DNA甲基化与先天性小耳畸形发病关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     筛查先天性小耳畸形患者整个基因组存在甲基化水平异常的CpG岛和CpG位点及其相关差异基因,进一步检测差异基因的RNA表达水平,研究差异基因CpG岛的甲基化水平和基因表达的关系,同时检测去甲基化药物5氮杂胞苷干预后差异基因RNA表达水平的改变,进而探讨基因甲基化水平的异常与先天性小耳畸形发病之间的关系,为其发病机制提供新的科学理论。
     方法
     收集先天性小耳畸形患者的残耳软骨组织为研究对象,标记为实验组;非耳畸形患者的正常耳软骨组织作为正常对照,标记为对照组。选用基于甲基化DNA免疫共沉淀技术的Nimblegen CpG启动子芯片,对实验组3例及对照组3例样本的基因组DNA进行全基因组28226个CpG岛扫描,用高解析度芯片扫描仪检测杂交信号并输出影像,运用GenePix Pro6.0软件提取数据并输出excel表格。按照其中一组全部高甲基化而另一组全部低甲基化的标准筛选,确定两组之间存在CpG岛甲基化水平差异的基因。选用SpectroCHIP芯片,运用基质辅助激光解吸附电离飞行时间质谱分析仪对实验组47例,对照组31例的差异基因的CpG岛进行各个CpG位点的检测,输出的信号通过EpiTYPER软件进行分析并输出数据。对数据进行t检验,筛选出存在甲基化水平差异的CpG位点。选取实验组3例,对照组3例,在体外分离、培养残耳软骨细胞和正常耳软骨细胞,光镜下直接观察细胞形态变化,CCK-8法计数细胞,绘制细胞生长曲线,进行Ⅱ型胶原免疫组化染色。将对照组第3代细胞选取部分作为对照2组。对照2组加入不同浓度的5氮杂胞苷干预,通过CCK-8法绘制生长曲线和计算细胞活力评估此药物对细胞增殖的影响及细胞毒性检测。运用实时荧光定量PCR技术对实验组3例组织、1例细胞及对照组1例组织、1例细胞进行差异基因RNA表达水平的检测,同时检测对照2组2例细胞的差异基因RNA表达水平,对输出的Ct值应用Prizm 4统计分析软件进行T-test分析,找出实验组与对照组间RNA表达水平具有统计学差异的差异基因。同时对比对照组与对照2组间RNA表达水平具有统计学差异的差异基因。
     结果
     1.实验组与对照组在全基因组范围内,存在36个具有甲基化水平差异的CpG岛,其中有29个与已命名的29个基因相关,初步建立了先天性小耳畸形的甲基化谱。
     2.实验组与对照组在COL18A1、MYH14、RBMY1A1、ZIC3这四个差异基因的CpG岛内有6个CpG位点的甲基化水平存在差异且具有统计学意义。
     3.实验组与对照组的原代及1、2、3代软骨细胞在生物学性状及相关特异性上均无明显差异,细胞增殖及毒性实验证实5氮杂胞苷对正常耳软骨细胞的生长具有剂量依赖性的抑制作用。
     4.在软骨组织中,COL18A1基因的RNA表达水平在实验组较对照组低,具有非常显著的差异;MYH14、RBMYA1这2个基因的RNA表达水平在实验组均较对照组高,且具有显著性差异;ZIC3基因的RNA表达水平在实验组较对照组高,但不具有显著差异。在软骨细胞中,COL18A1, MYH14, ZIC3这3个基因的RNA表达水平在实验组均较对照组高,但不具有显著性差异;对照组与对照2组在COL18A1, MYH14、ZIC3这3个基因的RNA表达水平在对照2组均较对照组高,且具有显著性差异。
     结论
     先天性小耳畸形残耳软骨组织与正常耳软骨组织在全基因组DNA甲基化水平上有36个CpG岛存在差异,进一步对存在CpG岛甲基化水平差异的其中4个差异基因的具体CpG位点进行检测,发现4个差异基因共有6个CpG位点具有甲基化水平差异,对此4个差异基因的RNA表达水平检测发现5氮杂胞苷的去甲基化作用能够促进基因的表达,证实差异基因的表达水平与DNA甲基化相关;MYH14、RBMY1A1这2个差异基因在实验组和对照组的表达差异符合CpG岛甲基化水平的差异,表明在先天性小耳畸形中MYH14和RBMY1A1的表达调控与DNA的甲基化水平密切相关,从而初步推断出先天性小耳畸形的发病可能与DNA的甲基化水平有着密切的关系。
Purpose
     Screening for abnormal methylation in CpG islands and CpG sites through whole genome of congenital microtia to identify their associated genes. RNA expression levels of these genes are also evaluated to study the relationship between CpG islands methylation level and gene expression. Meanwhile, the changes of gene expression after the intervention of 5-Azacytidine which is one of demethylation agent are detected.The study was designed to discuss the relationship between abnormal methylation level of genes and the etiology of congenital microtia.
     Method
     To collect the residual ear cartilage of microtia as the research object,marked as experimental group; normal ear cartilage of patients without ear malformations as control, marked as control group.Choosing Nimblegen CpG promoter array based on methylated DNA immunoprecipitation to screen the 28226 CpG islands in the whole genome of both experimental group and control group,the signals on the microarray were scanned by high-resolution Chip scanner.The data were extracted and exported to excel by GenePix Pro6.0 software.According to the standard that one group is hypermethylation and the other group is hypomethylation,the genes with differential methylated CpG islands were selected. Choosing SpectroCHIP array based on matrix-assisted laser desorption/ionization-time of flight mass spectrography analysis to detect the methylation level of each CpG site in abnormal methyletion CpG islands of both experimental group and control group.The signals were analyzed by EpiTYPER software and the data were exported to excel.Using t-test to analyse data between groups,the CpG sites with differential methylation level were elected. Collecting both experimental group and control group to isolate and culture chondrocytes in vitro,the morphologic changes were observed under light microscope,the amount of chondrocytes was evaluated by cell counting kit-8 in order to generate cell growth curves,and the type II collagen was tested by immunohistochemisty staining.Choosing part of control group chondrocytes as control group 2 to interfere the growth by 5-Azacytidine in different concentration,the influence of cellular proliferation and toxicity were evaluated by cell growth curves and cellular viability.Using the real-time quantitative PCR to test the RNA expression level of abnormal methylated genes between each group in ear cartilage and chondrocytes,the Ct values were analyzed by Prizm 4 software to select the abnormal methylated genes with differential RNA expression.
     Result
     1. There were thirty-six CpG islands with differential methylated level in whole genome between experimental group and control group,in which twenty-nine CpG islands were connected with twenty-nine named genes.The profile of DNA methylation patterns along the entire genome was initially established.
     2. In the abnormal methylated CpG islands of four differential genes including COL18A1,MYH14,RBMY1A1 and ZIC3, six differentially methylated CpG sites were found with statistical significance.
     3. The biological character and specificity showed no differences between each chondrocyte generation of experimental group and control group.Cell proliferation and toxicity test proved that the 5-Azacytidine has a dose dependent suppressive effect on the growth of the normal chondrocyte.
     4. In the cartilage, RNA expression in COL18A1 of experimental group was lower than that in control group with very significant difference. RNA expression in MYH14 and RBMYA1 of experimental group were both higher than that in control group with significant difference. RNA expression in ZIC3 of experimental group was higher than that in control group without significant difference.In chondrocyte, RNA expression in COL18A1,MYH14 and RBMY1A1 of experimental group were all higher than that in control group without significant difference. RNA expression in COL18A1,MYH14 and RBMY1A1 of control group 2 were all higher than that in control group with significant difference.
     Conclusion
     There were thirty-six CpG islands with differential methylated level in whole genome between congenital microtia ear cartilage and normal ear cartilage. Screening for differential methylated CpG sites in four abnormal methylated CpG islands in genes,it is found that six CpG sites had differential methylation level between experimental group and control group. It is considered that the demethylation effect of 5-Azacytidine could promote gene expression,and proved that gene expression was associated with DNA methylation.The RNA expression of MYH14 and RBMY1A1 in experimental group and control group matched the difference of CpG islands methylation level,so it is a conclusion that the regulation of gene expression is tightly connected with DNA methylation in microtia.Therefore,the etiology of congenital microtia may have a close relationship with DNA methylation.
引文
[1]陈佳鹏,张蕾,陈功等.中国1983-1988年出生缺陷检测能力分析[J].中华流行病学杂志,2006,27(5):392-395.
    [2]Ellwood LC, Winter ST, Dar H. Familial microtia with meatal atresia in two sibships[J].J Med Genet,1968,5(4):289-291.
    [3]Guizar-Vazquez J,Arredondo-Vega F,Rostenberg I,et al.Microtia and meatal atresia in mother and son[J].Clin Genet,1978,14(2):80-82.
    [4]Zankl M, Zang KD.Inheritance of microtia and aural atresia in a family with five affected members[J].Clin Genet,1979,16(5):331-334.
    [5]Orstavik KH, Medbφ S, Mair IW.Right-sided microtia and conductive hearing loss with variable expressivity in three generations[J].Clin Genet,1990,38(2):117-120.
    [6]Chafai Elalaoui S,Cherkaoui Jaouad I,Rifai L.Autosomal dominant microtia[J].Eur J Med Genet,2010,53(2):100-103.
    [7]Konigsmark BW,Nager GT,Haskins HL.Recessive microtia,mental atresia,and hearing loss.Report of a sibship[J].Arch Otolaryngol,1972,96(2):105-109.
    [8]Schmid M,Schroder M.Langenbeck U.Familial microtia,meatal atresia,and conductive deafness in three siblings[J]. Am J Med Genet,1985,22(2):327-332.
    [9]Strisciuglio P,Ballabio A,Parenti G.Microtia with meatal atresia and conductive deafness:miId and severe manifestations within the same sibship[J].J Med Genet,1986,23(5):459-460.
    [10]Alasti F,Sadeghi A,Sanati MH,et al.A mutation in HOXA2 is responsible for autosomal-recessive microtia in an Iranian family[J].Am J Hum Genet, 2008,82(4):982-991.
    [11]Tekin M,Ozturkmen Akay H,Fitoz S,et al.Homozygous FGF3 mutations result in congenital deafness with inner ear agenesis, microtia, and microdontia[J].Clin Genet,2008,73(6):554-565.
    [12]Ramsebner R,Ludwig M,Parzefall T,et al.A FGF3 mutation associated with differential inner ear malformation,microtia,and microdontia[J].Laryngoscope, 2010,120(2):359-364.
    [13]Rowe TM,Rizzi M,Hirose K,el al.A role of the double-stranded DNA-binding protein PACT in mouse ear development and hearing[J].Proc Natl Acad Sci USA,2006,103(15):5823-5828.
    [14]潘博,蒋海越,林琳,等.先天性小耳畸形临床分析和PACT基因检测[J].中国优生与遗传杂志,2009,17(7):11-13.
    [15]潘博,林琳,蒋海越,等.先天性小耳畸形家系收集和遗传学研究[J].中国美容医 学,2007,16(8):1023-1026.
    [16]Okajima H,Takeichi Y,Umeda K,et al.Clinical analysis of 592 patients with microtia[J]. Acta Otolaryngol Suppl,1996,525:18-24.
    [17]Jones KL,Johnson KA,Chambers CD.Offspring of women infected with varicella during pregnancy:a prospective study[J].Teratol ogy,1994,49(1):29-32.
    [18]Lopez-Camelo JS,Orioli IM.Heterogeneous rates for birth defects in Latin America: hints on causality[J].Genet Epidemiol,1996,13(5):469-481.
    [19]蒋文杰,裴开颜,李文军,等.小耳畸形综合征病因的初步调查[J].生殖医学杂志,2004,13(1):5-8.
    [20]杜佳梅,郭万厚,韩娟,等.先天性小耳畸形危险因素的病例对照研究[J].中华耳鼻咽喉头颈外科杂志,2006,41(2):107-111.
    [21]Adam MP,Abramowsky CR,Brady AN,et al.Rhabdomyomatous hamartomata of the pharyngeal region with bilateral microtia and aural atresia:a new association? [J] Birth Defects Res A Clin Mol Teratol,2007,79(3):242-248.
    [22]Novik KL, Nimmrich I, Genc B, et al. Epigenomics:genome-wide study of methylation phenomena[J]. Curr. Issues Mol Biol,2002,4(4):111-128.
    [23]Kiefer JC. Epigenetics in development[J]. Dev Dyn,2007,236(4):1144-1156.
    [24]Yano S, Ghosh P, Kusaba H, et al.Effect of promoter methylation on the regulation of IFN-gamma gene during in vitro differentiation of human peripheral blood T cells into a Th2 population[J]. J Immunol,2003,171(5):2510-2516.
    [25]陆嵘,房静远.表观遗传修饰和肿瘤[J].生命科学,2006,18(1):10-14.
    [26]Esteller M.Epigenetic gene silencing in cancer:the DNA hypermethylome[J]. Hum Mol Genet,2007,16 Spec No 1:R50-59.
    [27]Esteller M,Corn PQBaylin SB,et al.A Gene Hypermethylation Profile of Human Cancer[J].Cancer Res,2001,61(8):3225-3229.
    [28]Ubeda F,Wilkins JF.Imprinted genes and human disease:an evolutionary perspective[J]. Adv Exp Med Biol,2008,626:101-115.
    [29]Walter J,Paulsen M.Imprinting and disease[J].Sem in Cell Devl Biol,2003,14(1): 101-110.
    [30]Enklaar T,Zabel BU,Prawitt D.Beckwith-Wiedemann syndrome:multiple molecular mechanisms[J]. Expert Rev Mol Med,2006,8(17):1-19.
    [31]Wan M, Lee SS, Zhang X,et al.Rett Syndrome and Beyond:Recurrent Spontaneous and Familial MECP2 Mutations at CpG Hotspots[J]. Am J Hum Genet,1999,65(6):1520-1529.
    [32]Li J,Protopopov A,Wang F,et al.NotI subtraction and NotI-specific microarrays to detect copy number and methylation changes in whole genomes[J]. Proc Natl Acad Sci U S A,2002,99(16):10724-10729.
    [33]Tost J,Schatz P,Schuster M,et al.Analysis and accurate quantification of CpG methylation by MALDI mass spectrometry[J]. Nucleic Acids Res,2003,31(9):e50.
    [34]孙贝娜.DNA甲基化检测方法的研究进展[J].生命科学仪器,2009,7(4):11-14.
    [35]Lippman Z,Gendrel AV,Colot V,et al.Profiling DNA methylation patterns using genomic tiling microarrays[J].Nat Methods,2005,2(3):219-224.
    [36]Muragaki Y,Timmons S,Griffith CM,et al.Mouse coll8al is expressed in a tissue specific manner as three alternative variants and is localized in basement membrane zones[J].Proc Natl Acad Sci USA,1995,92(19):8763-7.
    [37]Saarela J, Ylikarppa R,Rehn M,et al.Complete primary structure of two variant forms of human type Ⅹ Ⅷ collagen and tissue specific differences in the expression of the corresponding transcrips[J].Matrix Biol,1998,16:319-328.
    [38]O' Reilly MS,Boehm T,Shing Y,et al.Endostatin, an endogenous inhibitor of angiogenesis and tumor growth[J].Cell,1997,88(2):277-285.
    [39]Kuo CJ,LaMontagne KR Jr,Garcia-Cardena G, et al.Oligomerization-dependent regulation of motility and morphogenesis by the collagen Ⅹ Ⅷ NC1/endostatin domain[J].J Cell Biol,2001,152(6):1233-1246.
    [40]Boehm T, Folkman J, Browder T,et al.Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance[J].Nature,1997,390(6658):404-407.
    [41]Feng Y, Wu YP, Zhu XD, et al.Endostatin promotes the anabolic program of rabbit chondrocyte[J].Cell Res,2005,15(3):201-206.
    [42]Ergun S, Kilic N,Wurmbach JH,et al.Endostatin inhibits angiogenesis by stabilization of newly formed endothelial tubes[J].Angiogenesis,2001,4(3):193-206.
    [43]Sipola A, Ilvesaro J, Birr E, et al.Endostatin inhibits endochondral ossification[J]. J Gene Med,2007,9(12):1057-1064.
    [44]Sertie AL,Sossi V,Camargo AA,et al.Collagen XVIII, containing an endogenous inhibitor of angiogenesis and tumor growth, plays a critical role in the maintenance of retinal structure and in neural tube closure (Knobloch syndrome) [J].Hum Mol Genet,2000,9(13):2051-2058.
    [45]Al Ahmad A,Lee B,Stack J, et al.Endostatin binds nerve growth factor and thereby inhibits neurite outgrowth and neuronal migration in-vitro[J].Brain Res,2010,1360:28-39.
    [46]Golomb E,Ma X,Jana SS, et al.Identification and characterization of nonmuscle myosin II-C, a new member of the myosin II family[J].J Biol Chem,2004,279(4):2800-2808.
    [47]Donaudy F,Snoeckx R,Pfister M,et al.Nonmuscle myosin heavy-chain gene MYH14 is expressed in cochlea and mutated in patients affected by autosomal dominant hearing impairment(DFNA4)[J].Am.J.Hum Genet,2004,74(4):770-776.
    [48]Poongothai J,Gopenath TS,Manonayaki S.Genetics of human male infertility[J]. Singapore Med J,2009,50(4):336-347.
    [49]Vogt PH,Falcao CL,Hanstein R,Zimmer J.The AZF proteins[J]. Int J Androl, 2008,31(4):383-394.
    [50]Elliott DJ,Oghene K,Makarov G,et al.Dynamic changes in the subnuclear organisation of pre-mRNA splicing proteins and RBM during human germ cell development[J].J Cell Sci,1998,111(Pt9):1255-1265.
    [51]Mahadevaiah SK,Odorisio T,Elliott DJ,et al.Mouse homologues of the human AZF candidate gene RBM are expressed in spermatogonia and spermatids,and map to a Y chromosome deletion interval associated with a high incidence of sperm abnormalities[J].Hum Mol Genet,1998,7(4):715-727.
    [52]Grinberg I,Millen MJ.The Zic gene family in development and disease[J].Clin Genet,2005,67(4):290-296.
    [53]Purandare SM, Ware SM, Kwan KM,et al.A complex syndrome of left-right axis, central nervous system and axial skeleton defects in Zic3 mutant mice[J].Development,2002,129(9):2293-2302.
    [54]Kang N,Ro H, Park Y,et al.Seson,a novel zinc finger protein,controls cilia integrity for the LR patterning during zebrafish embryogenesis[J].Biochem Biophys Res Commun,2010,401(2):169-174.
    [55]董玉玮,候进惠,朱必才,等.表观遗传学的相关概念和研究进展[J].生物学杂志,2005,22(1):1-3.
    [56]张永彪,褚嘉佑.表观遗传学与人类疾病的研究进展[J].遗传,2005,27(3):466-472.
    [57]Goldberg, AD, Allis CD,Bernstein E.Epigenetics:a landscape takes shape[J].Cell,2007,128(4):635-638.
    [58]Link A,Balaguer F,Goel A.Cancer chemoprevention by dietary polyphenols: promising role for epigenetics[J].Biochem Pharmacol,2010,80(12):1771-1792.
    [59]Egger G,Liang G,Aparicio A,GERDA E,et al.Epigenetics in human disease and prospects for epigenetic therapy[J].Nature,2004,429(6990):457-462.
    [60]Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development[J].Nature,2007,447(7143):425-432.
    [61]高原,周剑涛,夏德宜.表观遗传学与人类表观基因组计划[J].现代生物医学进展,2009,,9(2):365-367.
    [62]Jones, PA,Liang G.Rethinking how DNA methylation patterns are maintained[J]. Nat Rev Genet,2009,10(11):805-811.
    [63]Ollikainen M,Smith KR,Joo EJ,et al.DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome[J].Hum Mol Genet,2010,19(21):4176-4188.
    [64]Schneider E, Pliushch G, El Hajj N,et al.Spatial, temporal and interindividual epigenetic variation of functionally important DNA methylation patterns[J].Nucleic Acids Res,2010,38(12):3880-3890.
    [65]da Silva MA,Yamada N,Clarke NM,et al.Cellular and epigenetic features of a young healthy and a young osteoarthritic cartilage compared with aged control and OA cartilage[J].J Orthop Res,2009,27(5):593-601.
    [66]Wilson AG.Epigenetic regulation of gene expression in the inflammatory response and relevance to common diseases[J].J Periodontol,2008,79(8 Suppl):1514-1519.
    [67]Nile CJ,Read RC,Akil M,et al.Methylation status of a single CpG site in the IL-6 promoter is related to IL-6 mRNA levels and rheumatoid arthritis[J].Arthritis Rheum,2008,58(9):2686-2693.
    [68]陈丽,屈卫东.DNA甲基化及其芯片技术研究进展[J].国外医学卫生学分册,2007,34(6):368-372.
    [69]Duncan MW,Roder H,Hunsucker SW.Quantitative matrix-assisted laser desorption/ionization mass spectrometry[J].Brief Funct Genomic Proteomic,2008,7(5):355-370.
    [70]Maroudas A,Bayliss MT,Venn MF.Further studies on the composition of human femoral head cartilage[J].Ann Rheum Dis,1980,39(5):514-523.
    [71]Muir H.The chondrocyte,architect of cartilage.Biomechanics,structure,function and molecular biology of cartilage matrix macromolecules[J].Bioessays,1995,17(12):1039-1048.
    [72]Oldberg A,Antonsson P,Hedbom E,et al. Structure and function of extracellular matrix proteoglycans[J].Biochem Soc Trans,1990,18(5):789-792.
    [73]von der Mark K,Gauss V,von der Mark H,et al.Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture[J].Nature,1977,267(5611):531-532.
    [74]Kwong FM,Tang JC,Srivastava G,et al.Inactivation mechanisms and growth suppressive effects of p16INK4a in Asian esophageal squamous carcinoma cell lines[J].Cancer Lett,2004,208(2):207-213.
    [75]Christman JK.5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation:mechanistic studies and their implications for cancer therapy[J].Oncogene,2002,21(35):5483-5495.
    [76]Karon M,Benedict WF.Chromatid breakage:differential effect of inhibitors of DNA synthesis during G 2 phase[J].Science,1972,178(56):62.
    [77]Landolph JR, Jones PA.Mutagenicity of 5-azacytidine and related nucleosides in C3H/10T 1/2 clone 8 and V79 cells[J].Cancer Res,1982,42(3):817-823.
    [78]Viegas-Pequignot E,Dutrillaux B.Segmentation of human chromosomes induced by 5-ACR(5-azacytidine)[J].Hum Genet,1976,34(3):247-254.
    [79]Christman JK,Mendelsohn N, Herzog D,et al.Effect of 5-azacytidine on differentiation and DNA methylation in human promyelocytic leukemia cells(HL-60)[J].Cancer Res,1983,43(2):763-769.
    [80]Creusot F,Acs G,Christman JK.Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-aza-2'-deoxycytidine[J].J Biol Chem,1982,257(4):2041-2048.
    [81]Mund C,Hackanson B,Stresemann C,et al.Characterization of DNA demethylation effects induced by 5-Aza-2'-deoxycytidine in patients with myelodysplastic syndrome[J].Cancer Res,2005,65(16):7086-7090.
    [82]Gore SD,Baylin S,Sugar E, et al.Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms[J].Cancer Res,2006,66(12):6361-6369.
    [83]Soriano AO,Yang H,Faderl S,et al.Safety and clinical activity of the combination of 5-azacytidine,valproic acid,and all-trans retinoicacid in acute myeloid leukemia and myelodysplastic syndrome[J].Blood,2007,110(7):2302-2308.
    [84]Daskalakis M,Nguyen TT,Nguyen C,et al.Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2'-deoxycytidine(decitabine)treatment[J].Blood,2002,100(8):2957-2964.
    [85]伍健,金月玲,黄培林.5氮杂胞苷对HT29细胞DLC-1基因表达和细胞增殖活性的影响[J].现代医学,2005,33(3):141-144.
    [86]吴丽明,杨建平,莫先启,等.5氮杂胞苷抑制乳腺癌细胞Bcap-37增殖及逆转RASSF1A基因甲基化作用[J].癌变.畸变.突变,2006,8(5):348-350.
    [87]张晔,曲秀娟,刘云鹏,等.3种胃癌细胞株中GSTP1基因表达及其启动子区甲基化状态的研究[J].中国医科大学学报,2008,37(6):724-726.
    [88]董科,李波,覃扬,等.5-氮杂胞苷抑制肝癌细胞恶性表型和逆转甲基化状态的作用及机制[J].世界华人消化杂志,2008,16(17):1842-1848.
    [89]米向斌,邱贤文,谭国珍,等.5-氮杂胞苷对IL-6启动子DNA甲基化的影响[J].岭南皮肤性病科杂志,2009,6:369-371.
    [90]龙超众,贺大璞,王元星,等.5-氮杂胞苷对Ecal09细胞增殖及RUNX3基因表达的影响[J].南华大学学报(医学版),2010,38(3):345-349.
    [91]苏庸春,徐酉华,蔡倩,等.甲基化抑制剂5-氮杂胞苷对HL-60细胞增殖及凋亡的影响[J].重庆医科大学学报,2010,35(7):981-984.
    [92]Byun DS,Lee MG,Chae KS,et al.Frequent epigenetic inactivation of RASSFIA by aberrant promoter hypermethylation in human gastric adenocarcinoma[J].Cance Res,2001,61(19):7034-7038.
    [93]Li QL,Ito K,Sakakura C,et al.Causal Relationship between the loss of Runx3 Expression and Gastric Cancer[J].Cell,2002,109(1):1132-1241.
    [94]Stresemann C,Bokelmann I,Mahlknecht U,et al.Azacytidine causes complex DNA methylation responses in myeloid leukemia[J].Mol Cancer Ther,2008, 7(9):2998-3005.
    [95]Hagemann S,Heil O,Lyko F,et al.Azacytidine and decitabine induce gene-specific and non-random DNA demethylation in human cancer cell lines[J].PLoS One,2011,6(3):e17388.
    [1]Cutfield WS, Hofman PL, Mitchell M, et al.Could epigenetics play a role in the developmental origins of health and disease?[J]. Pediatr Res,2007,61(5 Pt 2):68R-75R.
    [2]Bird A.DNA methylation patterns and epigenetic memory[J]. Genes Dev,2002,16(1):6-21.
    [3]Larsen F, Gundersen G, Lopez R, et al. CpG islands as gene markers in the human genome[J]. Genomics,1992,13(4):1095-1107.
    [4]Bird AP.CpG-rich islands and the function of DNA methylation[J]. Nature,1986, 321(6067):209-213.
    [5]Wolf SF, Jolly DJ, Lunnen KD, et al. Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome:implications for X-chromosome inactivation[J]. Proc Natl Acad Sci USA,1984,81(9):2806-2810.
    [6]钟志平.表观遗传学涉及的几种机制[J].应用科学,2010,15:96.
    [7]Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters[J]. Proc Natl Acad Sci USA,2006,103(5):1412-1417.
    [8]Luger K, Mader AW, Richmond RK, et al. Crystal structure of the nucleosome core particle at 2.8 A resolution[J]. Nature,1997;389(6648):251-260.
    [9]Urnov FD, Wolffe AP. Chromatin remodeling and transcriptional activation:The cast (in order of appearance) [J]. Oncogene,2001;20(24):2991-3006.
    [10]Cheung P, Lau P. Epigenetic regulation by histone methylation and histone variants[J]. Mol Endocrinol,2005;19(3):563-573.
    [11]Chow JC, Yen Z, Ziesche SM, et al. Silencing of the mammalian X chromosome[J]. Annu Rev Genomics Hum Genet,2005;6:69-92.
    [12]Santos F, Hendrich B, Reik W, et al. Dynamic reprogramming of DNA methylation in the early mouse embryo[J]. Dev Biol,2002,241(1):172-182.
    [13]Pickard B, Dean W, Engemann S, et al. Epigenetic targeting in the mouse zygote marks DNA for later methylation:a mechanism for maternal effects in development[J]. Mech Dev,2001,103(1-2):35-47.
    [14]Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development[J]. Science,2001,293(5532):1089-1093.
    [15]吴少瑜,吕琳,徐伟,等.DNA甲基化和基因组印记现象[J].山东医药,2010,50(9):113-114.
    [16]Nakao M, Sasaki H. Genomic imprinting:Significance in development and diseases and the molecular mechanisms[J]. J Biochem,1996;120(3):467-473.
    [17]Delaval K, Wagschal A, Feil R.Epigenetic deregulation of imprinting in congenital diseases of aberrant growth[J]。Bioessays,2006,28(5):453-459.
    [18]Pedone PV, Cosma MP, Ungaro P, et al. Parental imprinting of rat insulin-like growth factor Ⅱ gene promoters is coordinately regulated[J]. J Biol Chem,1994,269(39):23970-23975.
    [19]张文娟,纪卫东,杨淋清,等.人胚肺成纤维细胞衰老过程中胰岛素样生长因子2表观遗传活化作用[J].卫生研究,2010,39(1):1-3,8.
    [20]Zeschnigk M, Schmitz B, Dittrich B, et al.Imprinted segments in the human genome: different DNA methylation patterns in the Prader-Willi/Angelman syndrome region as determined by the genomic sequencing method[J]. Hum Mol Genet,1997,6(3):387-395.
    [21]Frost JM, Monk D, Stojilkovic-Mikic T, et al. Evaluation of allelic expression of imprinted genes in adult human blood[J]. PLoS One,2010,5(10):e13556.
    [22]Price SM, Stanhope R, Garrett C, et al. The spectrum of Silver-Russell syndrome:a clinical and molecular genetic study and new diagnostic criteria[J]. J Med Genet,1999,36(11):837-842.
    [23]Hitchins MP, Stanier P, Preece MA, et al. Silver-Russell syndrome:a dissection of the genetic aethiology and candidate chromosomal regions[J]. J Med Genet,2001,38(12):810-819.
    [24]Kotzot D, Schmitt S, Bernasconi F, et al. Uniparental disomy 7 in Silver-Russell syndrome and primordial growth retardation[J]. Hum Mol Genet,1995,4(4):583-587.
    [25]Abu-Amero S, Monk D, Frost J, et al. The genetic aetiology of Silver-Russell syndrome[J]. J Med Genet,2008,45(4):193-199.
    [26]Abu-Amero S, Wakeling EL, Preece M, et al. Epigenetic signatures of Silver-Russell syndrome[J]. J Med Genet,2010,47(3):150-154.
    [27]Obermann C, Meyer E, Prager S, et al. Searching for genomic variants in IGF and CDKN1C in Silver-Russell syndrome patients[J]. Mol Genet Metab,2004,82(3):246-250.
    [28]Eggermann T, Schonherr N, Meyer E, et al.Epigenetic mutations in 11p15 in Silver-Russell syndrome are restricted to the telomeric imprinting domain[J]. J Med Genet,2006,43(7):615-616.
    [29]Bliek J, Terhal P, van den Bogaard MJ, et al.Hypomethylation of the gene causes not only Silver-Russell syndrome, but also isolated asymmetry or a SRS-like phenotype[J]. Am J Hum Genet,2006,78(4):604-614.
    [30]Bartholdi D, Krajewska-Walasek M, Ounap K, et al.Epigenetic mutations of the imprinted IGF2-H19 domain in Silver-Russell syndrome (SRS):results from a large cohort of patients with SRS and SRS-like phenotypes[J]. J Med Genet,2009,46(3):192-197.
    [31]Wakeling EL, Amero SA, Alders M,et al.Epigenotypeephenotype correlations in Silvere-Russell syndrome[J].J Med Genet,2010,47(11):760-768.
    [32]Gicquel C, Rossignol S, Cabrol S, et al.Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver-Russell syndrome[J]. Nat Genet,2005,37(9):1003-1007.
    [33]Lin SY, LeeCN,Hung CC,et al.Epigenetic profiling of the H19 differentially methylated region and comprehensive whole genome array-based analysis in Silver-Russell syndrome[J].Am J Med Genet A,2010,152A(10):2521-2528.
    [34]Maher ER, Reik W.Beckwith-Wiedemann syndrome:imprinting in clusters revisited[J]. J Clin Invest,2001,105(3):247-252.
    [35]Cooper WN, Luharia A, Evans GA, et al.Molecular subtypes and phenotypic expression of Beckwith-Wiedemann syndrome[J]. Eur J Hum Genet,2005,13(9):1025-1032.
    [36]Lee MP, DeBaun MR, Mitsuya K, et al. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KvLQT1, occurs frequently in Beckwith-Wiede-mann syndrome and is independent of insulin-like growth factor II imprinting[J]. Proc Natl Acad Sci USA,1999,96(9):5203-5208.
    [37]Smilinich NJ, Day CD, Fitzpatrick GV, et al.A maternally methylated CpG island in KvLQTl is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome[J]. Proc Natl Acad Sci USA,1999,96(14):8064-8069.
    [38]Diaz-Meyer N, Day CD, Khatod K,et al.Silencing of CDKN1C (p57KIP2) is associated with hypomethylation at KvDMR1 in Beckwith-Wiedemann syndrome[J]. J Med Genet,2003,40(11):797-801.
    [39]Higashimoto K, Urano T, Sugiura K,et al. Loss of CpG methylation is strongly correlated with loss of histone H3 lysine 9 methylation at DMR-LIT1 in patients with Beckwith-Wiedemann syndrome[J].Am J Hum Genet,2003,73(4):948-956.
    [40]Tierling S, Souren NY, Reither S,et al.DNA methylation studies on imprinted loci in a male monozygotic twin pair discordant. for Beckwith-Wiedemann syndrome[J].Clin Genet,2010 Jun 7,[Epub ahead of print].
    [41]Diaz-Meyer N, Yang Y, Sait SN, et al.Alternative mechanisms associated with silencing of CDKN1C in Beckwith-Wiede-mann syndrome[J]. J Med Genet,2005, 42(8):648-655.
    [42]Hatada I, Ohashi H, Fukushima Y, et al.An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome[J].Nat Genet,1996,14(2):171-173.
    [43]Wan M, Lee SS, Zhang X,et al.Rett Syndrome and Beyond:Recurrent Spontaneous and Familial MECP2 Mutations at CpG Hotspots[J]. Am J Hum Genet,1999,65(6):1520-1529.
    [44]李美蓉,张玉稚,潘虹.Rett综合征和DNA甲基化[J].国际遗传学杂志,2006,29(5):384-388.
    [45]Schanen C, Francke U. A severely affected male born into a Rett syndrome kindred supports X-linked inheritance and allows extension of the exclusionmap[J]. Am J Hum Genet,1998,63(1):267-269.
    [46]Ellison KA, Fill CP, Terwilliger J, et al.Examination of X chromosome markers in Rett syndrome:exclusion mapping with a novel variation on multilocus linkage analysis[J].Am J Hum Genet,1992,50(2):278-287.
    [47]Sirianni N, Naidu S, Pereira J,et al.Rett syndrome:confirmation of X-linked dominant inheritance, and localization of the gene to Xq28[J].Am J Hum Genet,1998,63(5):1552-1558.
    [48]Amir RE, Van den Veyver IB, Wan M,et al.Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2[J]. Nat Genet,1999,23(2):185-188.
    [49]Jones PL, Veenstra GJ,Wade PA,et al.Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription[J].Nat Genet,1998,19(2):187-191.
    [50]Kubota T, Furuumi H, Kamoda T,et al.ICF Syndrome in a Girl With DNA Hypomethylation but Without Detectable DNMT3B Mutation[J].Am J Med Genet,2004,129A(4):290-293.
    [51]Ramsden SC, Clayton-Smith J, Birch R,et al.Practice guidelines for the molecular analysis of Prader-Willi and Angelman syndromes[J].BMC Med Genet,2010,11:70.
    [52]Glenn CC, Driscoll DJ, Yang TP,et al.Genomic imprinting:potential function and mechanisms revealed by the Prader-Willi and Angelman syndromes[J].Mol Hum Reprod,1997,3(4):321-332.
    [53]Chamberlain SJ, Lalande M.Angelman Syndrome, a Genomic Imprinting Disorder of the Brain[J].J Neurosci,2010,30(30):9958-9963.
    [54]傅俊江,李麓芸.Prader-Willi/ Angelman综合征的分子遗传学研究进展及其基因诊断[J].中华医学遗传学杂志,1999,16(5):337-339.
    [55]Chowdhury S, Erickson SW, MacLeod SL, et al.Maternal Genome-Wide DNA Methylation Patterns and Congenital Heart Defects[J]. PLoS One,2011,6(1):e16506.
    [56]赵方允,刘侃.人类疾病发生的表观遗传机制及治疗研究进展[J].广东药学院学报,2009,25(4):437-440.