一维氧化锌纳米材料的制备及其电致发光器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是一种重要的宽禁带半导体材料,它具有较高的激子束缚能(60meV),在紫外及可见光范围内存在多个由于激子或本征缺陷引起的发光峰。同时,ZnO具有优异的光学和电学特性,优良的抗辐射能力,高的热稳定性和化学稳定性,低廉的价格而且环保无毒,这些突出的优点使ZnO成为一种极有前途的短波长光电功能材料,并引起了研究者广泛的关注。本论文中,我们采用相对简单但精心优化的制备工艺,制备出能够应用在电致发光器件中的一维ZnO纳米棒。以ZnO纳米棒为发光层,构建了ITO/ZnO纳米棒/PVK/Al的电致发光器件,并对电致发光器件的发光机理进行了深入的探索。
     首先,我们分别采用模板法和化学浴沉积法制备了ZnO纳米棒阵列。鉴于下一步在电致发光器件中的应用,重点研究了化学浴沉积法制备ZnO纳米棒阵列的条件及不同的生长条件对ZnO纳米棒结构及发光性能的影响,并提出了应用于电致发光器件的最佳制备工艺。研究结果表明:采用化学浴沉积法在透明的ITO导电玻璃上生长的ZnO纳米棒垂直于衬底、分布均匀,尺寸单一性好,具有六方纤锌矿结构,并且纳米棒的直径和长度均可由实验条件控制。比起传统的制备方法,该方法制备的纳米棒阵列具有操作简单、制备成本低、阵列的质量高等优点。
     其次,我们构建了ITO/ZnO纳米棒/PVK/Al电致发光器件。为了更好的分析器件的发光机理,我们又分别构建了ITO/ZnO/Al和ITO/PVK/Al电致发光器件进行对比,并对其电致发光器件的I-V曲线以及EL谱做了深入的分析。
     由于ITO与ZnO之间存在较大的空穴势垒,在一定程度上限制了器件的发光性能。本文首创性地构建了ITO/ZnO纳米棒/PVK/Al倒置结构的电致发光器件,有效提高了器件的发光强度,实现了不通过掺杂的、无p-n结结构的、发射白光的ZnO发光器件。这一器件的发射光谱中包括了来自ZnO的激子复合的紫外发光和较强的ZnO缺陷发光,它们在可见光区域的混合导致了白光的出现。
     在电致发光谱测试中,无论是器件的正置结构还是倒置结构,我们都观察到了尖锐的发光峰的出现。从理论上推断出,尖锐峰的出现是器件在电场作用下产生的随机激光。每一个尖锐峰对应于一个自发辐射过程,许多自发辐射光子通过强烈的多重散射而获得大于损耗的增益,并由此产生随机激光。其中,ZnO纳米棒垂直于衬底的生长以及其高度的均匀性对器件产生激光来说是非常重要的。此现象的发现,使得ZnO纳米棒在光电子器件方面有了更广阔的应用前景。
Znic oxide (ZnO), an important semiconducting oxide with a wide-direct bandgap (3.37eV) and a large exciton-binding energy (60meV) at room temperature, isconsidered as a promising material for various photonic and electrical applicationsdue to its special physical and chemical properties. ZnO can emit ultraviolent orvisible lights in a wide range due to a number of intrinsic and extrinsic defects in it. Inthis dissertation, we firsly prepared ZnO nanorods by a simple but refined method,and then fabricated a ZnO EL device with the structure of ITO/ZnO nanorods/PVK/Al.Their EL mechanisms are also studied.
     First, ZnO nanorod arrays have been prepared by templete method and chemicalbath deposition method, respectively. In view of the applications in eleltroluminescentdevice, we focused on the preparation conditions of ZnO nanorods by chemicaldeposition method. The as-grown ZnO nanorods have wurtzite structure, exhibiting apreferable orientation of [002] direction. Moreover, the effect of growth conditions onthe microstructure and optical properties of ZnO nanorods has been studied. Thismethod has drawn extensive interests because of the low growth temperature(<100℃), low cost and good potential for scale-up with general substrates. Also thistechnique brings the possibility of creating patterned nanostructures for applicationsas optoelectronic devices.
     Secondly, we fabricated ITO/ZnO nanorods/PVK/Al electroluminescencedevice. In order to realize the EL emitting of ZnO and to analyze the luminescencemechanism of the device, we also fabricated ITO/ZnO/Al and ITO/PVK/Alelectroluminescent devices for comparison, and measured the I-V curve and the ELspectra of the devices. There is a large hole barrier between ITO and ZnO, so that itlimits the luminescence of the device to some extent. In the thesis the invertedelectroluminescence device with a structure of ITO/ZnO nanorods/PVK/Al iscreatively fabricated, and the luminescence intensity of the device has beeneffectively enhanced. Both ultraviolet emission peak at379nm and the emission ofdefects at520nm,572nm and760nm were detected. So we proposed the possible wayto realize the white-coloured EL device without doping and without p-n junctionstructure.
     Sharp peaks were observed both in the EL spectra of the set structure and inverted structure. According to the correlated theory, the sharp peaks, as the electricallypumped random lasing, were generated by the light-emitting devices. Every sharppeak corresponded to a spontaneous emission process. During multiple scatteringprocesses,the spontaneously emitted light will attain optical gain which is overoptical losses. As the optical gain surpasses the losses, random lasing consequentlyoccurs. It is indicated that the vertically aligned growth and uniform heights of ZnOnanorods are critical for the generation of random lasing from the EL devices basedon the ZnO nanorod arrays. The discovery of random lasing made ZnO nanorods havemore potential applications in optoelectronic devices.
引文
[1]张立德,牟季美,纳米材料科学[M],沈阳,辽宁技术出版,1994
    [2]张立德,纳米材料研究的新进展及在21世纪的战略地位,中国粉体技术,2000年2月,1-5
    [3]朱静,纳米材料和器件。北京,清华大学出版社,2003.
    [4]贺集诚一郎,表面(日)1988,26(1):27
    [5]王大志,纳米材料结构特征[J].功能材料1993,24(4):303-305
    [6] A. Henglein, Small-particle research:physicochemical properties of extremelysmall colloidal metal and semiconductorparticles[J].Chem.Rev,1989,89:1861-1873
    [7] K. J. Klabunde,J. Stark,O. Koper, et a1. Nanocrystals as stoichiometric reagentswith unique surface chemistry [J]. J. Phys. Chem.1996,100:12142-12153
    [8] L. E. Brns., Electronic wave functions in semiconductor clusters experiment andtheory [J]. J. Phys. Chem.1986,90:2555-2560
    [9] Rossetti R., Nakahara S., Brus L. E., Quantum size effects in the redox potentials,resonance Raman spectra, and electronic spectra of CdS crystallites in aqueoussolution, J. Chem. Phys.,1983,79(2):1086-1088
    [10] Halperin W. P., Quantum size effects in metal particles, Rev. Mode. Phys.1986,58(3):533-606
    [11]张立德,牟季美,纳米材料和纳米结构,北京:科学出版社,2001,51-66
    [12]A. J. Leggett, S. Chakravarty, A. T. Dorsey, et al, Dynamics of the dissipativetwo-state system [J].Rev. Mod. Phys.1987,59:1-85
    [13] G. D. Mahan, Intrinsic defects in ZnO varisiors, J. Appl. Phys.,1983,54,3825
    [14]李秀梅,纳米氧化锌的性质和用途,通化师范学院学报,2004,25,54-56
    [15] Q. P. Wang, D. H. Zhang, Z. Y. Xue, and X. J. Zhang, Mechanisms of greenemission from ZnO films prepared by rf magnetron sputtering, Optical Materical,2004,26,23-26
    [16] O. Fumiyasu, R. N. Shigeto, and S. Ishitani, Energetics of native defects in ZnO,J. Appl. Phys.,2001,90,824
    [17] D. C. Look and J. W. Hemsky, Residual native shallow donor in ZnO, Phys. Rev.Lett.,1999,82,2552-2555
    [18] Brus L. E. Electron-electron and electron-hole interactions in smallsemiconductor crystallites: the size dependence of the lowest excited electronic state.J. Physics Chemical,1984,80:4403-4409
    [19] Lin K F, Cheng H M, Hsu H C, et al, Band gap variation of size–controlled ZnOquantum dots synthesized by sol-gel method. Chemical Physics Letters,2005,409:208-211
    [20] Gu Y, Kuskovsky L I L, Yin M, et al, Quantum confinement in ZnO nanorods.Applied Physics Letters,2004,85:3833-3835
    [21] L. J. Wang and N. C. Giles, Temperatue dependence of the free-citon transitionenergy in zinc oxide by photoluminescence excitation spectroscopy, J. Appl. Phys.,2003,94,973
    [22] D. Y. Li, H. Leung, and A. B. Djurigia, Diferent Origins of isible luminescencein ZnO nanostructures fabricated by the chemical and evaporation methods, Appl.Phys. Lett.,2004,85,1601-1603
    [23]马勇,王万录,廖克俊,吕建伟,孙晓楠, ZnO薄膜的光致发光,功能材料,2004,35,139-144
    [24] C. Sunglae, J. Ma, and Y. Sun, Photoluminescence and ultraviolet lasting ofpolyerystalline ZnO thin films prepared by the oxidation of the metallic Zn, Appl.Phys. Lett.,1999,75,2761-2763
    [25] S. A. M. Lima, F. A. Sigoli, M. J. Jr, and M. R. Davolos, Luminescent propertiesand lattice defects correlation on zinc oxide, Inter. J. Inorg. Mater.,2001,3,749-754
    [26]徐彭寿,孙玉明,施朝淑,徐法强,潘海斌, ZnO及其缺陷电子结构对光谱特性的影响,红外与毫米波学报,2001,21,91-96
    [27] C. G. Van,D. Walle,Hydrogen as a cause of doping in zinc oxide, Phys. Rev.Lett.,2000,85:1012-1015
    [28] J. D. Albrecht, P. P. Ruden, S. Limpijumnong, et a1, High field electron transportproperties of bulk ZnO, J. Appl. Phys.,1999,86:6864-6867
    [29] D. C. Look,J. W. Hemsky, J. R. Sizelove, Residual native shallow donor in ZnO,Phys. Rev. Lett., l999,82:2552-2555
    [30] T. Minami,H. Sato,H. Nanto,et al, Group III impurity doped zinc oxide thinfilms prepared by RF magnetron sputtering,J. Appl. Phys.,1985,24: L781-L784
    [31] R. G. Gordon,Criteria for choosing transparent Conductors, MRS Bulletin,2000,25(8):52-57
    [32] O. Bamiduro, H. Mustafa, R. Mundle, et a1, Metal-like conductivity intransparent Al: ZnO films,Appl. Phys. Lett.,2007,90:252108
    [33] M. Miyazaki,K. Salol,Properties of Ga-doped ZnO films,J. Non-Cryst. Solids,1997,2l8:323-328
    [34] R. Kaur, A. V. singh, Development of highly transparent and conductingyttrium-doped ZnO films: the role of sol-gel stabilizers,Mater. Sci.,2004,22(3):201-209
    [35] T. Y. Ma, D. K. Shim, Effects of rapid thermal annealing on the morphology andelectrical properties of ZnO/ln films, Thin Solid Films,2002,410:8-13
    [36]H. W. Lee, B. C. Choi, K. B. Shim, et a1., Preparmion of Ti-doped ZnOtransparent conductive thin films by PLD method, Journal of Ceramic ProcessingResearch,2005,6(1):52-56
    [37] S. Fujthara, J. Kusakado, Fluorine doping in transparent conductive ZnO thinfilms by a sol-gel method using trifluoroacetic acid, J. Mater. Sci. Lett.,1998,17:781-783
    [38] A. Kobayashi,O. F. Sankey,S. M. Volz,et al., Semiempirical tight-binding bandstructures of wurtzite semiconductors: AIN, CdS, CdSe, ZnS and ZnO, Phys. Rev. B,1983,28:935-945
    [39]C. H. Park,S. B. Zhang,S. H. Wei.Origin of p-type doping difficulty in ZnO: theimpurities perspective, Phys. Rev. B,2002,66(7):073202
    [40] K. Keis, L. Vayssieres, S. E. Lindquist, et a1.[J]. Nanostruct. Mater.1999,12:12487-12490
    [41] R.K nenkamp,K. Boedecker, M. C. Lux-Steiner, M. Poschenrieder, et a1. Thinfilm semiconductor deposition on free-standing ZnO columns [J].Appl.Phys.Lett.2000,77:2575-2577
    [42] k. Keis, E. Magnusson, H. Lindstrom,et a1. A5%efficient photoelectrochemicalsolar cell based on nanostructured ZnO electrodes [J].Solar energy materials andsolar cells2002,73(1):5l-58
    [43] A. P. Chatterjee,P. Mitra and A. k. Mukhopadhyay, Chemically deposited zincoxide thin film gas sensor [J]. J. Mater. Sci.1999,34:4225-4231
    [44] T. Seiyama, A. Kato, K Fujiishi,et al. A new detector for gaseous componentsusing semiconductor thin film [J]. Anal. Chem.1962,34:1502-1503
    [45] G. T. Kim, J. Muster, V. Krstic, et a1. Field-effect transistor made of individualV205nanofibers [J]. Appl. Phys. Lett.2000,76:1875-1877
    [46] N. J. Stone and H. Ahmed, Silicon single electron memory cell [J].Appl. Phys.Lett.1998,73:2134-2136
    [47] Z. Z. Ye, F. Yang, Y. F. Lu, M. J. Zhi, H. P. Tang, L. P. Zhu, ZnO nanorods withdifferent morphologies and their field emission properties [J]. Solid. State. Commun.2007,142:425-428
    [48]倪赛力、常永勤、龙毅、叶荣昌,氧化锌纳米棒场发射性能研究[J].物理学报2006,55(10)5409-5412
    [49] C.-W. Wu, T. Aoki and M. Kuwabara, Electron-beam lithography assistedpatterning of surfactant-templated mesoporous thin films [J]. Nanotechnology2004,15:1886
    [50] C. M. Mo, Y. H. Li, Y. S. Liu, Y. Zhang, L. D. Zhang, Enhancement effect ofphotoluminescence in assemblies of nano-ZnO particles/silica aerogels [J]. J. Appl.Phys.1998,83:4389
    [51] Li Y., Meng G. W., Zhang L. D., et al. Ordered semiconductor ZnO nanowirearrays and their photoluminescence properties. Applied Physics Letters,2000,76:2011-2013
    [52] Johnson J. C., Yan H., Schaller, R. D., et al. Single nanowire lasers. J. PhysicsChemical B.,2001,105:11387-11390
    [53] Liu C., Zapien J. A., Yao Y., et al. High-density, ordered ultravioletlight-emitting ZnO nanowire arrays.Adv. Mat.,2003,15:838-841
    [54] Zhang Y., Russo R. E.,Mao S. S., Quantum efficiency of ZnO nanowirenanolasers. Applied Physics letters,2005,87:043106
    [55] Han X., Wang G., Wang Q.,et al. Ultravioet lasing and time-resolvedphotoluminescence of well-aligned ZnO nanorod arrays. Applied Physics Letters,2005,86:223106
    [56] Li J., Zhao D., Meng X.., et al. Enhanced ultraviolet emission from ZnS-coatedZnO nanowires fabricated by self-assembling method. J. Physics Chemical B.,2006,110:14685-14687
    [57] Hirano S., Takeuchi N., Shimad S., et al. Room-temperature nanowire ultravioletlasers: an aqueous pathway for zinc oxide nanowires with low defect density. Journalof Applied Physics,2005,98:094305
    [58] Lee W., Jeong M., Myoung J. Optical characteristics of arsenic-doped ZnOnanowires. Applied Pysics Letters,2004,85:6167-6169
    [59] Alivov Y. I., van Nostrand J. E., Look D. C., et al. Observation of430nmelectroluminescence from ZnO/GaN heterojunction light-emitting diodes. AppliedPysics Letters,2003,83:2943
    [60] Nadarajah A., Word R. C., Meiss J., et al. Flexible inorganic nanowirelight-emitting diode. Nano Letters,2008,8:534-537
    [61] Kim K., Lee S., Kim H., et al. Enhanced light extraction efficiency of GaN-basedlight-emitting diodes with ZnO nanorod arrays grown using aqueous solution.Applied Pysics Letters,2009,94:071118
    [62] Zhang X., Lu M., Zhang Y., Fabrication of a high-brightness blue-light-emittingdiode using a ZnO-nanowire array grown on p-GaN thin film. Adv. Mater.,2009,21:2767--2770
    [63] Baxter J., Aydil E. Nanowire-based dye-sensitized solar cells. Applied PysicsLetters,2005,86:053114
    [64] Jiang C., Sun X., Lo G., et al. Improved dye-sensitized solar cells with aZnO-nanoflower photoanode. Applied Pysics Letters,2007,90:263501
    [65] Law M., Greene L., Johnson J., et al. Naniwire dye-sensitized solar cells. NatureMaterials,2005,4:455-459
    [66] Cheng H., Chiu W., Lee C., et al. Formation of branched ZnO nanowires fromsolvothermal method and dye-sensitized solar cells applications. J. Physics ChemicalC.,2008,112:16359-16364
    [67] Wang Z. L.,Song J. Piezoelectric nanogenerators based on zinc oxide nanowirearrays. Science,2006,312:242-246
    [68] Gao Y., Wang Z. L. Electrostatic potential in a bent piezoelectric nanowire—Thefundamental theory of nanogenerator and nanopiezotronics. Nano letters,2007,7:2499-2505
    [69] Wang X., Song J., Liu J., et al. Direct-current nanogenerator driven by ultrasonicware. Science,2007,316:102-105
    [70] Qin Y., Wang X., Wang Z. Microfibre-nanowire hybrid structure for energyscavenging, Nature,2008,451:809-813
    [71] G.T. Du, W.F. Liu, J. M. Bian, et a1, Room temperature defect relatedelectroluminescence from ZnO homojunctions grown by ultrasonic spray pyrolysis,Appl. Phys. Lett.2006,89:052113-052115
    [72] J.C. Sun, J.Z. Zhao, H.W. Liang, et al, Realization of ultravioletelectroluminescence from ZnO homojunction with n-ZnO/p-ZnO:As/GaAs structure,Appl. Phys. Lett.,2007,90:121128-121130
    [73] Jun-Yan Zhang, Ping-Jian Li, Hui Sun, et a1, Ultraviolet electroluminescencefrom controlled arsenic-doped ZnO nanowire homojunctions, Appl. Phys. Lett.,2008,93:021116-02118
    [74] I.T. Drapak, Semiconductors,1968,2:624
    [75] H. Ohta, K. Kawamura, M. Orita, et a1, Current injeefion emission from atransparent p-n junction composed of p-SrCu202/n-ZnO, Appl. Phys. Lett.2000,77:475-477
    [76] R. K nenkamp, R.C. Word, and C. Sehlegel, Vertical nanowire light-emittingdiode, Appl. Phys. Lett.2004,85:6004-6006
    [77] R. K nenkamp, R.C. Word, and M. Godine, Ultraviolet Electroluminescencefrom ZnO/Polymer Heterojunction Light-Emitting Diodes, Nano Lett.20005,5(10):2005-2008
    [78] Chih-Yang Chang, Fu-Chun Tsao, Ching-Jen Pan, et al, Electroluminescencefrom ZnO nanowire/polymer composite p-n junction, Appl. Phys. Lett.2006,88:173503-173505
    [79]李佳,ZnO纳米晶、纳米棒的制备及其电致发光特性的研究,硕士毕业论文,2005
    [80]孙晖,张琦锋,吴锦雷,基于氧化锌纳米线的紫外发光二极管,物理学报,2007,56,3479-3482
    [81] J. Li, X. P. Zhao, C. M. Yan, and Y. J. Luo, Electroluminescence of ZnOnanocrystalline particles annealed from mesoporous precursors, Mater. Chem. Phys.,2008,107,177-182.
    [82]常艳玲,张琦锋,孙晖,吴锦雷, ZnO纳米线双绝缘层结构电致发光器件制备及特性研究物理学报,2007,56,2399-2404.
    [83] S. A. M. Lima, M. Cremona, and M. R. Davolos, Electroluminescence of zincoxide thin-films prepared via polymeric precursor and via sol-gel methods, Thin SolidFilms,2007,516,165
    [84] Philip D.Rack, Paul H.Holloway, The structure,device physics,and materialproperties of thin film electroluminescent displays, Materials Science and Engineering,1998:193-194
    [85] Ajay Kale, Alternating current thin film electroluminescence in the near infraredfrom zinc sulfide doped with rare earths,[博士学位论文],美国:佛罗里达大学,2003
    [86]姚亮,张永爱,雷晓阳等,平板显示器中ITO透明电极制备的研究,液晶与显示,2008,,23(1):16-20
    [87]张劲涛,范玉锋,雷刚,PDP中ITO膜制作工艺技术的研究,真空电子技术,2005:43-50
    [88]喻志农,功能薄膜在薄膜电致发光显示技术中的应用,现代显示,2007(73):17-21
    [89] Wagner S., Ellis W.C., Vapor-Liquid-Solid mechanism for nanowire growth,appl. Phys. Let.,1964,4(5):102-105
    [90] Huang M. H., Mao S., Feick H., et al, Room-temperature ultraviolet nanowirenanolasers, Science,2001,292(5523):1897-1899
    [91] Li S. Y., Lee C. Y., Tseng T. Y., Copper-catalyzed ZnO nanowires on silicon(100) grown by vapor-liquid-solid process, Journal of Crystal Growth,2003,247(3,4):357-362
    [92] Li S. Y., Lin P., Lee C. Y., et al. Field emission and photofluorescentcharacteristics of zinc oxide nanowires synthesized by a metal catalyzedvapor-liquid-solid process. Journal of Applied Physics,2004,95(7):3711-3716)
    [93] Liu X., Wu, X. H., et al, Growth mechanism and properties of ZnO nanorodssynthesized by plasma-enhanced chemical vapor deposition, J. Appl. Phys.,2004,95(6):3141-3147
    [94] Wu H., Wei X., Shao M., et al, Synthesis of zinc oxide nanorods using carbonnanotubes as templates, J. Crystal Growth,2004,265(1-2):184-189
    [95] Zhang H., Ma X., Xu J., et al, Arrays of ZnO nanowires fabricated by a simplechemical solution route, Nanotechnology,2003,14:423
    [96] L. Vayssieres, K. Keis, S. E. Lindquist, et al, Controlled aqueous chemicalgrowth of oriented three-dimensional crystalline nanorod arrays: Application to iron(III) oxides. Chem. Mater.,2001,13(2):233–235
    [97] L. Vayssieres, K. Keis, A. Hagfeldt, Three-Dimensional Array of HighlyOriented Crystalline ZnO Microtubes, Chem. Mater.,2001,13(12):4395–4398
    [98] Govender, K., Boyle, D. S., O'Brian, P., Binks, B., West, D., Coleman, D.,Room-temperature lasing observed form ZnO nanocolumns grown by aqueoussolution deposition, Adv. Mater.2002,14(17):12211224
    [99]郭敏,刁鹏,蔡生民,化学学报,2003,61(8):1165-1168
    [100] M.Z. Wu, L.Z. Yao, W.L. Cai, G.W. Jiang, X.G. Li, and Z. Yao, Preparationand photoluminescence of ordered ZnO nanowire arrays J. Mater. Sci. Technol.2004,20(1):11-13.
    [101] Z.X. Fu, C.X. Guo, B.X. Lin, and G.H. Liao, Cathodoluminescence of ZnOfilms, Chin. Phys. Lett.1998,15(6):457-459.
    [102] P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, and H.B. Pan, Native point defect statesin ZnO, Chin. Phys. Lett.18(9):1252-1253.
    [103] H.Q. Yan, R.R. He, J. Pham, et a1. Morphogcnesis of one-dimensional ZnOnano-and microcrystals [J]. Adv. Mater.2003,15:402-405
    [104] Guo M., Diao P., Cai S. M., Hydrothermal growth of well-aligned ZnO nanorodarrays: Dependence of morphology and alignment ording upon preparing conditions[J]. Joumal of Solid State Chemistry,2005,178:1864-1873
    [105] Y. Kajikawa, S. Noda, H. Komiyama, Preferred orientation of chemical vapordeposited polycrystalline silicon carbide films, Chem. Vapor Deposit.8(2002)99
    [106] H.Z. Zhang, X.C. Sun, R.M. Wang, D.P. Yu, Growth and formation mechanismof c-oriented ZnO nanorod arrays deposited on glass, J. Cryst. Growth,269(2004)464
    [107] S. Ilican, Y. Caglar, M. Caglar, Preparation and characterization of ZnO thinfilms deposited by sol-gel spin coating method, J. Optoelectron. Adv. Mater.10(2008)2578
    [108] Cullity B. D., Elements of X-ray diffractions. Addison-Wesley, Resding, MA,1978,102
    [109] S.P. Anthony, J.I. Lee, J.K. Kim, Tuning optical band gap of vertically alignedZnO nanowire arrays grown by homoepitaxial electrodeposition, Appl. Phys. Lett.90(2007)103107
    [110] V. Srikant, D.R. Clarke, Optical absorption edge of ZnO thin films: The effectof substrate [J], J. Appl. Phys.81,1997:6357
    [111] B.Z. Dong, G.J. Fang, J.F. Wang, W.J. Guan, X.Z. Zhao, Effect of thickness onstructural, electrical, and optical properties of ZnO: Al films deposited by pulsed laserdeposition [J], J. Appl. Phys.101(2007)033713
    [112] Y.G. Wang, S.P. Lau, H.W. Lee, S.F. Yu, B.K. Tay, X.H. Zhang, H.H. Hng,Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallicfilms in air [J], J. Appl. Phys.94,2003,354
    [113] L. E. Brus, Structure and electronic states of quantum semiconductor crystallites,Nanostructured Materials,1992,1:71~75
    [114]徐彭寿,孙玉明,施朝淑等. ZnO及其缺陷的电子结构,中国科学: A辑,2001,31,4:358~365
    [115]宋国利,孙凯霞.纳米ZnO薄膜的光致发光性质,光子学报,2005,34(4):590~593
    [116]王卿璞,张德恒,马洪磊.射频磁控溅射法制备ZnO薄膜的绿光发射,发光学报,2004,25(3):291~294
    [117]干金忠,问玮,王新强,杨树人,X射线衍射对ZnO薄膜生跃条件和退火工艺的优化,半导体光电,3(2001):169~172
    [118] Rui Zhang, Peng-Gang Yin, Ning Wang, Lin Guo, Photoluminescence andRaman scattering of ZnO nanorods [J], Solid State Sciences11,2009:865-869
    [119]颜世强,氧化锌变温荧光光谱,国立成功大学硕士论文(台湾),2005.
    [120] Y. Li, G.W. Meng, L.D. Zhang, and F. Phillipp, Ordered semiconductor ZnOnanowire arrays and their photoluminescence properties, Appl. Phys. Lett.76,2000:2011
    [121] D. Banerjee, J.Y. Lao,D.Z. Wang, J.Y. Huang,D. Steeves, B. Kimball and Z.F.Ren, Synthesis and photoluminescence studies on ZnO nanowires, Nanoteelmology15,2004,404-409
    [122] L. E. Greene, M. Law, J. Goldberger et al. Low-temperature wafer-scaleproduction of ZnO nanowire arrays. Angewandte Chemie International Edition,2003,42:3031~3034
    [123] D. Li, Y. H. Leung, A. B. Djurisic et al. Different origins of visibleluminescence in ZnO nanostructures fabricated by the chemical and evaporationmethods[J]. Applied Physics Letters,2004,85:1601~1603
    [124] K. H. Tam, C. K. Cheung, Y. H. Leung et al. Defects in ZnO nanorods preparedby a hydrothermal method, The Journal of Physical Chemistry,2006,110:20865~20871
    [125] H.B. Zeng, G.T. Duan, Y. Li, S.K. Yang, X.X. Xu, W.P. Cai, BlueLuminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: DefectOrigins and Emission Controls, Adv. Funct. Mater.,2010,20,561-572
    [126] P. Yu, Z. K. Tang, and G. K. L. Wong, Room-temperature gain spectra andlasing in microcrystalline ZnO thin films, in Proc.23rd Int. Conf. on the Physics ofSemiconductors. In: M. Scheffler and R. Zimmermann, Editors, World ScientificSingapore,1996
    [127] T. Atsushi and K. Masashi, Repeated temperature modulation epitaxy for p-typedoping and light-emitting diode based on ZnO, Nature Mater.,2005,4,42
    [128] S. J. Jiao, Z. Z. Zhang, and Y. M. Lu, p-n ZnO light-emitting diode fabricatedon a-sapphire substrate, Chin. J. Lumin.,2005,26,542-544
    [129] S. J. Jiao, Y. M. Lu, and D. Z. Shen, Ultraviolet electroluminescence of ZnObased heterojunction light emitting diode, Phys. Stat. Sol.,2006,3,972-975
    [130]K. W. Liu, D. Z. Shen, and C. X. Shan, Zn0.76Mg0.24O homojunctionphotodiode for ultraviolet detection, Appl. Phys. Lett.,2007,91,201106
    [131]严春美,多孔ZnO粉未的制备及其电致发光性能的研究,西北工业大学硕士论文,2006
    [132]宁光辉,李佳,张昌清, ZnO粉末的直流电致发光特性研究,光子学报,2005,34,699-772
    [133] J. Li, X. P. Zhao, C. M. Yan, and Y. J. Luo, Electroluminescence of ZnOnanocrystalline particles annealed from mesoporous precursors, Mater. Chem. Phys.,2008,107,177-182
    [134]王艳新,张琦锋,孙晖, ZnO纳米线二极管发光器件制备及特性研究,物理学报,2008,57,1141-1144
    [135] C.Y. Wong, L. M. Lai, S.L. Leung,V.A.L. Roy, and E.Y. B. Pun, Ambipolarcharge transport and electroluminescence properties of ZnO nanorods, Appl. Phys.Lett.,2008,93:023502-023505
    [136] X. Y. Ma, J.W. Psn, P. L. Chen, D. S. Li, H. Zhang, Y. Yang, and D R Yang,Room temperature electrically pumped ultraviolet random lasing from ZnO nanorodarrays on Si, Opt. Express2009,17(16):14426—14433
    [137] S. Mujumdar, M. Ricci, R. Torre, D.S. Wiersma, Amplified Extended Modes inRandom Lasers, Phys. Rev. Lett.,2004,93(5):053903-053906