幼龄枣树茎流规律及其与环境因子关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
枣(Ziziphus jujuba Mill)是我国重要的经济林树种之一,具有栽培省工、适应性强、结果早、收益快、一年栽培多年收益的特点,而且能绿化荒山、保持水土、防风固沙、降低风速、调节气温、防止和减轻干热风对农作物的危害,利于生态平衡。但由于水分管理措施陈旧,造成了严重的落花落果、皱果、缩果、裂果现象,果品质量不断下降。研究枣树树干茎流,对于深入了解枣树的水分利用规律、合理灌溉、经济利用水资源、提高枣的果品质量具有重要的实际意义。为此,本文采用目前世界上先进的热平衡茎流测定技术,系统地研究了枣树茎流的规律与环境因子的关系。结果表明: ①留圃枣树茎流速率日变化是单峰曲线。春季最大茎流速率在13:00~14:00达最大值,为71.4 g·h-1; 秋季14:00左右达最大值,为33.4 g·h-1。移植枣树为不对称的双峰曲线,第一个峰值一般在茎流启动时,春季为19.6 g·h-1,秋季为28.1 g·h-1;第二个峰值出现在13:00~14:00,春季为3g~4g·h-1,秋季为27 g·h-1。②春季留圃枣树茎流日累计量达到了573g.d-1,移植枣树茎流累计量非常小,为21.2 g.d-1,仅为留圃枣树的4%。③枣树不同生长期的茎流速率不同,生长初期茎流速率很小,平均为4.6 g·h-1;生长旺期和生长盛期的平均茎流速率相对较大,平均为21 g·h-1;生长末期茎流速率低于生长旺期、盛期,相当于生长旺期的39%,比生长盛期要低58%,但要比生长初期大将近2倍。④ 环境因子对枣树茎流具有显著的影响。太阳辐射强度、空气温度、土壤温度、风速与枣树茎流速率正相关,而空气相对湿度与枣树茎流速率负相关。根据所得到的模型,太阳辐射强度和空气温度是影响茎流速率的关键因子。⑤ 土壤含水量对枣树茎流速率起着关键作用,茎流速率随着20cm处的土壤含水量的降低而减小。
    
    
    ⑥枣树的茎流速率与叶水势线性回归显著,回归系数平方达到0.659,曲线拟合的结果表明光化学效率与枣树茎流速率为显著的二次曲线关系。⑦通过模型预测枣树的潜在茎流速率,发现与实测茎流速率基本一致,预测效果较好。进一步计算出枣树全年生长期中潜在茎流速率的平均值为15.98 g·h-1,由此得出,在试验条件下,如按每亩111株造林密度造林,则二年生枣树幼林的耗水量为11.7mm。
The rule of stem sap flow of jujube (Ziziphus jujube Mill) was studied in the thesis by the measurement technology of thermal balance. The results showed: ①The curve of diurnal variation of stem sap flow rate(SR) had one peak for leaving garden jujube tree, which occurred at 14:00.The peak value was 71.4 g·h-1 in spring, and 33.4 g·h-1 in autumn. The curve of SR to transplanted jujube tree was demonstrated two peaks, which appeared at starting time and 14:00 respectively. The first peak value was 19.6 g·h-1 in spring , 28.1 g·h-1 in autumn; The second one was 4g·h-1 in spring, 27 g·h-1 in autumn. ②Diurnal accumulated flux of leaving garden jujube tree in spring was 573g·d-1,that of transplanted tree was 21.2 g·d-1, which only 4% compared with that of leaving garden jujube tree.③SR of Jujube tree was different in different growth period, which was very weak in initial growth stage and strong in the prosperous growth stage and little in latter stage. The average value of SR in initial growth stage was 4.6 g·d-1 and the prosperous growth stage was 21 g·h-1. The average value of SR in latter was lower by 58% than that in prosperous stages, and was 2 times more than that in initial stage.④ The influence of environmental factors on SR of Jujube tree is remarkable. Photon flux density, air temperature, soil temperature, wind speed and stem sap flow rate were positive correlation, however, the relation of air relative humidity and stem flow rate were minus correlation. The established regression model indicated that the solar radiation intensity and air temperature played very important roles among the environmental factors.⑤Soil water content played a key role to SR of jujube tree, SR reduced with the soil water
    
    
    content at the depth of 20cm.⑥Linear regression between leaf water potential and stem sap flow rate of jujube tree was remarkable, and the square of coefficient correlation reached 0.659.The relationship between photochemistry efficiency and stem sap flow rate of jujube tree was conic.⑦Through the model of potential stem sap flow rate, there was unobvious difference comparing with the survey data, so the model was better. It is calculated that the average of the Jujube tree potential stem sap flow rate was 15.98 g·h-1 of one year. Therefore, if 1665 trees were planted in one hectare, the amount of water consumed by the young jujube tree in forestland would be 11.7mm in the second year.
引文
[1]李克让,中国现代干旱灾害的时空特征.地理研究.1996,15(3):6-15
    [2]李景文主编.森林生态学(第二版)北京中国林业出版社,1995
    [3]WullschlegerSD,MeinzerFC,VertessyRAA.Reviewofwhole-plantwaterusestudiesintrees.TreePhysiol,1998,18(8/9):499~512
    [4]CalderIR.Waterusebyforests,limitsandcontrols.TreePhysiology,1998,18:623~631
    [5]贾玉彬,王文全,张新荣等.土壤水分与毛白杨蒸腾耗水关系的研究.河北林果研究,1997,12(3):279~283
    [6]魏天兴,朱金兆,张学培,贺康宁,高宗杰.晋西南黄土区刺槐油松林地耗水规律的研究.北京林业大学学报,1998,20(4)36~40
    [7]魏天兴,朱金兆,张学培.林分蒸散耗水量测定方法述评.北京林业大学学报,1999,21(3):85-91
    [8]王华田.北京市水源保护林区主要树种耗水性的研究.博士研究生学位论文.北京林业大学,2002
    [9]刘奉觉,郑世锴等.树木蒸腾耗水测算技术的比较研究.林业科学,1997,33(2):117-126
    [10]巨关升,刘奉觉等.稳态气孔计与其他三种方法蒸腾测值的比较研究.林业科学研究,2000,13(4):360-365
    [11]巨关升,刘奉觉等.选择树木耗水测定方法的研究.林业科技通讯,1998.10
    [12]刘昌明.土壤-植物-大气连续体系统水分运行的界面过程研究.地理学报,1997,52(4):366~373
    [13]孙鹏森,马履一,王小平,翟明普.油松树干液流的时空变异性研究.北京林业大学学报,2000,22(5):1~6
    [14]刘奉觉,郑世锴,臧道群。杨树人工幼林的蒸腾变异与蒸腾耗水量估算方法的研究。林业科学,1987
    [15]翟洪波,李吉跃等.干旱胁迫对油松侧柏苗木水力结构特征的影响.北京林业大学学报,2002,24(5/6):45-49
    [16]孙鹏森,马李一,马履一.油松、刺槐林潜在耗水量的预测及其与造林密度的关系.北京林业大学学报,2001,23(2):1-6
    [17]孙鹏森,马履一等.油松树干液流的时空变异性研究.北京林业大学学报,2000,22(5):1-6
    [18]孙鹏森,马履一著.水源保护树种耗水特性研究与应用.北京:中国环境科学出版社,2002.10
    [19]Hatton TJ and HI Wu. Scaling theory to extrapolate individual tree water use to stand water use. Hydrol Proc. 1995, 9:527-540
    
    [20]蔡焕杰.用冠层温度诊断作物水分状况及估算农田蒸微量研究.西北农业大学博士论文.1993
    [21]张劲松,孟平,尹君昌。植物蒸散耗水量计算方法综述。世界林业研究,2001,14(2):25-28
    [22]Parker J. The cut leaf method and estimations of diurnal trends in transpiration from different heights and sides of an oak and a pine. Bot. Gaz. 1957,119:93-101
    [23]罗中岭.热量法茎流测定技术的发展及应用.中国农业气象,1997,18(3):52-57
    [24] Hilde Monika Zimmermann, Ernst Steudle. Apoplastic transport across young maize roots: effect of the exodermis,Planta. 1998,206: 7-19
    [25] Roberts J. The use of tree cutting techniques in the study of the water relations of mature Pinus sysvestris. LJ Exp.Bot. 1977,28:751-767
    [26]Dunin GM And DJ Connor. Analysis of sap flow in mountain ash (Eucalyprus regnans) forests of different age. Tree Physiol. 1993,13:321-336
    [27]翟洪波,李吉跃等.元宝枫栓皮栎苗木水力结构特征的对比研究.北京林业大学学报,2002,24(4):45-49
    [28]周平,李吉跃等.北方主要造林树种苗木蒸腾耗水特性研究.北京林业大学学报,2002,24(5/6):50-55
    [29]Swanson.R.H.,D.W.A.Whitfield. Anumerical analysis of heat pulse velocity theory and practice.J.Exp.Bot. 1981,32:221-239
    [30]严昌荣,DowneyA,韩兴国,陈灵芝.北京山区落叶阔叶林中核桃楸在生长中期的树干液流研究.生态学报,1999,19(6):793~797
    [31]Fristchen L, JL Cox and R Kinerson. A 28-meter Douglas fir in a weighing lysimeter.For.Sci. 1973,19:256-261
    [32]马雪华,森林水文学.北京:中国林业出版社,1993,141-160
    [33]刘奉觉,Edwards W.R.N.,郑世锴等.杨树树干液流时空动态研究.林业科学研究,1993,6(4):368-372
    [34]Lindroth.A.,E.Cienciala. Sap flow by the heat balance method applied to small size Salix trees in a short rotation forest. Biomass bioenergy.1995,8:7-15
    [35]Granier A, Measuring and modeling the transpiration of a maritime pine canopy from sap flow data.Agric.For.Meteorol. 1994,71:61-81
    [36]Granier A, R Huc and ST Barigah. Transpiration of natural rain forest and its dependence on climatic factors. Agric. For.Meteorol.1996a,78:19-29
    [37]Edwards W.R.N. Precision weighing lysimetry for trees: using a simplified tared balance design. Tree phsiol.1986,1:127-144
    [38]Edwards.W.R.N.,R.Becker. A unified nomenclature for sap flow measurements.Tree
    
    
    physiology.1996,17,65-67
    [39]Peter Becker and W.R.N.Edwards. Corrected heat capacity of wood for sap flow calculation. Tree Physiology.1999,19:767-768
    [40]Marshall,D.C., Measurement of sap flow in conifers by heat transport. Plant Physiol. 1958,33:385-396
    [41]Sakuratani,T., Studies on evapotranspiration from crops(2) Separate estimation of traspiration and evaporation from a Soyben field without water shortage.J.Agr.Met., 1987,42(4):309-317
    [42]Sakuratani,T., Measurement of the sap flow rate in stem of rice plant. J.Agr.Met., 1990,45(4):277-280
    [43]谢华,沈荣开.用茎流计研究冬小麦蒸腾规律.灌溉排水,2001,20(1): 5-9
    [44]Baker,J.M. and Nieber,J., An analysis of the steady state heat balance method for measuring sap flow in plants. Agric. For. Meteorol., 1989,67:13-27
    [45]段爱旺.一种可以直接测定蒸腾速率的仪器—茎流计.灌溉排水,1995,14(3):44-47
    [46]Barrett DJ, Hatton TJ, Ash JE, Ball MC. Evaluation of the heat pulse velocity technique for measurement of sap flow in rainforest and eucalypt forest species of southeastern Australia. Plant Cell Environ .1995,18:463-469
    [47]Smith DM, Allen SJ.Measurement of sap flow in plant stems. J Exp Bot .1996,47:1833-1844
    [48]Moreno F, Fernandez JE, Clothier BE,Green SR. Transpiration and root water uptake by olive trees. Plant Soil 1.1996,84:85-96
    [49]Stephen S.O.Burgess,Mark A.Adams and Neil C.Turner. Tree roots: conduits for deep recharge of soil water. Oecologia. 2001,126:158-165
    [50]Stephen S.O.Burgess,Mark A.Adams and Neil C.Turner. The redistribution of soil water by tree root systems. Oecologia .1998,115:306-311
    [51]Tae Toba and Takeshi Ohta.Modeling the characteristics of interception loss in forests of eastern Siberia and Japan. The fifth International GAME Conf.
    [52]S.D.Wullschleger and R.J.Norby. Stomatal conductance and sap velocity for a closed canopy sweetgum stand expose to free air CO2 enrichment.Ecological society of America Annual Meeting,Spokane,WA,July,1999.
    [53]J.D.Morris and J.J.Collopy. Water use and salt accumulation by Eucalyptus camaldulensis and Casuarina cunninghamiana on a site with shallow saline groundwater. Agricultural water management.1999,39:205-227
    [54]Anna Sala,Eileen V.Carey and Ragan M.Callaway. Dwarf mistletoe affects whole-tree water relation of Douglas fir and western larch primarily through changes in leaf to sapwood ratios. Oecologia .2001,126:42-52
    
    [55]Uta Maier-Maercker. Experiments on the water balance of individual attached twigs of Picea abies (L.) Karst. In pure and ozone-enriched air. Trees.1997,11:229-239
    [56]I.A.M.Yunusa,R.R.walker and B.R.Loveys. Determination of transpiration in irrigated grapevines: comparison of the heat pulse technique with gravimetric and micrometeorological methods. Irrig Sci .2000,20:1-8
    [57]S.M.Schaeffer and D.G.Williams. Transpiration of desert riparian forest canopies estimated from sap flux. Salsa AMS hydrology symposium paper, 1998
    [58]Frederick C.Meinzer,Guillermo Goldstein and Jaime Cavelier. Partition –ing of soil water among canopy trees in a seasonally dry tropical forest. Oecologia .1999,121:293-301
    [59]孙浩元.枣树丰产栽培理论与技术研究进展.北京林业大学学报, 1999,21(1):87-91
    [60]李德全等主编.植物生理学.北京:中国农业科技出版社,1999
    [61]Nathan Phillips,Ram Oren and Reiner Zimmermann. Temporal patterns of water flux in trees and lianas in a Panamanian moist forest.Trees.1999,14:116-123
    [62]Uta Maier-Maercker. Experiments on the water balance of individual attached twigs of Picea abies (L.) Karst. In pure and ozone-enriched air. Trees .1997,11:229-239
    [63]卢桂宾.环境条件对黄土丘陵区旱坡地枣树水分蒸腾的影响.东北林业大学学报. 2001,29(4):131-133
    [64]王沙生,高荣孚等.植物生理学(第2版).北京:北京林业大学出版社,1991
    [65]冯建灿,胡秀丽等.叶绿素荧光动力学在研究植物逆境生理中的应用.经济林研究,2002,20 (4):14-30
    [66]卢桂宾.环境条件对黄土丘陵区旱坡地枣树水分蒸腾的影响.东北林业大学学报,2001,29(4): 131-133
    [67]卢桂宾,赵雨明.晋西北旱坡地枣树蒸腾作用与萎蔫现象研究.山西林业科技,2002,(3):1-6
    [68]熊伟,王彦辉,徐德应.宁南山区华北落叶松人工林蒸腾耗水规律及其对环境因子的响应.林业科学,2003,39(2):1-7
    [69]温陟良,王永惠.枣树蒸腾作用及日变化规律的研究.河北农业大学学报,2002,14(1):36-39
    [70]北京林业大学主编.土壤学.北京:北京林业大学出版社,1993
    [71]Peter Becker,Azman Asmat and Julaihi Mohanad. Sap flow rates of mangrove trees are not unusually low. Trees.1997,11:432-435
    [72]O.Bethenod,N.Katerji and R.Goujet. Determination and validation of corn crop transpiration by sap flow measurement under field conditions .Theoretical and Applied Climatology .2000,67:153-160
    
    [73]Jan Cermak and M.Soledad Jimenez. Laurel forests in Tenerife,Canary Islands Ⅱ.Efficiency of the water conducting system in Laurus azorica trees.trees.2002,16:538-546
    [74]G.Zotz,M.T.Tyree and S.Patino. Hydraulic architecture and water use of selected species from a lower montane forest in panama.trees.1998,12:302-309
    [75]Elenor Freundl,Ernst steudle and Wolfram Hartung. Apoplastic transport of abscisic acid through roots of maize:effect of the exodermis.planta.2000,210:222-231
    [76]Neil S.Cobb,Susan Mopper and Catherine A.Gehring. Increased moth herbivory associated with environmental stress of pinyon pine at local and regional levels.Oecologia.1997, 109:389-397
    [77]Angela Sauter,Suzanne R.Abrams and wolfram Hartung. Structural requirements of abscisic acid (ABA) and its impact on water flow during radial transport of ABA analogues through maize roots.Journal of Plant Growth Regulation .2002,21:50-59
    [78]A.S.Moren,A.Lindroth,A.Grelle. Water-use efficiency as a means of modeling net assimilation in boreal forests.trees .2001,15:67-74
    [79]Gabriele orlich. Analysis of the driving forces of phloem transport in Ricinus seedlings:sucrose export and volume flow are determined by the soure.Planta.1998,206:266-271
    [80]R.Spicer and B.L.Gartner. The effects of cambial age and position within the stem on specific conductivity in Douglas-fir (Pseudotsuga menziesii) sapwood.Trees.2001,15:222-229
    [80]Don White,Chris Beadle and Dale Worledge. The influence of drought on the relationship between leaf and conducting sapwood area in Eucalyptus globules and Eucalyptus nitens. Trees .1998,12:406-414
    [81]R.J.Ryel,E.Falge,U.Joss. Penumbral and foliage distribution effects on pinus sylvestris canopy gas exchange. Theoretical and Applied Climatology .2001.68:109-124
    [82]T.S.David,M.I.Ferreira and J.S.David. Transpiration from a mature Eucalyptus globules plantation in Portugal during a spring-summer period of progressively higher water deficit.Oecologia .1997.110:153-159
    [83]Peter C.Tausend,Frederick C.Meinzer and Guillermo Goldstein. Control of transpiration in three coffee cultivars: the role of hydraulic and crown architecture.Trees.2000.14:181-190
    [84]James R.Cleverly,Stanley D.Smith and Anna Sala. Invasive capacity of Tamarix ramosissima in a Mojave Desert floodplain: the role of drought. Oecologia .1997.111:12-18
    [85]Masafumi Ueda, Ei’ichi Shibata. Diurnal changes in branch diameter as indicator of water status of Hinoky cypress Chamaecyparis obtuse. Trees.2001.15:315-318
    [86]Nathan Phillips, Abhijit Nagchaudhuri and Ram Oren. Time constant for water transport in
    
    
    loblolly pine trees estimated from time series of evaporative demand and stem sapflow. Trees .1997.11:412-419
     [87]Jose Luis Andrade,Frederick C.Meinzer and Guillermo Goldstein. Regulation of water flux throngh trunks,branches,and lesves in trees of a lowland tropical forest. Oecologia .1998.115:463-471
    [88]Connor B.Shaw and Gerald F.Gifford. Sap velocity studies in natural stands of Pinyon and Juniper trees. Journal of range management .1975.28(5)
    [89]Andrea Nardini and Sebastiano Salleo. Limitation of conductance by hydraulic traits: sensing or preventing xylem cavitation.Trees.2000.15:14-24