Copolymer Thin Films [J]. Jpn. J. Appl. Phys.,1986,25:383-387.
    [18]Y. Tajitsu, Effects of Thickness on Ferroelectricity in Vinylidene Fluoride and Trifluoroethylene Copolymers [J]. Jpn. J. Appl. Phys.,1995,34:5418.
    [19]A. V. Bune, V. M. Fridkin, S. Ducharme, L. M. Blinov, S. P. Palto, A. V. Sorokin, S. G. Yudin, A. Zlatkin. Two-dimensional ferroelectric films [J]. Nature,1998,391:874.
    [20]G. Vizdrik, S. Ducharme, V. M. Fridkin, S. G. Yudin. Kinetics of ferroelectric switching in ultrathin films [J]. Phys. Rev. B,2003,68:094113.
    [21]S. Ducharme, T. J. Reece, C. M. Othon, R. K. Rannow. Ferroelectric polymer Langmuir-Blodgett films for nonvolatile memory applications [J].IEEE Trans. Device Mater. Reliability,2005,5:720-735.
    [22]殷之文,电介质物理学[M].北京:科学出版社,2003:335.
    [23]J.T. Evans and R. Womack. An experimental 512-bit nonvolatile memory with ferroelectric storage cell [J].IEEE J. Solid State Circuits,1988,23:1171.
    [24]J.F. Scott and C.A. Paz de Araujo. Ferroelectric Memories [J]. Science,1989,246:1400-1405.
    [25]S. Dey and R. Zuleeg. Integrated sol-gel PZT thin-films on Pt, Si, and GaAs for non-volatile memory applications [J]. Ferroelectrics,1990,108:37-46.
    [26]O. Auciello, R. Waser, Science and Technology of Ferroelectric Thin Films [M]. Netherlands: Kluwer Academic Publishers,1995:115.
    [27]Q. Su, T.A. Rabson and M. Robert. Growth and electrical properties of (211) BaTiO3 thin films on Pt-coated Si(100) substrates[J].Integr. Ferroelectr.1997,18:415-424.
    [28]L.A. Wills, T. Schmitz, T. Reyes and J. Amano. The electrical properties of Ba1-xSrxTiO3 thin films grown by sputter deposition [J]. Integr. Ferroelectr.,1998,21:429-440.
    [29]J. Im, O. Auciello, S. Streiffer, P. Baumann, D. Kaufman, A.R. Krauss. Composition-control of magnetron-sputter-deposited (BaxSr1-xTi1+yO3+z thin films for voltage tunable devices [J].Appl. Phys. Lett.,2000,76:625.
    [30]V. S. Dharmadhikari and W. W. Grannemann. Photovoltaic properties of ferroelectric BaTiO3 thin films RF sputter deposited on silicon [J]. J. Appl. Phys.,1982,53:8988.
    [31]K. Iijima, Y. Tomita, R. Takayama and I. Ueda. Preparation of c-axis oriented PbTiO3 thin films and their crystallographic, dielectric, and pyroelectric properties [J].J. Appl. Phys.,1988, 60:361.
    [32]K. Iijima, R. Takayama, Y. Tomita and I. Ueda. Epitaxial growth and the crystallographic, dielectric, and pyroelectric properties of lanthanum-modified lead titanate thin films [J]. J. Appl. Phys.,1986,60:2914.
    [33]K. Sreenivas, M. Sayer and P. Garrett. Properties of D.C. magnetron-sputtered lead zirconate titanate thin films [J].Thin Solid Films,1989,172:251-267.
    [34]J. K. Lee, T. K. Song and H. J. Jung. Characteristics of SrBi2Ta2O9 thin films fabricated by the r. f. magnetron sputtering technique [J].Integr. Ferroelectr.,1997,15:115-125.
    [35]I. Stolichnov, L. Malin, E. Collam, A.K. Tagantsev, and N. Setter. Microscopic aspects of the region-by-region polarization reversal kinetics of polycrystalline ferroelectric Pb(Zr,Ti)O3 films [J]. Appl. Phys. Lett.,2005,86:012902.
    [36]Seung-Hyub Baek, Chad M. Folkman, Jae-Wan Park, Sanghan Lee, Chung-Wung Bark,Thomas Tybell, and Chang-Beom Eom. The Nature of Polarization Fatigue in BiFeO3 [J]. Adv. Mater.,2011,23:1621-1625.
    [37]Jiagang Wu, and John Wang. Orientation dependence of ferroelectric behavior of BiFeO3 thin films [J].J. Appl. Phys.,2009,106:104111.
    [38]Ivan Kolev, and Annemie Bogaerts. Effect of copper emitted from wafers on etch rates of insulator films in capacitively coupled fluorocarbon plasma [J]. J. Vac. Sci. Technol. A,2009, 27:1-8.
    [39]Karin M. Rabe, Charles H. Ahn, and Jean-Marc. Triscone Physics of Ferroelectrics-A Modern Perspective [M]. Berlin:Springer,2004:124.
    [40]J. Li, B. Nagaraj, H. Liang, W. Cao, C.H. Lee, and R. Ramesh. Ultrafast polarization switching in thin-film ferroelectrics [J]. Appl. Phys. Lett.,2004,84:1174.
    [41]Y. W. So, D. J. Kim, T.W. Noh, J. G. Yoon, and T. K. Yoon. Polarization switching kinetics of epitaxial Pb(Zr0.4Ti0.6)O3 thin films [J]. Appl. Phys. Lett.,2005,86:092905.
    [42]J.Y. Jo, DJ. Kim, Y.S. Kim, S.-B. Choe,T.K. Song, J.G. Yoon, and T.W. Noh. Polarization Switching Dynamics Governed by the Thermodynamic Nucleation Process in Ultrathin Ferroelectric Films [J]. Phys. Rev. Lett.,2006,97:247602.
    [43]R. Ramesh, H. Gilchrist, T. Sands, V.G. Keramidas, R. Haakenaasen, and D.K. Fork. Ferroelectric La-Sr-Co-O/Pb-Zr-Ti-O/La-Sr-Co-O heterostructures on silicon via template growth [J]. Appl. Phys. Lett.,1994,63:3592.
    [44]R. Ramesh, J. Lee, T. Sands, V.G. Keramidas and O. Auciello. Oriented ferroelectric La-Sr-Co-O/Pb-La-Zr-Ti-O/La-Sr-Co-O heterostructures on [001] Pt/SiO2 Si substrates using a bismuth titanate template layer [J].Appl. Phys. Lett.,1994,64:2511.
    [45]C.S. Ganpule, A.L. Roytburd, V. Nagarajan, B.K. Hill, S.B. Ogale, E.D. Williams, R. Ramesh, and J.F. Scott, Polarization relaxation kinetics and 180° domain wall dynamics in ferroelectric thin films [J]. Phys. Rev. B,2001,65:014101.
    [46]A. Roelofs, N. A. Pertsev, R. Waser, F. Schlaphof, L.M. Eng, C. Ganpule, V. Nagarajan, and R. Ramesh. Depolarizing-field-mediated 180° switching in ferroelectric thin films with 90° domains [J]. Appl. Phys. Lett.,2002,80:1424.
    [47]郑伟涛.薄膜材料与薄膜技术[M].北京:科学出版社,2004:48.
    [48]A. Sheikholeslami and P. Glenn Gulak. A survey of circuit innovations in ferroelectric random-access memories [J]. Proc. of the IEEE,2000,88:667-689.
    [49]H. Ishiwara, and M. Okuyama. Topics in Applied Physics Vol.93:Ferroelectric Random Access Memories [M].Berlin Heidelberg:Springer-Verlag,2004:155.
    [50]L. Goux, J. G. Lisoni, M. Schwitters, V. Paraschiv, D. Maes, L. Haspeslagh, D. J. Wouters, N. Menou, Ch. Turquat, V. Madigou, Ch. Muller, and R. Zambrano. Composition control and ferroelectric properties of sidewalls in integrated three-dimensional SrBi2Ta2O9-based ferroelectric capacitors [J]. J. Appl. Phys.,2005,98:054507.
    [51]N. Menou, Ch. Turquat, V. Madigou, and Ch. Muller, L. Goux, J. Lisoni, M. Schwitters, and D. J. Wouters. Sidewalls contribution in integrated three-dimensional Sr0.8Bi0.2Ta2O9-based ferroelectric capacitors [J]. Appl. Phys. Lett.,2005,87:073502.
    [52]R. Zambrano. Challenges for Integration of Embedded FeRAMs in the sub-180 nm Regime [J]. Integrated Ferroelectrics,2003,53:247-255.
    [53]S. Mathews, R. Ramesh, T. Venkatesan, and J. Benedetto. Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures [J]. Science,1997,276:238-240.
    [54]H. Ishiwara. Current Status and prospects of FET-type Ferroelectric Memories [J]. J. Semicond. Technol. Sci.,2001,1:1-14.
    [55]Y. Fujimori, T. Nakamura, and A. Kamisawa, Properties of Ferroelectric Memory FET Using Sr2(Ta, Nb)2O7 Thin Film [J]. Jpn. J. Appl. Phys.,1999,38:2285-2288.
    [56]T. Hirai, Y. Fujisaki, K. Nagashima, H. Koike, and Y. Tarui. Preparation of SrBi2Ta209 Film at Low Temperatures and Fabrication of a Metal/Ferroelectric/Insulator/Semiconductor Field Effect Transistor Using Al/SrBi2Ta209/CeO2/Si(100) Structures [J]. Jpn. J. Appl. Phys.,1997, 36:5908-5911.
    [57]T. Inoue, Y. Yamamoto, S. Koyama, and S. Suzuki. Epitaxial growth of CeO2 layers on silicon [J]. Appl. Phys. Lett.,1990,56:1332-1333.
    [58]J. M. Benedetto, R. A. Moore, and F. B. McLean. Effects of operating conditions on the fast-decay component of the retained polarization in lead zirconate titanate thin films [J]. J. Appl. Phys.,1994,75:460-466.
    [59]K. W. Lee,and W. J. Lee. Relaxation of Remanent Polarization in Pb(Zr,Ti)O3 Thin Film Capacitors [J]. Jpn. J. Appl. Phys.,2002,41:6718-6723.
    [60]T. P. Ma, and J. P. Han. Why is nonvolatile ferroelectric memory field-effect transistor still elusive? [J]. IEEE Electron Device Lett.,2002,23:386-388.
    [61]C. T. Black, C. Farrell, and T. J. Licata. Suppression of ferroelectric polarization by an adjustable depolarization field [J]. Appl. Phys. Lett.,1997,71:2041-2043.
    [62]S. Horita and T. D. Khoa. Gate Voltage Reduction of a Ferroelectric Gate Field-Effect Transistor Memory with an Intermediate Electrode on Data-Reading [J]. Jpn. J. Appl. Phys. 2003,42:L365-L368.
    [63]B. E. Park, K. Takahashi, and H. Ishiwara. Five-day-long ferroelectric memory effect in Pt/(Bi,La)4Ti3O12/HfO2/Si structures [J]. Appl. Phys. Lett.,2004,85:4448.
    [64]K. Maruyama, M. Kondo, Sushil K. Singh, and H. Ishiwara. New Ferroelectric material for Embedded FRAM LSIs [J].FUJITSU Sci. Tech. J.,2007,43:502-507.
    [65]N. A. Spaldin, Fundamental Size Limits in Ferroelectricity [J].Science,2004,304:1606-1607.
    [66]D. D. Fong, G. B. Stephenson, S. K. Streiffer, J.A. Eastman, O. Auciello, P. H. Fuoss, and C. Thompson. Ferroelectricity in Ultrathin Perovskite Films [J]. Science,2004,304:1650-1653.
    [67]J. Junquera, and P. Ghosez. Critical thickness for ferroelectricity in perovskite ultrathin films [J]. Nature,2003,422:506-509.
    [68]N.W. Ashcroft and N.D. Mermin, Solid State Physics [M]. New York:Saunders College Publishing,1976:340.
    [69]M.Y. Zhuravlev, R.F. Sabirianov, S.S. Jaswal, and E.Y. Tsymbal. Giant Electroresistance in Ferroelectric Tunnel Junctions [J].Phys. Rev. Lett.,2005,94:246802.
    [70]E.Y. Tsymbal and H. Kohlstedt, Tunneling Across a Ferroelectric [J].Science,2006,313: 181-183.
    [71]H. Kohlstedt, N. A. Pertsev, J. Rodriguez Contreras, and R. Waser.Theoretical current-voltage characteristics of ferroelectric tunnel junctions [J].Phys. Rev. B,2005,72:125341.
    [72]V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N. D. Mathur, A. Barthelemy, and M. Bibes. Giant tunnel electroresistance for non-destructive readout of ferroelectric states [J].Nature,2009,460:81-84.
    [73]T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, and S.W. Cheong. Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3 [J].Science,2009,324:63-66.
    [74]G. L. Yuan, and J. Wang. Evidences for the depletion region induced by the polarization of ferroelectric semiconductors [J]. Appl. Phys. Lett.,2009,95:252904.
    [75]A. Q. Jiang, C. Wang, K. J. Jin, X. B. Liu, J. F. Scott, C.S. Hwang,T. A. Tang, H. B. Lu, and G. Z. Yang. A Resistive Memory in Semiconducting BiFeO 3 Thin-Film Capacitors [J].Adv. Mater.,2011,23:1277-2181.
    [76]C. Wang, K. J. Jin, Z. T. Xu, L. Wang, C. Ge, H. B.Lu, H. Z. Guo, M. He, and G. Z. Yang, Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films [J]. Appl. Phys. Lett.,2011,98:192901.
    [77]R. C. G. Naber, Kamal Asadi, Paul W. M. Blom, and Dago M. de Leeuw. Organic Nonvolatile Memory Devices Based on Ferroelectricity [J]. Adv.Mater.,2010,22:933-945.
    [78]T. Sekitani, K. Zaitsu, Y. Noguchi, K. Ishibe, M. Takamiya, and T. Sakura, Printed Nonvolatile Memory for a Sheet-Type Communication System [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES,2009,56:1027-1035.
    [1]C. Harnagea, A. Pignolet, M. Alexe, D. Hesse, and U. Gosele. Quantitative ferroelectric characterization of single submicron grains in Bi-layered perovskite thin films [J]. Appl. Phys. A:Mater. Sci. Process.,2000,70:261-267.
    [2]N. Balke, I. Bdikin, S.V. Kalinin, and A.L. Kholkin. Electromechanical Imaging and Spectroscopy of Ferroelectric and Piezoelectric Materials:State of the Art and Prospects for the Future [J]. J. Am. Ceram. Soc.,2009,92:1629-1647.
    [3]G. Koster, B. L. Kropman, G. J. H. M. Rijnders, D. H. A. Blank, and H. Rogalla, Quasi-ideal strontium titanate crystal surfaces through formation of strontium hydroxide[J]. Appl. Phys. Lett.,1998,73:122630.
    [4]M. Kawasaki, K. Takahashi, T. Maeda, R. Tsuchiya, M. Shinohara, O. Ishiyama, T. Yonezawa, M. Yoshimoto, and H. Koinuma. Atomic Control of the SrTiO3 Crystal Surface [J]. Science, 1994,266:1540-1542.
    [5]T. Ohnishi, K. Shibuya, M. Lippmaa, D. Kobayashi, H. Kumigashira, M. Oshima, and H. Koinuma.Preparation of thermally stable TiO2-terminated SrTiO3(100) substrate surfaces [J]. Appl. Phys. Lett.,2004,85:272-274.
    [6]S. Geller. Crystal Structure of Gadolinium Orthoferrite, GdFeO3[J]. J. Chem. Phys.,1956, 24:1236.
    [7]C. W. Jones, P. D. Battle, P. Lightfoot, and W. T. A. Harrison. The structure of SrRuO3 by time-of-flight neutron powder diffraction[J]. Acta Crystallogr., Sect. C:Cryst. Struct. Commun,1989, C45:365-367.
    [8]C. B. Bom, R. J. Cava, R. M. Fleming, J. M. Phillips, R. B. Van Dover, J.H. Marshall, J. W. P. Hsu, J. J. Krajewski, and W. F. Peck. Single-Crystal Epitaxial Thin Films of the Isotropic Metallic Oxides Sr1-xCaxRuO3 (0≤x≤1)[J]. Science,1992,258:1766-1769.
    [9]Q. Gan, R. A. Rao, and C. B. Eom. Control of the growth and domain structure of epitaxial SrRuO3 thin films by vicinal (001) SrTiO3 substrates [J].Appl. Phys. Lett.,1997,70:1962.
    [10]R. A. Rao, Q. Gan, and C. B. Eom, Growth mechanisms of epitaxial metallic oxide SrRuO3 thin films studied by scanning tunneling microscopy [J].Appl. Phys. Lett.,1997,71:1171.
    [11]D. B. Kacedon, R. A. Rao, and C. B. Eom, Magnetoresistance of epitaxial thin films of ferromagnetic metallic oxide SrRuO3 with different domain structures [J]. Appl. Phys. Lett. 1997,71:1724.
    [12]Q. Gan, R. A. Rao, C. B. Eom, J. L. Garrett, and M. Lee. Direct measurement of strain effects on magnetic and electrical properties of epitaxial SrRuO3 thin films[J]. Appl. Phys. Lett.,1998, 72:978.
    [13]J. C. Jiang, W. Tian, X. Q. Pan, Q. Gan, and C. B. Eom.Domain structure of epitaxial SrRuO3 thin films on miscut (001) SrTiO3 substrates [J]. Appl. Phys. Lett.,1998,72:2963.
    [14]Q. Gan, R. A. Rao, C. B. Eom, L. Wu, and F. Tsui. Lattice distortion and uniaxial magnetic anisotropy in single domain epitaxial (110) films of SrRuO3[J]. J. Appl. Phys.,1999,85:5297.
    [15]X. D. Wu, S. R. Foltyn, R. C. Dye, Y. Coulter, and R. E. Muenchausen. Properties of epitaxial SrRuO3 thin films [J]. Appl. Phys. Lett.,1993,62:2434.
    [16]Q. X. Xia, X. D. Wu, S. R. Foltyn, and P. Tiwari. Structural and electrical properties of Ba0.5Sr0.5TiO3 thin films with conductive SrRuO3 bottom electrodes [J].Appl. Phys. Lett.,1995, 66:2197.
    [17]S. S. Kim, T. S. Kang, and J. H. Je. Structural evolution of epitaxial SrRuO3 thin films grown on SrTiO3 (001) [J]. J. Appl. Phys.,2001,90:4407.
    [18]K. Hwang, Y. Lim, and B. Kim. Epitaxially grown LaNiO3 thin films on SrTiO3(100) substrates by the chemical solution method [J]. Mater. Res. Bull.,1999,34:2069.
    [19]A. D. Li, C. Z. Ge, D. Wu, P. Lu, Y. Q. Zuo, S. Z. Yang, and N.B. Ming. Conductive metallic LaNiO3 films from metallo-organic precursors [J]. Thin Solid Films,1997,298:165.
    [20]Y. Ling, W. Ren, X. Q. Wu, L.Y. Zhang, and X. Yao.Preparation and properties of conductive LaNiO3 thin films by a thermal decomposition of water-based solutions [J].Thin Solid Films,1997,311:128.
    [21]Y. Liu, N. Xu, X. G. Zheng, T. Watanabe, O. Agyeman, and M. Akiyama. Effect of thermal annealing on transparent conductive LaNiO3 thin film prepared by an aqueous method [J]. J. Mater. Sci.2000,35:937-941.
    [22]Y. Zhu, H. Wang, P. Liu, W. Yao, and L. Cao. Preparation and conducting performance of LaNiO3 thinfilm on Si substrate [J]. Thin Solid Films,2004,471:48.
    [23]X. J. Meng, J. L. Sun, J. Yu, H.J. Ye, S. L. Guo, J. H. Chu. Preparation of highly (100)-oriented metallic LaNiO3 films on Si substrates by a modified metalorganic decomposition technique [J]. Appl. Surf. Sci.,2001,171:68-70.
    [24]X. Guo, C. Li, Y. Zhou,and Z. Chen. High-quality LaNiO3 thin-film electrode grown by pulsed laser deposition [J]. J. Vac. Sci. Technol. A,1999,17:917.
    [25]F. Sanchez, C. Ferrater, C. Guerrero,and M.V. Garcia-Cuenca. High-quality epitaxial LaNiO3 thin films on SrTiO3(100) and LaAlO3(100) [J]. Varela, Appl. Phys. A,2000,71:59.
    [26]F. Sanchez, C. Ferrater, X. Alcobe, J. Bassas, M. V. Garcia-Cuenca, and M. Varela. Pulsed laser deposition of epitaxial LaNiO3 thin films on buffered Si(100) [J].Thin Solid Films,2001, 384:200.
    [27]T. F. Tseng, K. S. Liu, T. B. Wu, and N. Lin. Effect of LaNiO3/Pt double layers on the characteristics of (PbxLa1-x)(ZryTi1-y)O3 thin films [J]. Appl. Phys. Lett.,1996,68:2505.
    [28]C. C. Yang, M. S. Chen, T. J. Hong, C. M. Wu, J. M. Wu, T. B. Wu. Preparation of (100) oriented metallic LaNiO3 thin films on Si substrates by radio frequency magnetron sputtering for the growth of textured Pb(Zr0.53Ti0.47)O3 [J]. Appl. Phys. Lett.,1995,66:2643.
    [29]N. Wakiya, T. Azuma, K. Shinozaki,and N. Mizutani. Low-temperature epitaxial growth of conductive LaNiO3 thin films by RF magnetron sputtering [J]. Thin Solid Films,2002,410: 114.
    [30]H. Kim, J. H. Kim, and W. K. Choo. Preparation of Conductive LaNiO3 Thin Films by Using Reactive RF Magnetron Sputtering with La and Ni Metals [J]. J. Korean Phys. Soc.,2003,43: 847.
    [31]B. G. Chae, Y. S. Yang, S. H. Lee, M. S. Jang, S. J. Lee, and S. H. Kim. Comparative analysis for the crystalline and ferroelectric properties of Pb(Zr,Ti)O3 thin films deposited on metallic LaNiO3 and Pt electrodes [J]. Thin Solid Films,2002,410:107.
    [32]Q. Zhao, Z. M. Huang, Z. G. Hu, and J. H. Chu. A study on the thermostability of LaNiO3 films [J]. Surf. Coat. Technol.,2005,192:336.
    [33]J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin.K. M. Rabe, M. Wuttig, and R. Ramesh. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures [J]. Science,2003,299: 1719.
    [34]Y. H. Chu, Q. He, C. H. Yang, P. Yu, and L. W. Martin,P. Shafer, and R. Ramesh. Nanoscale Control of Domain Architectures in BiFeO3 Thin Films [J]. Nano Lett.,2009,9:1726.
    [35]J. Seidel, P. Maksymovych, Y. Batra, A. Katan, S. Y. Yang, Q. He, A. P. Baddorf, S. V. Kalinin, C. H. Yang, J. C. Yang, Y. H. Chu, E. K. H. Salje, H. Wormeester, M. Salmeron, and R. Ramesh. Domain Wall Conductivity in La-Doped BiFeO3 [J]. Phys. Rev. Lett.,2010,105: 97603.
    [36]C. Wang, K. J. Jin, Z. T. Xu, L. Wang, C. Ge, H. B. Lu, H.Z. Guo, M. He, and G. Z. Yang. Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films [J]. Appl. Phys. Lett.,2011,98:192901.
    [37]Vilas Shelke, V. N. Harshan, Sushma Kotru, and Arunava Gupta. Effect of kinetic growth parameters on leakage current and ferroelectric behavior of BiFeO3 thin films [J]. J. Appl. Phys.,2009,106:104114.
    [38]A. L. Roytburd. Thermodynamics of polydomain heterostructures. Ⅰ. Effect of macrostresses [J]. J. Appl. Phys.,1998,83:228.
    [39]A. L. Roytburd. Thermodynamics of polydomain heterostructures. Ⅱ. Effect of microstresses [J]. J. Appl. Phys.,1998,83:239.
    [40]S. P. Alpay and A. L. Roytburd. Thermodynamics of polydomain heterostructures. Ⅲ. Domain stability map [J]. J. Appl. Phys.,1998,83:4714.
    [41]王春雷,李吉超,赵明磊.压电铁电物理[M].北京:科学出版社,2009:245.
    [42]P. Maksymovych, J. Seidel, Y. H. Chu, P. Wu, A.P. Baddorf, L. Q. Chen, S.V. Kalinin, and R. Ramesh. Dynamic Conductivity of Ferroelectric Domain Walls in BiFeO3 [J]. Nano Lett. 2011,11:1906.
    [43]S. H. Baek, C.M. Folkman, J.W. Park, S.H. Lee, C.W. Bark, T. Tybell and C. B. Eom. The Nature of Polarization Fatigue in BiFeO3 [J]. Adv. Mater.,2011,23:1621.
    [44]A. F. DEVONSHIRE, Philos. Mag.,1949,40:1040.
    [45]A. F. DEVONSHIRE, Adv. Phys.,1954,3:85.
    [46]A. Gruverman and S. V. Kalinin. Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics [J]. Journal of material science,2006,41:107-116.
    [47]Y. C. Yang, C. Song, X. H Wang, F. Zeng, and F. Pan. Giant piezoelectric d33 coefficient in ferroelectric vanadium doped ZnO films [J]. Appl. Phys. Lett.,2008,92:012907.
    [48]Y. H. Chu, M. P. Cruz, C. H. Yang, L. W. Martin, P. L. Yang, J. X. Zhang, K. Lee, P. Yu, L. Q. Chen, and R. Ramesh. Domain Control in Multiferroic BiFeO3 through Substrate Vicinality [J]. Adv. Mater.,2007,19:2662-2666.
    [1]A. K. Tagantsev, I. Stolichnov, E. L. Colla, and N. Setter. Polarization fatigue in ferroelectric films:Basic experimental findings, phenomenological scenarios, and microscopic features [J]. J.Appl.Phys.,2001,90:1387.
    [2]W. L. Warren, D. Dimos, B. A. Tuttle, G. E. Pike, R. W. Schwartz, P. J. Clew, and D. C. McIntyre. Polarization suppression in Pb(Zr,Ti)O3 thin films [J]. J. Appl. Phys.,1995,77: 6695.
    [3]W. L. Warren, H. N. Al-Shareef, D. Dimos, and B. A. Tuttle. Driving force behind voltage shifts in ferroelectric materials [J]. Appl. Phys. Lett.,1996,68:1681.
    [4]A. Q. Jiang, J. W. Fei, Y. Y. Lin, and T. A. Tang. Formulization of long-time domain switching around the coercive field from imprint measurements on ferroelectric thin films [J]. J. Appl. Phys.,2008,103:124112.
    [5]C. S. Ganpule, A. L. Royburd, V. Nagarajan, B.K. Hill, S.B. Ogale, E.D. Williams, R. Ramesh, and J.F. Scott. Polarization relaxation kinetics and 180° domain wall dynamics in ferroelectric thin films [J].2001, Phys. Rev. B,65:014101.
    [6]A. Roelofs, N.A. Pertsev, R. Waser, F. Schlaphof, L.M. Eng, C. Ganpule, V. Nagarajan, and R. Ramesh. Depolarizing-field-mediated 180° switching in ferroelectric thin films with 90° domains [J]. Appl. Phys. Lett.,2002,80:1424.
    [7]C. S. Ganpule, V. Nagarajan, S. B. Ogale, A. L. Roytburd, E. D. Williams, and R. Ramesh. Domain nucleation and relaxation kinetics in ferroelectric thin films [J]. Appl. Phys. Lett., 2000,77:3275.
    [8]S. N. Ryoo, S. G. Yoon, and S. H. Kim. Improvement in ferroelectric properties of Pb(Zr0.35Ti0.65)O3 thin films using a Pb2Ru2o7-x conductive interfacial layer for ferroelectric random access memory application [J]. Appl. Phys. Lett.,2003,83:2880.
    [9]B. S. Kang, J. G. Yoon, D. J. Kim, T. W. Noh, T. K. Song, Y. K. Lee, J. K. Lee, and Y. S. Park. Mechanisms for retention loss in ferroelectric Pt/Pb(Zr0.4Ti0.6)O3/Pt capacitors [J]. Appl. Phys. Lett.,2003,82:124.
    [10]B. S. Kang, D. J. Kim, J. Y. Jo, T. W. Noh, J. G. Yoon, T. K. Song, Y. K. Lee, J. K. Lee, S. Shin, and Y. S. Park. Polarization retention in Pb(Zro.4Tio.6)03 capacitors with IrO2 top electrodes [J].Appl. Phys. Lett.,2004,84:3127.
    [11]A. L. Kholkin, S. O. Lakvlev, and J. L. Baptista. Direct effect of illumination on ferroelectric properties of lead zirconate titanate thin films [J]. Appl. Phys. Lett.,2001,79:2055.
    [12]C. B. Sawyer, and C. H. Tower. Rochelle Salt as a Dielectric [J]. Phys. Rev.1930,35: 269-273.
    [13]A. M. Glazer, P. Groves, and D. T. Smith. Automatic sampling circuit for ferroelectric hysteresis loops [J]. J. Phys. E,1984,17:95-97.
    [14]A. Q. Jiang, Y. Y. Lin, and T. A. Tang. Interfacial-layer modulation of domain switching current in ferroelectric thin films [J]. J. Appl. Phys.,2007,101:104105.
    [15]A. Q. Jiang, H. Lee, C. S. Hwang, and J. F. Scott. Sub-Picosecond Processes of Ferroelectric Domain Switching from Field and Temperature Experiments [J]. Adv. Funct. Mater.,2012,22: 192-199.
    [16]A. K. Tagantsev, I. Stolichnov, and N. Setter. Nature of nonlinear imprint in ferroelectric films and long-term prediction of polarization loss in ferroelectric memories [J]. J. Appl. Phys, 2004,96:6616.
    [17]C. S. Ganpule, V. Nagarajan, S. B. Ogale, A. L. Roytburd, E. D. Williams, and R. Ramesh. Domain nucleation and relaxation kinetics in ferroelectric thin films [J]. Appl. Phys. Lett., 2000,77:3275.
    [18]R. R. Das, D. M. Kim, S. H. Baekl, C. B. Eoml, F. Zavaliche, S. Y. Yang, R. Ramesh, Y. B. Chen, X. Q. Pan, X. Ke, M. S. Rzchowski, and S. K. Streiffer. Synthesis and ferroelectric properties of epitaxial BiFeO3 thin films grown by sputtering[J]. Appl. Phys. Lett.,2006,88: 242904.
    [19]P. Maksymovych, S. Jess, M. Huijben, R. Ramesh, A. Morozovska, S. Choudhury, L. Q. Chen, Arthur P. Baddorf, and Sergei V. Kalinin. Intrinsic Nucleation Mechanism and Disorder Effects in Polarization Switching on Ferroelectric Surfaces [J]. Phys. Rev. Lett.,2009,102: 017601.
    [20]H. J. Lee, G. H. Kim, M. H. Park, A. Q. Jiang, and C. S. Hwang. Polarization reversal behavior in the Pt/Pb(Zr,Ti)O3/Pt and Pt/Al2O3/Pb(Zr,Ti)O3/Pt capacitors for different reversal directions [J]. Appl. Phys. Lett.,2010,96:212902.
    [21]A. Q. Jiang, C. Wang, K. J. Jin, X. B. Liu, J. F. Scott, C.S. Hwang,T. A. Tang, H. B. Lu, and G. Z. Yang. A Resistive Memory in Semiconducting BiFeO 3 Thin-Film Capacitors [J].Adv. Mater.,2011,23:1277-2181.
    [1]W. Schottky. Naturwiss.1938,26:843.
    [2]N. F. Mott and R. W. Gumey. Electronic Processes in Ionic Crystals [M]. New York:Dover Publications,1964:22-23.
    [3]M. A. Lampert and P. Mark. Current Injection in Solids [M]. NewYork:Academic,1970: 54-56.
    [4]J. Frenkel. Tech. Phys. USSR,1938,5:685.
    [5]Gary W. Pabst, Lane W. Martin, Ying-Hao Chu, and R. Ramesh. Leakage mechanisms in BiFeO3 thin films [J]. Appl.Phys.Lett.,2007,90:072902.
    [6]A. Lahmar, K. Zhao, S. Habouti, M. Dietze, C. H. Solterbeck, and M. Es-Souni Off-stoichiometry effects on BiFeO3 thin films [J]. Solid State Ionics,2011,202:1-5.
    [7]A. Roelofs, N. A. Pertsev, R. Waser, F. Schlaphof, L. M. Eng, C. Ganpule, V. Nagarajan, and R. Ramesh. Depolarizing-field-mediated 180 degrees switching in ferroelectric thin films with 90 degrees domains [J].Appl. Phys. Lett.,2002,80:1424.
    [8]C. S. Ganpule, V. Nagarajan, S. B. Ogale, A. L. Roytburd, E. D. Williams, and R. Ramesh. Domain nucleation and relaxation kinetics in ferroelectric thin films[J]. Appl. Phys. Lett., 2000,77:3275.
    [9]C. S. Ganpule, A. L. Roytburd, V. Nagarajan, B. K. Hill, S. B. Ogale, E. D. Williams, and R. Ramesh. Polarization relaxation kinetics and 180° domain wall dynamics in ferroelectric thin films [J]. Phys. Rev. B,2001,65:014101.
    [10]A. Q. Jiang, C. Wang, K. J. Jin, X. B. Liu, J. F. Scott, C. S. Hwang,T. A. Tang, H. B. Lu, and G. Z. Yang. A Resistive Memory in Semiconducting BiFeO3 Thin-Film Capacitors [J].Adv. Mater.,2011,23:1277-2181.
    [11]C. C. Lee, J. M. Wu and C.P. Hsiung. Highly (110)- and (111)-oriented BiFeO3 films on BaPbO3 electrode with Ru or Pt/Ru barrier layers [J]. Appl. Phys. Lett.,2007,90:182909.
    [12]Y. H. Chu, Q. Zhan, L.W. Martin, M. P. Cruz, P. L. Yang, G.W. Pabst, F. Zavaliche, S. Y. Yang, J. X. Zhang, L. Q. Chen, D.G. Schlom, I. N. Lin, T. B. Wu, and R. Ramesh. Nanoscale Domain Control in Multiferroic BiFeO3 Thin Films [J]. Adv. Mater.,2006,18: 2307-2311.
    [13]R. R. Das, D. M. Kim, S. H. Baek, and C. B. Eom, F. Zavaliche, S. Y. Yang, and R. Ramesh, Y. B. Chen, X. Q. Pan, X. Ke, M. S. Rzchowski, and S. K. Streiffer. Synthesis and ferroelectric properties of epitaxial BiFeO3 thin films grown by sputtering [J]. Appl. Phys. Lett.,2006,88:242904.
    [14]S. H. Baek, C.M. Folkman, J.W. Park, S.H. Lee, C. W. Bark, T. Tybell, and C. B. Eom. The Nature of Polarization Fatigue in BiFeO3 [J]. Adv. Mater.,2011,23:1621-1625.
    [15]V. Shelke, D. Mazumdar, G. Srinivasan, A. Kumar, S. Jesse, S. Kalinin, A. Baddorf, and A. Gupta. Reduced Coercive Field in BiFeO3 Thin Films through Domain Engineering [J]. Adv. Mater.,2011,23:669-672.
    [16]H. W. Jang, D. Ortiz, S. H. Baek, C. M. Folkman, R. R. Das, P. Shafer, Y. Chen, C. T. Nelson, X. Pan, and R. Ramesh. Domain Engineering for Enhanced Ferroelectric Properties of Epitaxial (001) BiFeO3 Thin Films [J]. Adv. Mater.,2009,21:817-823.
    [17]A. Q. Jiang, Y. Y. Lin, T. A. Tang, and Q. Zhang. Asymmetry of domain forward switching and multilevel relaxation times of domain backswitching in antiferroelectric Pb0.99Nb0.02(Zr0.84Sn0.12Ti0.04)0.98O3 thin films [J].Appl. Phys. Lett.,2007,90:142901.
    [18]A. K. Tagantsev, I. Stolichnov, N. Setter, and J. S. Cross. Nature of nonlinear imprint in ferroelectric films and long-term prediction of polarization loss in ferroelectric memories [J]. J. Appl. Phys.,2004,96:6616.
    [19]W. L. Warren, H. N. Al-Shareef, D. Dimos, and B.A. Tuttle. Driving force behind voltage shifts in ferroelectric materials [J]. Appl. Phys. Lett.,1996,68:1681.
    [1]K. Asadi, D.M. de Leeuw, B. de Boer, and P. W. M. Blom. Organic non-volatile memories from ferroelectric phase-separated blends [J]. Nature Mater,2008,7:547-550.
    [2]H. S. Nalwa. Ferroelectric Polymers:chemistry, physics, applications [M]. New York:Marcel Dekker Inc.,1995:677.
    [3]T. Furukawa. Ferroelectric properties of vinylidene fluoride copolymers[J]. Phase Transitions, 1989,18:143.
    [4]T. Furukawa, T. Nakajima, and Y. Takahashi. Factors governing ferroelectric switching characteristics of thin VDF/TrFE copolymer films[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2006,13:1120-1131.
    [5]Q. M. Zhang, H. S. Xu, F. Fang, Z. Y. Cheng, and F. Xia. Critical thickness of crystallization and discontinuous change in ferroelectric behavior with thickness in ferroelectric polymer thin films [J]. J. Appl. Phys.,2001,89:2613.
    [6]S. Ducharme, V. M. Fridkin, A. V. Bune, S. P. Palto, L. M. Blinov, N. N. Petukhova, and S. G.Yudin. Intrisic Ferroelectric Coercive Field [J]. Phys. Rev. Lett.,2000,84:175.
    [7]G. Vizdrik, S. Ducharme, V.M. Fridkin, and S. G. Yudin. Kinetics of ferroelectric switching in ultrathin films [J]. Phys. Rev. B,2003,68:094113.
    [8]H. Kliem and R. Tadros-Morgane. Extrinsic versus intrinsic ferroelectric switching: experimental investigations using ultra-thin PVDF Langmuir-Blodgett films[J]. J. Phys. D: Appl. Phys.,2005,38:1860.
    [9]R. C. G. Naber, P. W. M. Blom, and D. M. de Leeuw. Comment on 'Extrinsic versus intrinsic ferroelectric switching:experimental investigations using ultra-thin PVDF Langmuir-Blodgett films'[J]. J. Phys. D:Appl. Phys.,2006,39:1984.
    [10]A. V. Bune, V. M. Fridkin, Stephen Ducharme,L. M. Blinov, S. P. Palto, A. V. Sorokin, S. G. Yudin, and A. Zlatkin. Two-dimensional ferroelectric films [J]. Nature,1998,391:874-877.
    [11]Z. M. Huang, Z. H. Zhang, C. P. Jiang, J. Yu, J. L. Sun, and J. H. Chu. Infrared optical properties of Ba0.8Sr0.2TiO3 ferroelectric thin films [J]. Appl. Phys. Lett.,2000,77:3651-3653.
    [12]王建禄.铁电聚合物多层膜制备及其性能研究.[D].上海:中国科学院上海技术物理所,2009:
    [13]A. Q. Jiang, Y. Y. Lin, and T. A. Tang. Interfacial-layer modulation of domain switching current in ferroelectric thin films [J] J. Appl. Phys.,2007,101:104105.
    [14]A. Q. Jiang, J. W. Fei, Y. Y. Lin, and T. A. Tang. Formulization of long-time domain switching around the coercive field from imprint measurements on ferroelectric thin films[J]. J. Appl. Phys.,2008,103:124112.
    [15]A. Q. Jiang, H. J. Lee, C. S. Hwang, and T. A.Tang. Resolving the Landauer paradox in ferroelectric switching by high-field charge injection [J]. Phys. Rev. B,2009,80:024119.
    [16]Y. W. So, D. J. Kim, T. W. Noh, J. G. Yoon, and T. K. Song. Polarization switching kinetics of epitaxial Pb(Zr0.4Ti0.6)O3 thin films [J]. Appl. Phys. Lett.,2005,86:092905.
    [17]N. Koizumi. Ferroelectric Polymers and Ceramic-Polymer Composites[J]. Key Engineering Materials,1994,92-93:161-180.
    [18]M. Dawber, P. Chandra, P. B. Littlewood. and J. F. Scott. Depolarization corrections to the coercive field in thin-film ferroelectrics [J]. J. Phys.:Condens. Matter,2003,15: L393-L398.
    [19]V. L. Ginzburg and Zh. Eksp. Teor. Fiz. Theories of ferroelectric phenomena [J]. J. phys. X, 1946,15:107-115.
    [20]T. Furukawa. Phenomenological aspect of a ferroelectric vinylidene fluoride/trifluoroethylene copolymer [J]. Ferroelectrics,1984,57:63-72.