幂律分布非平衡尘埃等离子体中的充电过程及尘埃声波
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尘埃等离子体由普通的电子-离子等离子体和沉浸其中的带电尘埃颗粒组成,它广泛存在于宇宙空间和实验室中。理论分析和空间观测的结果表明,尘埃等离子体中常存在一种服从幂律分布而非麦克斯韦分布的超热粒子;不同的尘埃等离子体相互并不独立,而是经常在相对运动中交会并相互穿越。基于上述事实,本论文一方面在非广延统计框架下,推广了尘埃等离子体的理论研究成果,另一方面建立了相互穿越的尘埃等离子体模型,并初步探讨了其中的线性尘埃声波及其稳定性。
     本论文在非广延统计框架下研究了尘埃等离子体中尘埃颗粒的基本充电过程,包括电子离子附着以及电子致二次电子辐射。研究中假设电子、离子均服从非广延幂律分布,且各自有着不同的非广延参数,在此基础上得到了由电子、离子非广延参数修正的尘埃充电电流,包括电子流、离子流和二次电子流。考虑不同的尘埃充电过程,文中通过理论推导和数值计算,分析了电子和离子的非广延性质对尘埃表面电性和电量的影响。
     本论文在非广延统计框架下研究了尘埃等离子体中所特有的尘埃声孤波。研究基于两种不同的假设:尘埃电量恒定和尘埃电量扰动。在尘埃电量恒定假设下,根据约化摄动法和赝势法分别求得小振幅和任意振幅的尘埃声孤波,并通过理论推导和数值计算,分析了非广延性质对尘埃声孤波的影响。在尘埃电量扰动假设下,本论文只讨论了小振幅的尘埃声孤波。在这两种不同的假设下,非广延性质对尘埃声孤波的影响不同,通过分析可知:电子非广延性直接作用于尘埃电量扰动,从而间接影响尘埃声孤波性质;离子非广延性则直接影响尘埃声孤波性质。
     本论文建立了由快尘埃等离子体与靶尘埃等离子体共同构成的相互穿越尘埃等离子体模型,分别在经典统计力学和非广延统计力学的框架下研究了模型中的线性尘埃声波,并进一步分析了其稳定性及稳定性条件。文中考虑了两种极限情况。在靶尘埃等离子体中的尘埃热速度远小于尘埃声波的相速度情况下,经典统计和非广延统计的结果均表明尘埃声波总是不稳定的;在靶尘埃等离子体中的尘埃热速度远大于尘埃声波的相速度情况下,尘埃声波有可能稳定传播,其稳定性受到相互穿越尘埃等离子体中某些组分的性质包括其非广延性质的直接影响。
Dusty plasmas, which can be loosely defined as normal electron-ion plasmaswith additional charged components of dust grains, are rather ubiquitous in space andlaboratory. According to the theoretical analyses and space observations, it should bepointed out that suprathermal particles in the dusty plasma obey the power-lawdistribution instead of the Maxwell distribution, and moreover, the space plasmas aregenerally in motion and thus an permeating plasma physical phenomenon mayfrequently occur if two or more space plasmas encounter in the same space region.Consequently, the theoretical achievements in the dusty plasmas is generalized in theframework of nonextensive statistics, additionally, the dust-acoustic waves is studiedin the interpenetrating dusty plasma.
     Firstly, some elemental dust charging processes in the dusty plasma isinvestigated on the basis of nonextensive statistics, including the collection of plasmaparticles and the secondary electron emission induced by the impact of electrons. Theelectrons and ions are assumed to be described by the nonextensive power-lawdistribution with q-parameters different from each other. Therefore, the dust chargingcurrents, including electron current, ion current and secondary electron current arederived. For different dust charging processes, according to the theoretical analysisand numerical calculation, the influnce of the electrons' and ions' nonextensivecharacters on the dust charge is analyzed.
     Then, the nonextensive statistics is applied to study the nonlinear properties ofdust-acoustic solitary waves in the dusty plasmas. The investigation is based on twodifferent assumptions. The dust charge is either unvariable or variable. If the dustcharge is kept constant, according to the reductive erturbation method and theSagdeev potential method, the dust-acoustic solitary solution with small amplitudeand arbitary amplitude are derived. The influnces of the nonextensive parameters onthe solitary waves are identical by analysis. Therefore, if the dust charge is variable,only the small-amplitude dust-acoustic solitary waves are studied. With these twodifferent assumptions, the nonextensive characters have different effects on thesolitary waves. The nonextensive character of electrons affects on the dust chargefluctuation and thus affects on the solitary waves indirectly, on the other hand, thenonextensive character of ions affects on the solitary waves directly.
     At last, the model of the permeating dusty plasma is established, which consists of two parts, i.e., the fast flowing dusty plasma and the target dusty plasma. In theframeworks of the classical and nonextensive statistics, the dust-acoustic waves andtheir stability in the permeating dusty plasma are investigated. It has been found thatthe stability of the waves depends strongly on the velocity of the fast flowing dustyplasma. There are two limiting physical cases that the thermal velocity of the flowingdusty plasma is much larger than or much smaller than the phase velocity of thewaves. In the former case, the dust acoustic waves are always instable, while in thelatter case, the dust acoustic waves may be stable and the stability is affected by thecharacters and nonextensive parameters of some components.
引文
[1] F. F.陈,等离子体物理学导论(林光海译),北京:人民教育出版社,1974.
    [2]李定,陈银华,马锦秀等,等离子体物理学,北京:高等教育出版社,2006.
    [3]郑春开,等离子体物理,北京:北京大学出版社,2009.
    [4]胡希伟,等离子体理论基础,北京:北京大学出版社,2006.
    [5] P. M. Bellan, Fundamentals of plasma physics, New York: CambridgeUniversity Press,2006.
    [6] P. K. Shukla, Introduction to dusty plasma physics, Bristol: Institute ofPhysics Publishing,2002.
    [7] E. Krügel, The physics of interstellar dust, Bristol: Institute of PhysicsPublishing,2003.
    [8] P. Bliokh, V. Sinitsin, and V. Yaroshenko, Dusty and self-gravitationalplasmas in space, Dordrecht: Kluwer academic publishers,1995.
    [9] M. Bonitz, N. Horing, and P. Ludwig, Introduction to complex plasmas,Heidelberg: Springer,2010.
    [10]B. A. Smith, L. Soderblom, R. Beebe, and et. al., Encounter with Saturn:Voyager1imaging science results, Science,1981,212(4491):163~191.
    [11]B. A. Smith, L.Soderblom, R. Batson, and et. al., A new look ar the Saturnsystem: the Voyager2images, Science,1982,215(4532):504~537.
    [12]G. S. Selwyn, J. Singh, and R. S. Bennett, In situ laser diagnostic studies ofplasma-generated particulate contamination, Journal of Vacuum Science&Technology A: Vacuum, Surfaces, and Films,2989,7(4):2758~2765.
    [13]S. Ichimaru, Basic principles of plasma physics: a statistical approach,London: Benjamin,1973.
    [14]A. F. Alexandrov, L. S. Bogdankevich and A. A. Rukhadze, Principles ofPlasma electrodynamics. Berlin: Springer,1984.
    [15]D. G. Swanson, Plasma waves,2nd edition, Bristol: Institute of PhysicsPublishing,2003.
    [16]N. N. Rao, P. K. Shukla and M. Y. Yu, Dust-acoustic waves in dusty plasmas,Planet Space Science,1990,38:543~546.
    [17]F. Melands, T. Aslaksen, and O. Havnes, A new damping effect for thedust-acoustic wave Original Research Article, Planetary and Space Science,1993,41(4):321~325.
    [18]P. K. Shukla and V. P. Silin, Dust ion-acoustic wave, Physica Scripta,1992,45(5):508.
    [19]F. Verheest, Waves in dusty plasma, Dordrecht: Kluwer Academic,2000.
    [20]P. K. Shukla, A survey of dusty plasma physics, Physics of Plasmas,2001,8(5):1791~1803.
    [21]A. Barkan, N. D'Angelo, and R. L. Merlino, Experiments on ion-acousticwaves in dusty plasmas, Planetary and Space Science,1996,44:239~242.
    [22]Y. Nakamura, H. Bailung, and P. K. Shukla, Observation of ion-acousticshocks in a dusty plasma, Physical Review Letters,1999,83(8):1602~1605.
    [23]A Barkan, RL Merlino, N D'Angelo, Laboratory observation of thedust-acoustic wave mode, Physics of Plasmas,1995,2(10):3563~3565.
    [24]R. Bharuthram and P. K. Shukla, Large amplitude ion-acoustic solitons in adusty plasma, Planetary and Space Science,1992,40(7):973~977.
    [25]N. N. Rao and P. K. Shukla, Nonlinear dust-acoustic waves with dust chargefluctuations, Planetary and Space Science,1994,42(3):221~225.
    [26]F. Melands and P. K. Shukla, Theory of dust-acoustic shocks, Planetary andSpace Science,1995,43:635~648.
    [27]S. I. Popel, M. Y. Yu, and V. N. Tsytovich, Shock waves in plasmascontaining variable-charge impurities, Physics of Plasmas,1996,3(12):4313~4315.
    [28]A. A. Mamun, R. S. Cairns, and P. K. Shukla, Solitary potentials in dustyplasma, Physics of Plasmas,1996,3(2):702~704.
    [29]A. A. Mamun, Arbitrary amplitude dust-acoustic solitary structures in a threecomponent dusty plasma, Astrophysics and Space Science,1999,268(4):443~454.
    [30]P. K. Shukla and A. A. Mamun, Dust-acoustic shocks in a strongly coupleddusty plasma, IEEE Transactions on Plasma Science,1999,29(2):221~225.
    [31]P. K. Shukla, Dust ion-acoustic shocks and holes, Physics of Plasmas,2000,7(3):1044~1046.
    [32]E. Grün, B. Gustafson, I. Mann, and et. al., Interstellar dust in the heliosphere,Astronomy and Astrophysics,1994,286:915~924.
    [33]E. Grün, H. A. Zook, M. Baguhl, and et. al., Discovery of Jovian dust streamsand interstellar grains by the ULYSSES spacecraft, Nature,1993,362(6419):428~430.
    [34]H. Alfven, On the origin of the solar system, Oxford: Clarendon Press,1954.
    [35]U. de Angelis, The physics of dusty plasmas, Physica Scripta,1992,45(5):465~474.
    [36]A. Krivov, H. Kimura, and I. Mann, Dynamics of dust near the sun, Icarus,1998,134(2):311~327.
    [37]H. Kimura and I. Mann, The electric charging of interstellar dust in the solarsystem and consequences for its dynamics, Astrophysical Journal,1998,499:454~462.
    [38]D. H. Humes, Results of Pioneer10and11meteoroid experiments:Interplanetary and near-Saturn, Journal of Geophysical Research,1980,85:5841~5852.
    [39]O. Havnes, T. Aslaksen, and A. Brattli, Charged Dust in the Earth's MiddleAtmosphere, Physica Scripta,2001, T89(1):133~137.
    [40]M. E. Ockert, J. N. Cuzzi and C. C. Porco, Uranian ring photometry-Resultsfrom Voyager2, Journal of Geophysical,1987,92:14969~14978.
    [41]M. E. Ockert, J. A. Burns, I. J. Daubar, and et. al., The structure of Jupiter'sring system as revealed by the Galileo imaging experiment, Icarus,1999,138(2):188~213.
    [42]D. A. Mendis, H. L. F. Houpis, and J. R. Hill, The gravitoelectrodynamics ofcharged dust in planetary magnetosphere, Journal of Geophysical Research,1982,87(A5):3449~1982.
    [43]D. A. Mendis, J. R. Hill, and H. L. F Houpis, Charged dust in Saturn'smagnetosphere, Journal of Geophysical Research,1983,88(S2): A929~A942.
    [44]C. K. Goertz, G. Morfill, A model for the formation of spokes in Saturn's ring,Icarus,1983,53(2):219~229.
    [45]J. Y. N. Cho and M. C. Kelley, Polar mesosphere summer radar echoes:Observations and current theories, Reviews of Geophysics,1993,31(3):243~265.
    [46]O Havnes, J Tr im, T Blix, and et. al., First detection of charged dustparticles in the Earth’s mesosphere, Journal of Geophysical Research,1996,101(A5):10839~10848.
    [47]G. E. Thomas, Mesospheric clouds and the physics of the mesopause region,Reviews of Geophysics,1991,29:553~575.
    [48]P. A. Bernhardt, G. Ganguli, M. C. Kelley, and et. al., Enhanced radarbackscatter from space shuttle exhaust in the ionosphere, Journal of GeophysicalResearch,100(A12):23811~23818.
    [49]黄祖洽,丁鄂江,输运理论,北京:科学出版社,2008.
    [50]郭硕鸿,电动力学,北京:高等教育出版社,1997.
    [51]A. B. Langdon, Nonlinear inverse bremsstrahlung and heated-electrondistributions, Physical Review Letters,1980,44:575~579.
    [52]J. R. Albritton, Laser absorption and heat transport by non-Maxwell-Boltzmann electron distributions, Physical Review Letters,1983,50:2078~2081.
    [53]J. P. Matte, T. W. Johnston, J. Delettrez, and et. al., Electron heat flow withinverse bremsstrahlung and ion motion, Physical Review Letters,1984,53:1461~1464.
    [54]J. M. Liu, J. S. De Groot, J. P. Matte, and et. al., Measurements of inversebremsstrahlung absorption and non-Maxwellian electron velocity distributions,Physical Review Letters,1994,72(17):2717~2720.
    [55]Y. V. Skorov and H. Rickman, A kinetic model of gas flow in a porouscometary mantle, Planetary and Space Science,1995,43(17):1587~1594.
    [56]M. D. Montgomergy, S. Singer, J. P. Conner, and et. al., Spatial distribution,energy spectra, and time variations of energetic electrons (E>50keV) at17.7earthradii, Physical Review Letters,1965,14(7):209~213.
    [57]S. J. Bame, J. R. Asbridge, H. E. Felthauser, and et. al., Electrons in theplasma sheet of the earth’s magnetic tail, Physical Review Letters,1965,16(4):138~142.
    [58]V. M. Vasyliunas, A Survey of Low-Energy Electrons in the Evening Sectorof the Magnetosphere with OGO1and OGO3, Journal of Geophysical Research,1968,73(9):2839~2884.
    [59]E. W. Hones, J. R. Asbridge, S. J. Bame, and et. al., Energy spectra andangular distributions of particles in the plasma sheet and their comparison with rocketmeasurements over the auroral zone, Journal of Geophysical Research,1971,76:63~87.
    [60]E. T. Sarris, S. M. Krimigis, A. T. Y. Lui, and et. al., Relationship betweenenergetic particles and plasmas in the distant plasma sheet, Geophysical ResearchLetters,1981,8(4):349~352.
    [61]S. P. Christon, D. G. Mitchell, D. J. Williams, and et. al., Energy spectra ofplasma sheet ions and electrons from~50eV/e to~1MeV during plasma temperaturetransitions, Journal of Geophysical Research,1988,93:2562~2572.
    [62]S. P. Christon, D. J. Williams, D. G. Mitchell, and et. al., Spectralcharacteristics of plasma sheet ion and electron populations during undisturbedgeomagnetic conditions, Journal of Geophysical Research,1989,94(A10):13409~13424.
    [63]J. D. Mihalov, J. H. Wolfe, and L. A. Frank, Survey for Non-MaxwellianPlasma in Jupiter’s Magnetosheath, Journal of Geophysical Research,1976,81(19):3412~3416.
    [64]W. C. Feldman, J. R. Asbridge, S. J. Bame, and et. al., Solar wind electrons,Journal of Geophysical Research,1975,80(31):4181~4196.
    [65]S. R. Cranmer, Non-Maxwellian redistribution in solar coronal Lyα emission,The Astrophysical Journal,1998,508(2):925~939.
    [66]M. Maksimovic, V. Pierrard, and J. F. Lemaire, A kinetic model of the solarwind with Kappa distribution functions in the corona, Astronomy and Astrophysics,1997,324:725~734.
    [67]J. T. Gosling, J. R. Asbridge, S. J. Bame, and et. al., Solar wind ionsaccelerated to40keV by shock wave disturbances, Journal of Geophysical Research,1980,85(A2):744~752.
    [68]K. W. Ogilvie, J. Geiss, G. Gloeckler and et. al., High-Velocity Tails on theVelocity Distribution of Solar Wind Ions, Journal of Geophysical Research,1993,98(A3):3605~3611.
    [69]J. L. Du, Test of nonextensive statistical mechanics by solar sound speeds,Europhysics Letters,2006,75(6):861~867.
    [70]D. Summers and R. M. Thorne, A New Tool for Analyzing Microinstabilitiesin Space Plasmas Modeled by a Generalized Lorentzian (Kappa) Distribution, Journalof Geophysical Research,1992,97(A11):16827~16832.
    [71]D. A. Bryant, Debye length in a kappa-distribution plasma, Journal ofPlasma Physics,1996,56(01):87~93.
    [72]A. F. Vi as, R. L. Mace, and R. F. Benson, Dispersion characteristics forplasma resonances of Maxwellian and Kappa distribution plasmas and theircomparisons to the IMAGE/RPI observations, Journal of Geophysical Research,2005,110: A06202~A06213.
    [73]F. Xiao, Q. Zhou, H. He, and et. al., Electromagnetic ion cyclotron wavesinstability threshold condition of suprathermal protons by kappa distribution, Journalof Geophysical Research,2007,112: A07219~A07227.
    [74]Z. P. Liu and J. L. Du, Dust acoustic instability driven by drifting ions andelectrons in the dust plasma with Lorentzian kappa distribution, Physics of Plasmas,2009,16:123707.
    [75]E. I. El-Awady, S. A. El-Tantawy, W. M. Moslem, and et. al.,Electron-positron-ion plasma with kappa distribution: Ion acoustic soliton propagation,Physics Letters A,2010,374:3216~3219.
    [76]T. K. Baluku, M. A. Hellberg, I. Kourakis, and et. al., Dust ion acousticsolitons in a plasma with kappa-distributed electrons, Physics of Plasmas,2010,17:053702.
    [77]C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, Journal ofstatistical physics,1988,52:479~487.
    [78]M. P. Leubner, Wave induced suprathermal tail generation of electronvelocity space distributions, Planetary and Space Science,2000,48:133-141.
    [79]M. P. Leubner, A nonextensive entropy approach to kappa-distributions,Astrophysics and Space Science,2002,282:573~579.
    [80]M. P. Leubner, Core-halo distribution functions: a natural equilibrium state ingeneralized thermostatistics, The Astrophysical Journal,2004,604:469~478.
    [81]M. P. Leubner, Fundamental issues on kappa-distributions in space plasmasand interplanetary proton distributions, Physics of Plasmas,2004,11:1308~1316.
    [82]M. P. Leubner and Z. Voros, A Nonextensive Entropy Approach to SolarWind Intermittency, Astrophysical Journal,2005,618:547~555.
    [83]J. L. Du, Nonextensivity in nonequilibrium plasma systems with Coulombianlong-range interactions, Physics Letters A,2004,329:262~267.
    [84]L. Y. Liu and J. L. Du, Ion-acoustic waves in the plasma with the power-lawq-distribution in nonextensive statistics, Physica A,2008,387:4821~4827.
    [85]Z. P. Liu, L. Y. Liu and J. L. Du, A nonextensive approach for the instabilityof current-driven ion-acoustic waves in space plasmas, Physics of Plasmas,2009,16:072111.
    [86]J. Y. Gong and J. L. Du, Dust charging processes in the nonequilibrium dustyplasma with nonextensive power-law distribution, Physics of Plasmas,2012,19:023704.
    [87]J. Y. Gong and J. L. Du, Secondary electron emissions and dust chargingcurrents in the nonequilibrium dusty plasma with power-law distributions, Physics ofPlasmas,2012,19:063703.
    [88]J. Y. Gong, Z. P. Liu, and J. L. Du, Dust-acoustic waves and stability in thepermeating dusty plasma. II. Power-law distributions, Physics of Plasmas,2012,19:083706.
    [89]A. S. Bains, M. Tribeche, and T. S. Gill, Modulational instability ofion-acoustic waves in a plasma with a q-nonextensive electron velocity distribution,Physics of Plasmas,2011,18:022108.
    [90]R. Amour, and M. Tribeche, Variable charge dust acoustic solitary waves in adusty plasma with a q-nonextensive electron velocity distribution, Physics of Plasmas,2010,17:063702.
    [91]M. Tribeche, and L. Djebarni, R. Amour, Ion-acoustic solitary waves in aplasma with a q-nonextensive electron velocity distribution, Physics of Plasmas,2010,17:042114.
    [92]M. Tribeche, and A. Merriche, Nonextensive dust-acoustic solitary waves, PPhysics of Plasmas,2011,18:034502.
    [93]A. S. Bains, M. Tribeche and T. S. Gill, Modulational instability ofelectron-acoustic waves in a plasma with a q-nonextensive electron velocitydistribution, Physics Letters A,2011,375:2059~2063.
    [94]S. Shaikh, A. Khan, and P. K. Bhatia, Jeans' gravitational instability of athermally conducting, unbounded, partially ionized plasma, Z. Naturforsch,2006,61a:275~280.
    [95]S. Shaikh, A. Khan, and P. K. Bhatia, Jeans' gravitational instability of athermally conducting plasma, Physics Letters A,2008,372:1451~1457.
    [96]L. A. Gougam and M. Tribeche, Weak ion-acoustic double layers in a plasmawith a q-nonextensive electron velocity distribution, Astrophysics and Space Science,2011,331(1):181~189.
    [97]S. A. El-Tantawy, M. Tribeche, and W. M. Moslem, Nonlinear structures in anonextensive electron-positron-ion magnetoplasma, Physics of Plasmas,2012,19:032104.
    [98]W. M. Moslem, R. Sabry, S. K. El-Labany, and et. ai., Dust-acoustic roguewaves in a nonextensive plasma, Physical Review E,2011,84:066402.
    [99]B. Sahu, Ion acoustic solitary and shock waves with nonextensive electronsand thermal positrons in nonplanar geometry, Astrophysics and Space Science,2012,338(2):251~257.
    [100]J. W. Gibbs, Elementary prnciples in statistical mechanics, New York:Charles Scribner’s Sons,1902.
    [101]E. Fermi, Thermodynamics, New York: Dover,1936.
    [102]P. T. Landsberg, Thermodynamics and Statistical Mechanics, Oxford:Oxford University Press,1978.
    [103]C. Tsallis, R. S. Mendes, and A. R. Plastino, The role of constraints withingeneralized nonextensive statistics, Physica A,1998,261:534~554.
    [104]X. P. Huang and C. F. Driscoll, Relaxation of2D turbulence to ametaequilibrium near the minimum enstrophy state, Physical Review Letters,1994,72(14):2187~2190.
    [105]E. W. Montroll and M. F. Shlesinger, Maximum entropy formalism, fractals,scaling phenomena, and1/f noise: a tale of tails, Journal of Statistical Physics,1983,32(2):209~230.
    [106]Y. H. Taguchi and H. Takayasu, Power law velocity fluctuations due toinelastic collisions in numerically simulated vibrated bed of powder, EurophysicsLetters,1995,30(8):499~504.
    [107]I. Koponen, Thermalization of an electron-phonon system in anonequilibrium state characterizedby fractal distribution of phonon excitations,Physical Review E,1997,55(6):7759~7762.
    [108]N. A. Bahcall and S. P. Oh, The peculiar velocity function of galaxy clusters,The Astrophysical Journal Letters,1996,462(2): L49~L52.
    [109]J. Maddox, Making models of muscle contraction, Nature,1993,365(6443):203.
    [110]Q. A. Wang, Incomplete statistics: Nonextensive generalizations ofstatistical mechanics, Chaos, Solitons&Fractals, Chaos, Solitons&Fractals,2001,12(8):1431~1437.
    [111]S. Abe, A note on the q-deformation-theoretic aspect of the generalizedentropies in nonextensive physics, Physics Letters A,1997,224:326~330.
    [112]R. Silval, The H-theorem in κ-statistics: influence on the molecular chaoshypothesis, Physics Letters A,2006,352:17~20.
    [113]C. Beck, Recent developments in superstatistics, Brazilian Journal ofPhysics,2009,39(2A):357~363.
    [114]J. L. Du, The nonextensive parameter and Tsallis distribution forself-gravitating systems, Europhysics Letters,2004,67(6):893~899.
    [115]J. L. Du, Hydrostatic equilibrium and Tsallis’ equilibrium forself-gravitating systems, Central European Journal of Physics,2005,3(3):376~381.
    [116]J. L. Du, What Does the Nonextensive Parameter Stand for inSelf-Gravitating Systems, Astrophysics and Space Science,2006,305:247~251.
    [117]J. L. Du, Nonextensivity and the power-law distributions for the systemswith self-gravitating long-range interactions, Astrophysics and Space Science,2007,312:47~55.
    [118]J. L. Du, The Chandrasekhar’s condition of the equilibrium and stability fora star in the nonextensive kinetic theory, New Astronomy,2006,12:60~63.
    [119]J. L. Du, Jeans’criterion in nonextensive statistical mechanics, Physica A,2004,335:107~114.
    [120]J. L. Du, Jeans’ criterion and nonextensive velocity distribution function inkinetic theory, Physics Letters A,2004,320:347~351
    [121]A. R. Plastino and A. Plastino, Stellar polytropes and Tsallis' entropy,Physics Letters A,1993,174:384~386.
    [122]N. Komatsu, S. Kimura, and T. Kiwata, Negative specific heat inself-gravitating N-body systems enclosed in a spherical container with reflecting walls,Physical Review E,2009,80:041107.
    [123]A. Lavagno, G. Kaniadakis, M. Rego-Monteiro, and et. al., Nonextensivethermostatistical approach of the peculiar velocity function of galaxy clusters,Astrophysical Letters and Communications,1998,35:449.
    [124]A. Nakamichi and M. Morikawa, Is galaxy distribution non-extensive andnon-Gaussian?, Physica A,2004,341:215.
    [125]T. Matos, D. Nunez, and R.A. Sussman, The spacetime associated withgalactic dark matter halos, General Relativity and Gravitation,2005,37:769.
    [126]T. Kronberger, M.P. Leubner and E. van Kampen, Dark matter densityprofiles: A comparison of nonextensive statistics with N-body simulations, Astronomyand Astrophysics,2006,453:21~25.
    [127]P. H. Chavanis, Dynamical stability of collisionless stellar systems andbarotropic stars: the nonlinear Antonov first law, Astronomy and Astrophysics,2006,451:109~123.
    [128]V. F. Cardone, M. P. Leubner, and A. Del Popolo, Spherical galaxy modelsas equilibrium configurations in nonextensive statistics, Monthly Notices of the RoyalAstronomical Society,2011,414(3):2265~2274.
    [129]C. Tsallis, S. V. F. Levy, A. M. C. de Souza and et. al., Statistical-mechanicalfoundation of the ubiquity of Levy distributions in nature, Physics Review Letters,1995,75:3589.
    [130]E. K. Lenzi, C. Anteneodo, and L. Borland, Escape time in anomalousdiffusive media, Physics Review E,2001,63:051109.
    [131]L. C. Malacarne, R. S. Mendes, I. T. Pedron and et. al., Nonlinear equationfor anomalous diffusion: Unified power-law and streched exponential exact solution,Physics Review E,2001,63:030101.
    [132]Z. Huang, G. Su, A. El Kaabouchi, Q.A. Wang and et. al., Self-similarmotion for modeling anomalous diffusion and nonextensive statistical distributions,Journal of Statistical Mechanics,2010, L05001.
    [133]B. M. Boghosian, Thermodynamic description of the relaxation oftwo-dimensional turbulence using Tsallis statistics, Physical Review E,1996,53(5):4754~4763.
    [134]T. Arimitsu and N. Arimitsu, Analysis of fully developed turbulence in termsof Tsallis statistics, Physics Review E,2000,61:3237.
    [135]T. Arimitsu and N. Arimitsu, PDF of velocity fluctuation in turbulence by astatistics based on generalized entropy, Physica A,2002,305:218.
    [136]G. Kaniadakis, A. Lavagno and P. Quarati, Generalized statistics and solarneutrinos, Physics Letter B,1996,369:308.
    [137]G. Kaniadakis, A. Lavagno and P. Quarati, Non-extensive statistics and solarneutrinos, Astrophysics and Space Science,1998,258:145.
    [138]J. L. Du, Density fluctuations in the nuclear reaction-diffusion system andthe oscillations inside stars, Physica A,2003,318:334~340.
    [139]W. M. Alberico, A. Lavagno, and P. Quarati, Non-extensive statistics,fluctuations and correlations in high energy nuclear collisions, The European PhysicalJournal C,2000,12(3):499~506.
    [140]D. d’Enterria, R. Engel, T. Pierog, and et. al., Constraints from the first LHCdata on hadronic event generators for ultra-high energy cosmic-ray physics,Astroparticle Physics,2011,35(2):98~113.
    [141]A. Tawfik, Antiproton-to-proton ratios for ALICE heavy-ion collisions,Nuclear Physics,2011, A859:63~72.
    [142]I. M. Laczkowski, H. Mukai, P.R.G. Fernandes, and et. al., Anomalousdecay in short time response of ternary mixtures with ferrofluid, Brazilian Journal ofPhysics,2012,42(1-2):14~19.
    [143]J. L. Du, Y. L. Song, Solar wind speed theory and the nonextensivity ofsolar corona, Editors: H. J. Haubold and A. M. Mathai, Proceedings of the ThirdUN/ESA/NASA Workshop on the International Heliophysical Year2007and BasicSpace Science, Heidelberg: Springer,2007,93~102.
    [144]K. S. Fa and E. K. Lenzi, Note on BEC in nonextensive statisticalmechanics, Brazilian Journal of Physics,2001,31:317.
    [145]K. S. Fa, R. S. Mendes, P. R. B. Pedreira and et. al., q-Gaussian trialfunction and Bose-Einstein condensation, Physica A,2001,295:242.
    [146]S. Biswas, More accurate theory for Bose-Einstein condensation fraction,Physics Letters,2008,372:1574~1578.
    [147]S. Bouzat and H. S. Wio, Current and efficiency enhancement in Brownianmotors driven by non Gaussian noises, The European Physical Journal B,2004,41:97~105.
    [148]S. E. Mangioni and H. S. Wio, Limit cycle induced by multiplicative noisein a system of coupled Brownian motors, Physics Review E,2003,67:056616.
    [149]D. Wu, X. Luo and S. Zhu, Stochastic system with coupling betweennon-Gaussian and Gaussian noise terms, Physica A,2007,373:203~214.
    [150]R. Salazar and R. Toral, Hybrid simulated annealing using Tsallis statistics,Computer Physics Communications,1999,121-122:40~42.
    [151]I. Andricioaei and J. E. Straub, On Monte Carlo and molecular dynamicsinspired by Tsallis statistics: Methodology, optimization and applications to atomicclusters,1997, Journal of Chemical Physics,1997,107:9117.
    [152]U. H. E. Hansmann and Y. Okamoto, Generalized-ensemble Monte Carlomethod for systems with rough energy landscape, Physics Review E,1997,56:2228.
    [153]R. Silva, J. R. D. de Felicio and A. S. Martinez, Generalized Metropolisdynamics with a generalized master equation: An approach for time-independent andtime-dependent Monte Carlo simulations of generalized spin systems, Physics ReviewE,2012,85:066707.
    [154]D. R. Bickel, Generalized entropy and multifractality of time-series:relationship between order and intermittency, Chaos, Solitons and Fractals,2002,13(3):491~497.
    [155]S. M. D. Queiros, On the connection between ARCH time series andnon-extensive statistical mechanics, Physica A,2004,344:619.
    [156]L. Li and J. F. Mustard, Compositional gradients across mare-highlandcontacts: Importance and geological implication of lateral transport, Journal ofGeophysics Research,2000,105:20431.
    [157]J. L. Du, Power-law distributions and fluctuation-dissipation relation in thestochastic dynamics of two-variable Langevin equations, Journal of StatisticalMechanics: Theory and Experiment,2012, P02006.
    [158]J. L. Du, Property of Tsallis entropy and principle of entropy increase,Bulletin of the Astronomical Society of India,2007,35:691~696.
    [159]L. Y. Liu and J. L. Du, Energy fluctuations and the ensemble equivalence inTsallis statistics, Physica A,2008,387:5417~5421.
    [160]Z. P. Liu, L. N. Guo, and J. L. Du, Nonextensivity and the q-distribution of arelativistic gas under an external electromagnetic field, Chinese Science Bulletin,2011,56(34):3689~3692.
    [161]L. N. Guo and J. L. Du, Thermodynamic potentials and thermodynamicrelations in nonextensive thermodynamics, Physica A,2011,390:183~188.
    [162]Y. H. Zheng and J. L. Du, An application of nonextensive parameter: thenonextensive gas and real gas, International Journal of Modern Physics B,2007,21(6):947~953.
    [163]J. L. Du, Transition state theory: A generalization to nonequilibrium systemswith power-law distributions, Physica A,2012,391:1718~1728
    [164]L. Boltzmann, Lectures on gas theory, London: Cambridge University Press,1964.
    [165]王竹溪,统计物理学导论,北京:人民教育出版社,1961.
    [166]苏汝铿,统计物理学,北京:高等教育出版社,2004.
    [167]汪志诚,热力学·统计物理,北京:高等教育出版社,2003.
    [168]普里戈金,非平衡态统计力学(陆全康译),上海:上海科技出版社,1984.
    [169]C. Tsallis, Introduction to nonextensive statistical mechanics, New York:Springer,2009.
    [170]J. Binney, S. Tremaine, Galactic Dynamics, Princeton: Princeton UniversityPress,1987.
    [171]J. D. Ramshaw, H-theorems for the Tsallis and Renyi entropies, PhysicsLetters A,1993,175:169~170.
    [172]J. A. S. Lima, R. Silva, and A. R. Plastino, Nonextensive thermostatisticsand the H theorem, Physics Review Letters,2001,86(14):2938~2941.
    [173]R. Silva, Jr., A. R. Plastino and J. A. S. Lima, A Maxwellian path to theq-nonextensive velocity distribution function, Physics Letters A,1998,249(5-6):401~408.
    [174]J. A. S. Lima, R. Silva, and A. R. Plastino, Nonextensive Thermostatisticsand the H Theorem, Physical Review Letters,2001,86(14):2938~2941.
    [175]J. L. Du, Some dynamical property of the Tsallis distribution from a FokkerPlanck equation, Chinese Physics B,2010,19(4):040501.
    [176]J. L. Du, A new form of Tsallis distribution based on the probabilisticallyindependent postulate, Chinese Physics B,2010,19(7):070501.
    [177]J. L. Du, Nonextensivity in nonequilibrium plasma systems withCoulombian long-range interactions, Physics Letters A,2004,329:262~267.
    [178]B. Jung, Die Entstehung fester Partikel im interstellaren Raum,Astronomische Nachrichten,1937,263:425~436.
    [179]L. Spitzer, The Dynamics of the Interstellar Medium. I. Local Equilibrium,Astrophysical Journal,1941,93:369~379.
    [180]F. Cernuschi, The Physics of Cosmic Grains, The Astrophysical Journal,1947,105:241~254.
    [181]L. Spitzer, The Temperature of Interstellar Matter. I, The AstrophysicalJournal,1948,107:6~33.
    [182]L. Spitzer, Savedoff M P, The Temperature of Interstellar Matter. III, TheAstrophysical Journal,1950,111:593~608.
    [183]H. Alfvén, G. Arrhenius, Evolution of the solar system, Washington, D. C.:National Aeronautics and Space Administration,1976.
    [184]F. L. Whipple, Photographic Meteor Studies. III. The Taurid Shower,Proceedings of the American Philosophical Society,1940,83(5):711~745.
    [185]F. L. Whipple, Meteoritic Material in Space, editors: O. O. Benson and H.Strughold, Physics and Medicine of the Atmosphere and Space, New York: Weily,1960,48~59.
    [186]S. P. Wyatt, The electrostatic charge of interplanetary grains, Planetary andSpace Science,1969,17:155~171.
    [187]T. Gold, The lunar surface, Monthly Notices of the Royal AstronomicalSociety,1955,115:585~604.
    [188]T. Gold, The moon, editor: W. Liller, Space Astrophysics, New York:McGraw-Hill,1961,171~178.
    [189]E. J. pik and S. F. Singer, Escape of Gases from the Moon, Journal ofGeophysical Research,1960,65:3065~3070.
    [190]E. J. pik, The lunar atmosphere, Planetary and Space Science,1962,9:211~244.
    [191]S. F. Singer and E. H. Walker, Electrostatic dust transport on the lunarsurface, Icarus,1963,1:112~120.
    [192]B. Walch, M. Horanyi, and S. Robertson, Measurement of the charging ofindividual dust grains in a plasma, IEEE Transactions on Plasma Science,1994,22(2):97~102.
    [193]A. Barkan, N. d'Angelo, R. L. Merlino, Charging of dust grains in a plasma,Physical Review Letters,1994,73:3093~3096.
    [194]B. Walch, M. Horányi, S. Robertson, Charging of dust grains in plasma withenergetic electrons, Physical Review Letters,1995,75:838~841.
    [195]S. H. Kim, R. L. Merlino, Charging of dust grains in a plasma with negativeions, Physics of Plasmas,2006,13:052118.
    [196]H. Bruining, Physics and Applications of Secondary Electron Emission,London: Pergamon,1954.
    [197]N. Meyer-Vernet, Flip-flop of electric potential of dust grains in space,Astronomy and Astrophysics,1982,105:98.
    [198]S. M. L. Prokopenko and J. G. Laframboise, High-Voltage DifferentialCharging of Geostationary Spacecraft, Journal of Geophysical Research,1980,85(A8):4125~4131.
    [199]A. A. Mamun, R. A. Cairns, and P. K. Shukla, Solitary potentials in dustyplasma, Physics of Plasmas,1996,3:702~704.
    [200]S. G. Tagare, Dust-acoustic solitary waves and double layers in dusty plasmaconsisting of cold dust particles and two-temperature isothermal ions, Physics ofPlasmas,1997,4:3167~3172.
    [201]S. V. Singh and N. N. Rao, Linear and nonlinear dust-acoustic waves ininhomogeneous dusty plasmas, Physics of Plasmas,1999,6:3808~3816.
    [202]B. S. Xie and K. F. He, Dust-acoustic solitary waves and double layers industy plasma with variable dust charge and two temperature ions, Physics of Plasmas,1998,5:94~99.
    [203]J. X. Ma and J. Y. Liu, Dust-acoustic soliton in a dusty plasma, Physics ofPlasmas,1997,4:253~255.
    [204]B. S. Xie, K. F. He, and Z. Q. Huang, Effect of adiabatic variation of dustcharges on dust-acoustic solitary waves, Physics Letters A,1998,247:403~409.
    [205]J. H. Malmberg and C. B. Wharton, Collisionless damping of electrostaticplasma waves, Physical Review Letters,1964,13(6)184~186.
    [206]G. W. Hammett and F. W. Perkins, Fluid moment models for Landaudamping with application to the ion-temperature-gradient instability, Physical ReviewLetters,1990,64(25):3019~3022.
    [207]P. Stubbe and A. I. Sukhorukov, On the physics of Landau damping, Physicsof Plasmas,1999,6:2976~2988.
    [208]D. Lynden-Bell, The stability and vibrations of a gas of stars, MonthlyNotices of the Royal Astronomical Society,1962,124:279~296.
    [209]N. D'Angelo, Current-driven electrostatic dust-cyclotron instability in acollisional plasma, Planetary and Space Science,1998,46:1671~1676.
    [210]I. Mann, Interplanetary medium-A dusty plasma, Advances in SpaceResearch,2008,41(1):160~167.
    [211]J. Vranjes, Current-less solar wind driven dust acoustic instability incometary plasma, Physics of Plasmas,2011,18:084501.
    [212]J. Y. Gong, Z. P. Liu, and J. L. Du, Dust-acoustic waves and stability in thepermeating dusty plasma. I. Maxwellian distribution, Physics of Plasmas,2012,19:043704.