基于胶体刻蚀技术构筑微纳结构及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用胶体刻蚀技术能够制备非常丰富的表面图案化结构(如纳米柱、纳米线、纳米锥、纳米坑等),并且能够方便、精确地改变结构参数(如周期、高度、间距等),在减反射、表面亲疏水、传感器以及能源方面都有很重要的作用。
     本文以胶体刻蚀技术为基础,结合不同构筑微纳结构的工艺方法,通过调控结构参数实现最佳性能。构筑仿生硅锥阵列,利用其增强光学吸收性能来实现无基质干扰小分子检测及实际尿糖定量检测;构筑多尺度褶皱硅锥阵列,在更宽波段范围内实现更好的减反射效果,避免了传统减反射亚波长微结构对结构单元的尺寸和形貌的限制;构筑金字塔状硅坑阵列作为复制金属金字塔阵列的模板,应用于表面增强拉曼检测,该方法在获得优异拉曼增强基底的同时大大提高测试的重复性。
     总之,本论文的出发点和目的地是利用传统的胶体刻蚀技术构筑出新颖、系统的微纳结构并使该构筑过程成为优化性能的途径。
Various surface structures can be fabricated based on colloidal lithographysuch as nanoring, nanowire, nanocone and nanowell and so on. These structurescan be applied in many subjects including antireflection, surface wetting, sensorsand energy-related areas. Their surface features can be precisely and easilycontrolled.
     In this dissertation, we have fabricated various structures by combiningcolloidal lithography with other techniques such as reactive ion etching and KOHchemical etching. The surface features including height, period and morphologyare modulated to optimize their functions. First, Biomimetic silicon nanocones(SiNC) array with controllable photo-absorption ability has been obtained andused in laser desorption/ionization process. Successful detection of smallmolecules and real urine glucose can be performed on the optimized SiNC array.Second, multiscale corrugated SiNC array have been created to achieve excellentantireflection performance and superhydrophobic property by twice polystyrenespheres masked etching. With the multiscale corrugated arrangement,sub-wavelength structures with coloumn shape and low aspect ratio can alsoexhibit excellent antireflection property. Third, inverted silicon pyramidal pitsarray have been obtain with the SAM-masked KOH etching, which is a templateto fabricate surface-enhanced Raman spectrometry (SERS) substrate. The transferred Ag pyramids possess excellent Raman enhancement as well as highhomogeneity (a substate) and reproducibility (different substrates).
     In summary, our goal is to fabricate novel nanostructures based ontraditional colloidal lithography. More importantly, the fabricating route should bethe way to improve their functions.
引文
[1] BETTINGER C J, LANGER R, BORENSTEIN J T. Engineering SubstrateTopography at the Micro-and Nanoscale to Control Cell Function [J].Angewandte Chemie-International Edition,2009,48(30):5406-15.
    [2] DEL CAMPO A, ARZT E. Fabrication approaches for generating complexmicro-and nanopatterns on polymeric surfaces [J]. Chemical Reviews,2008,108(3):911-45.
    [3] MENARD E, MEITL M A, SUN Y G, et al. Micro-and nanopatterningtechniques for organic electronic and optoelectronic systems [J]. ChemicalReviews,2007,107(4):1117-60.
    [4] EL-ALI J, SORGER P K, JENSEN K F. Cells on chips [J]. Nature,2006,442(7101):403-11.
    [5] WHITESIDES G M. The origins and the future of microfluidics [J]. Nature,2006,442(7101):368-73.
    [6] GATES B D, XU Q B, STEWART M, et al. New approaches tonanofabrication: Molding, printing, and other techniques [J]. ChemicalReviews,2005,105(4):1171-96.
    [7] NIE Z H, KUMACHEVA E. Patterning surfaces with functional polymers[J]. Nature Materials,2008,7(4):277-90.
    [8] HARRISON C, ADAMSON D H, CHENG Z D, et al. Mechanisms ofordering in striped patterns [J]. Science,2000,290(5496):1558-60.
    [9] FRITZE M, BLOOMSTEIN T M, TYRRELL B, et al. Hybrid opticalmaskless lithography: Scaling beyond the45nm node [J]. Journal ofVacuum Science&Technology B,2005,23(6):2743-8.
    [10] BLOOMSTEIN T M, MARCHANT M F, DENEAULT S, et al.22-nmimmersion interference lithography [J]. Optics Express,2006,14(14):6434-43.
    [11] GINGER D S, ZHANG H, MIRKIN C A. The evolution of dip-pennanolithography [J]. Angewandte Chemie-International Edition,2004,43(1):30-45.
    [12] KRAMER S, FUIERER R R, GORMAN C B. Scanning probe lithographyusing self-assembled monolayers [J]. Chemical Reviews,2003,103(11):4367-418.
    [13] WOUTERS D, SCHUBERT U S. Nanolithography and nanochemistry:Probe-related patterning techniques and chemical modification fornanometer-sized devices [J]. Angewandte Chemie-International Edition,2004,43(19):2480-95.
    [14] WOODSON M, LIU J. Functional nanostructures from surface chemistrypatterning [J]. Physical Chemistry Chemical Physics,2007,9(2):207-25.
    [15] SALAITA K, WANG Y H, FRAGALA J, et al. Massively parallel dip-pennanolithography with55000-pen two-dimensional arrays [J]. AngewandteChemie-International Edition,2006,45(43):7220-3.
    [16] KUMAR A, WHITESIDES G M. Features of gold having micrometer tocentimeter dimensions can be formed through a combination of stampingwith an elastomeric stamp and an alkanethiol "ink" followed by chemicaletching [J]. Applied Physics Letters,1993,63(14):2002-4.
    [17] HU W, LU N, ZHANG H Y, et al. Multicolor emission on prepatternedsubstrates using a single dye species [J]. Advanced Materials,2007,19(16):2119-23.
    [18] HUANG C Y, DONG B, LU N, et al. A Strategy for Patterning ConductingPolymers Using Nanoimprint Lithography and Isotropic Plasma Etching [J].Small,2009,5(5):583-6.
    [19] YANG B J, LU N, QI D P, et al. Tuning the Intensity of Metal-EnhancedFluorescence by Engineering Silver Nanoparticle Arrays [J]. Small,2010,6(9):1038-43.
    [20] HUA F, SUN Y G, GAUR A, et al. Polymer imprint lithography withmolecular-scale resolution [J]. Nano Letters,2004,4(12):2467-71.
    [21] CHEN X, LENHERT S, HIRTZ M, et al. Langmuir-Blodgett patterning: Abottom-up way to build mesostructures over large areas [J]. Accounts ofChemical Research,2007,40(6):393-401.
    [22] GLEICHE M, CHI L F, FUCHS H. Nanoscopic channel lattices withcontrolled anisotropic wetting [J]. Nature,2000,403(6766):173-5.
    [23] LU N, GLEICHE M, ZHENG J W, et al. Fabrication of chemically patternedsurfaces based on template-directed self-assembly [J]. Advanced Materials,2002,14(24):1812-5.
    [24] CHEN X D, HIRTZ M, FUCHS H, et al. Fabrication of gradientmesostructures by Langmuir-Blodgett rotating transfer [J]. Langmuir,2007,23(5):2280-3.
    [25] HAO J Y, LU N, XU H B, et al. Langmuir-Blodgett Monolayer MaskedChemical Etching: An Approach to Broadband Antireflective Surfaces [J].Chemistry of Materials,2009,21(9):1802-5.
    [26] FASOLKA M J, MAYES A M. Block copolymer thin films: Physics andapplications [J]. Annual Review of Materials Research,2001,31(323-55.
    [27] BLACK C T, GUARINI K W, RUIZ R, et al. Polymer self assembly insemiconductor microelectronics [J]. Int El Devices Meet,2006,168-71.
    [28] THURN-ALBRECHT T, SCHOTTER J, KASTLE C A, et al.Ultrahigh-density nanowire arrays grown in self-assembled diblockcopolymer templates [J]. Science,2000,290(5499):2126-9.
    [29] FISCHER U C, ZINGSHEIM H P. Submicroscopic pattern replication withvisible light [J]. Journal of Vacuum Science&Technology,1981,19(4):881-5.
    [30] CHAN G H, ZHAO J, HICKS E M, et al. Plasmonic properties of coppernanoparticles fabricated by nanosphere lithography [J]. Nano Letters,2007,7(7):1947-52.
    [31] ZHANG X Y, HICKS E M, ZHAO J, et al. Electrochemical tuning of silvernanoparticles fabricated by nanosphere lithography [J]. Nano Letters,2005,5(7):1503-7.
    [32] HAYNES C L, MCFARLAND A D, SMITH M T, et al. Angle-resolvednanosphere lithography: Manipulation of nanoparticle size, shape, andinterparticle spacing [J]. Journal of Physical Chemistry B,2002,106(8):1898-902.
    [33] HAYNES C L, VAN DUYNE R P. Nanosphere lithography: A versatilenanofabrication tool for studies of size-dependent nanoparticle optics [J].Journal of Physical Chemistry B,2001,105(24):5599-611.
    [34] JENSEN T R, MALINSKY M D, HAYNES C L, et al. Nanospherelithography: Tunable localized surface plasmon resonance spectra of silvernanoparticles [J]. Journal of Physical Chemistry B,2000,104(45):10549-56.
    [35] HUANG W Y, QIAN W, EL-SAYED M A. Coherent vibrational oscillationin gold prismatic monolayer periodic nanoparticle arrays [J]. Nano Letters,2004,4(9):1741-7.
    [36] ZHANG G, WANG D. Colloidal Lithography-The Art of NanochemicalPatterning [J]. Chemistry-an Asian Journal,2009,4(2):236-45.
    [37] ZHANG G, WANG D. Fabrication of heterogeneous binary arrays ofnanoparticles via colloidal lithography [J]. Journal of the American ChemicalSociety,2008,130(17):5616-+.
    [38] KEMPA K, KIMBALL B, RYBCZYNSKI J, et al. Photonic crystals basedon periodic arrays of aligned carbon nanotubes [J]. Nano Letters,2003,3(1):13-8.
    [39] ZHOU C M, GALL D. The structure of Ta nanopillars grown by glancingangle deposition [J]. Thin Solid Films,2006,515(3):1223-7.
    [40] ZHOU C M, GALL D. Surface patterning by nanosphere lithography forlayer growth with ordered pores [J]. Thin Solid Films,2007,516(2-4):433-7.
    [41] ZENG H, XU X, BANDO Y, et al. Template Deformation-Tailored ZnONanorod/Nanowire Arrays: Full Growth Control and Optimization ofField-Emission [J]. Advanced Functional Materials,2009,19(19):3165-72.
    [42] LI C, HONG G, WANG P, et al. Wet Chemical Approaches to PatternedArrays of Well-Aligned ZnO Nanopillars Assisted by Monolayer ColloidalCrystals [J]. Chemistry of Materials,2009,21(5):891-7.
    [43] FUHRMANN B, LEIPNER H S, HOCHE H R, et al. Ordered arrays ofsilicon nanowires produced by nanosphere lithography and molecular beamepitaxy [J]. Nano Letters,2005,5(12):2524-7.
    [44] KESAPRAGADA S V, GALL D. Two-component nanopillar arrays grownby Glancing Angle Deposition [J]. Thin Solid Films,2006,494(1-2):234-9.
    [45] LI Y, FANG X, KOSHIZAKI N, et al. Periodic TiO2Nanorod Arrays withHexagonal Nonclose-Packed Arrangements: Excellent Field Emitters byParameter Optimization [J]. Advanced Functional Materials,2009,19(15):2467-73.
    [46] LI Y, SASAKI T, SHIMIZU Y, et al. Hexagonal-Close-Packed, HierarchicalAmorphous TiO2Nanocolumn Arrays: Transferability, EnhancedPhotocatalytic Activity, and Superamphiphilicity without UV Irradiation [J].Journal of the American Chemical Society,2008,130(44):14755-62.
    [47] LI Y, SASAKI T, SHIMIZU Y, et al. A Hierarchically Ordered TiO2Hemispherical Particle Array with Hexagonal-Non-Close-Packed Tops:Synthesis and Stable Superhydrophilicity Without UV Irradiation [J]. Small,2008,4(12):2286-91.
    [48] LI L, LI Y, GAO S, et al. Ordered Co3O4hierarchical nanorod arrays:tunable superhydrophilicity without UV irradiation and transition tosuperhydrophobicity [J]. Journal of Materials Chemistry,2009,19(44):8366-71.
    [49] LI L, KOSHIZAKI N. Vertically aligned and ordered hematite hierarchicalcolumnar arrays for applications in field-emission, superhydrophilicity, andphotocatalysis [J]. Journal of Materials Chemistry,2010,20(15):2972-8.
    [50] HUANG Z P, FANG H, ZHU J. Fabrication of silicon nanowire arrays withcontrolled diameter, length, and density [J]. Adv Mater,2007,19(5):744-+.
    [51] PENG K Q, ZHANG M L, LU A J, et al. Ordered silicon nanowire arrays viananosphere lithography and metal-induced etching [J]. Applied PhysicsLetters,2007,90(16):
    [52] BAYATI M, PATOKA P, GIERSIG M, et al. An Approach to Fabrication ofMetal Nanoring Arrays [J]. Langmuir,2010,26(5):3549-54.
    [53] GWINNER M C, KOROKNAY E, FU L, et al. Periodic Large-Area MetallicSplit-Ring Resonator Metamaterial Fabrication Based on ShadowNanosphere Lithography [J]. Small,2009,5(3):400-6.
    [54] KOSIOREK A, KANDULSKI W, GLACZYNSKA H, et al. Fabrication ofnanoscale rings, dots, and rods by combining shadow nanosphere lithographyand annealed polystyrene nanosphere masks [J]. Small,2005,1(4):439-44.
    [55] KOSIOREK A, KANDULSKI W, CHUDZINSKI P, et al. Shadownanosphere lithography: Simulation and experiment [J]. Nano Letters,2004,4(7):1359-63.
    [56] SUN Z, LI Y, ZHANG J, et al. A Universal Approach to Fabricate VariousNanoring Arrays Based on a Colloidal-Crystal-Assisted-LithographyStrategy [J]. Advanced Functional Materials,2008,18(24):4036-42.
    [57] YANG S, XU F, OSTENDORP S, et al. Template-Confined DewettingProcess to Surface Nanopatterns: Fabrication, Structural Tunability, andStructure-Related Properties [J]. Advanced Functional Materials,2011,21(13):2446-55.
    [58] MA R, LU N, LIU L, et al. Fabrication of Single Gold Particle Arrays withPattern Directed Electrochemical Deposition [J]. Acs Applied Materials&Interfaces,2012,4(8):3779-83.
    [59] DUAN G, CAI W, LUO Y, et al. Hierarchical surface rough ordered Auparticle arrays and their surface enhanced Raman scattering [J]. AppliedPhysics Letters,2006,89(18):
    [60] DUAN G, LV F, CAI W, et al. General Synthesis of2D Ordered HollowSphere Arrays Based on Nonshadow Deposition Dominated ColloidalLithography [J]. Langmuir,2010,26(9):6295-302.
    [61] DUAN G T, CAI W P, LI Y, et al. Transferable ordered Ni hollow spherearrays induced by electrodeposition on colloidal monolayer [J]. Journal ofPhysical Chemistry B,2006,110(14):7184-8.
    [62] ELIAS J, LEVY-CLEMENT C, BECHELANY M, et al. Hollow Urchin-likeZnO thin Films by Electrochemical Deposition [J]. Advanced Materials,2010,22(14):1607-+.
    [63] YANG S, CAI W, YANG J, et al. General and Simple Route toMicro/Nanostructured Hollow-Sphere Arrays Based on Electrophoresis ofColloids Induced by Laser Ablation in Liquid [J]. Langmuir,2009,25(14):8287-91.
    [64] YANG S, CAI W, KONG L, et al. Surface Nanometer-Scale Patterning inRealizing Large-Scale Ordered Arrays of Metallic Nanoshells withWell-Defined Structures and Controllable Properties [J]. AdvancedFunctional Materials,2010,20(15):2527-33.
    [65] WANG C X, RUAN W D, JI N, et al. Preparation of Nanoscale AgSemishell Array with Tunable Interparticle Distance and Its Application inSurface-Enhanced Raman Scattering [J]. The Journal of Physical ChemistryC,2010,114(7):2886-90.
    [66] XU M, LU N, XU H, et al. Fabrication of Functional Silver NanobowlArrays via Sphere Lithography [J]. Langmuir,2009,25(19):11216-20.
    [67] WANG X D, LAO C S, GRAUGNARD E, et al. Large-size liftableinverted-nanobowl sheets as reusable masks for nanolithiography [J]. NanoLetters,2005,5(9):1784-8.
    [68] YANG S, LEI Y. Recent progress on surface pattern fabrications based onmonolayer colloidal crystal templates and related applications [J]. Nanoscale,2011,3(7):2768-82.
    [69] LI Y, LI C, CHO S O, et al. Silver hierarchical bowl-like array: Synthesis,superhydrophobicity, and optical properties [J]. Langmuir,2007,23(19):9802-7.
    [70] SUN F, YU J C. Photochemical preparation of two-dimensional goldspherical pore and hollow sphere arrays on a solution surface [J].Angewandte Chemie-International Edition,2007,46(5):773-7.
    [71] BUKASOV R, ALI T A, NORDLANDER P, et al. Probing the PlasmonicNear-Field of Gold Nanocrescent Antennas [J]. Acs Nano,2010,4(11):6639-50.
    [72] RETSCH M, TAMM M, BOCCHIO N, et al. Parallel Preparation of DenselyPacked Arrays of150-nm Gold-Nanocrescent Resonators in ThreeDimensions [J]. Small,2009,5(18):2105-10.
    [73] EBBESEN T W, LEZEC H J, GHAEMI H F, et al. Extraordinary opticaltransmission through sub-wavelength hole arrays [J]. Nature,1998,391(6668):667-9.
    [74] LI C, HONG G, QI L. Nanosphere Lithography at the Gas/Liquid Interface:A General Approach toward Free-Standing High-Quality Nanonets [J].Chemistry of Materials,2010,22(2):476-81.
    [75] UNGER A, RIETZLER U, BERGER R, et al. Sensitivity of Crescent-ShapedMetal Nanoparticles to Attachment of Dielectric Colloids [J]. Nano Letters,2009,9(6):2311-5.
    [76] VOGEL N, JUNG M, BOCCHIO N L, et al. Reusable Localized SurfacePlasmon Sensors Based on Ultrastable Nanostructures [J]. Small,2010,6(1):104-9.
    [77] HONG G, LI C, QI L. Facile Fabrication of Two-Dimensionally OrderedMacroporous Silver Thin Films and Their Application in Molecular Sensing[J]. Advanced Functional Materials,2010,20(21):3774-83.
    [78] JIA L, CAI W, WANG H. Metal ion-doped SnO2ordered porous films andtheir strong gas sensing selectivity [J]. Applied Physics Letters,2010,96(10):
    [79] JIA L, CAI W. Micro/Nanostructured Ordered Porous Films and TheirStructurally Induced Control of the Gas Sensing Performances [J]. AdvancedFunctional Materials,2010,20(21):3765-73.
    [80] JIA L, CAI W, WANG H, et al. Hetero-apertured Micro/NanostructuredOrdered Porous Array: Layer-by-Layered Construction andStructure-Induced Sensing Parameter Controllability [J]. Acs Nano,2009,3(9):2697-705.
    [81] JIA L, CAI W, WANG H. Layer-by-layer strategy for the general synthesisof2D ordered micro/nanostructured porous arrays: structural, morphologicaland compositional controllability [J]. Journal of Materials Chemistry,2009,19(39):7301-7.
    [82] XIA X H, TU J P, ZHANG J, et al. Cobalt Oxide Ordered Bowl-Like ArrayFilms Prepared by Electrodeposition through Monolayer Polystyrene SphereTemplate and Electrochromic Properties [J]. Acs Applied Materials&Interfaces,2010,2(1):186-92.
    [83] YUAN Y F, XIA X H, WU J B, et al. Hierarchically ordered porous nickeloxide array film with enhanced electrochemical properties for lithium ionbatteries [J]. Electrochemistry Communications,2010,12(7):890-3.
    [84] XIANG J Y, WANG X L, XIA X H, et al. Fabrication of highly orderedporous nickel phosphide film and its electrochemical performances towardlithium storage [J]. Journal of Alloys and Compounds,2011,509(1):157-60.
    [85] LI X, LI J, CHEN T, et al. Periodically Aligned Si Nanopillar Arrays asEfficient Antireflection Layers for Solar Cell Applications [J]. NanoscaleResearch Letters,2010,5(11):1721-6.
    [86] CHIGANE M, WATANABE M, IZAKI M, et al. Preparation of HollowTitanium Dioxide Shell Thin Films by Electrophoresis and Electrolysis forDye-Sensitized Solar Cells [J]. Electrochemical and Solid State Letters,2009,12(5): E5-E8.
    [87] BHUSHAN B, JUNG Y C. Natural and biomimetic artificial surfaces forsuperhydrophobicity, self-cleaning, low adhesion, and drag reduction [J].Progress in Materials Science,2011,56(1):1-108.
    [88] LIU K, YAO X, JIANG L. Recent developments in bio-inspired specialwettability [J]. Chemical Society Reviews,2010,39(8):3240-55.
    [89] WANG Y, LU N, XU H, et al. Biomimetic corrugated silicon nanoconearrays for self-cleaning antireflection coatings [J]. Nano Research,2010,3(7):520-7.
    [90] LI Y, ZHANG J, ZHU S, et al. Bioinspired silicon hollow-tip arrays for highperformance broadband anti-reflective and water-repellent coatings [J].Journal of Materials Chemistry,2009,19(13):1806-10.
    [91] SHANG N, PAPAKONSTANTINOU P, WANG P, et al. Self-AssembledGrowth, Microstructure, and Field-Emission High-Performance of UltrathinDiamond Nanorods [J]. Acs Nano,2009,3(4):1032-8.
    [92] CHANG C-M, CHANG Y-C, LEE C-Y, et al. Ti5Si4Nanobats withExcellent Field Emission Properties [J]. The Journal of Physical Chemistry C,2009,113(21):9153-6.
    [93] MUELLER T, XIA F, AVOURIS P. Graphene photodetectors for high-speedoptical communications [J]. Nature Photonics,2010,4(5):297-301.
    [94] DIAMANT G, HALAHMI E, KRONIK L, et al. Integrated circuits based onnanoscale vacuum phototubes [J]. Applied Physics Letters,2008,92(26):
    [95] LI W, ZHOU J, ZHANG X G, et al. Field emission from a periodicamorphous silicon pillar array fabricated by modified nanosphere lithography[J]. Nanotechnology,2008,19(13):
    [96] XU H B, LU N, QI D P, et al. Biomimetic Antireflective Si NanopillarArrays [J]. Small,2008,4(11):1972-5.
    [97] MIN W L, JIANG B, JIANG P. Bioinspired Self-Cleaning AntireflectionCoatings [J]. Advanced Materials,2008,20(20):3914-+.
    [98] SUN C H, HO B J, JIANG B, et al. Biomimetic subwavelength antireflectivegratings on GaAs [J]. Optical Letters,2008,33(19):2224-6.
    [99] MIN W L, BETANCOURT A P, JIANG P, et al. Bioinspired broadbandantireflection coatings on GaSb [J]. Applied Physics Letters,2008,92(14):
    [100] SUN C H, JIANG P, JIANG B. Broadband moth-eye antireflectioncoatings on silicon [J]. Applied Physics Letters,2008,92(6):
    [101] SUN C H, MIN W L, LINN N C, et al. Templated fabrication of largearea subwavelength antireflection gratings on silicon [J]. Applied PhysicsLetters,2007,91(23):
    [102] ZHU J, YU Z F, BURKHARD G F, et al. Optical AbsorptionEnhancement in Amorphous Silicon Nanowire and Nanocone Arrays [J].Nano Letters,2009,9(1):279-82.
    [103] NORTHEN T R, YANES O, NORTHEN M T, et a l. Clathratenanostructures for mass spectrometry [J]. Nature,2007,449(7165):1033-U3.
    [104] WEI J, BURIAK J M, SIUZDAK G. Desorption-ionization massspectrometry on porous silicon [J]. Nature,1999,399(6733):243-6.
    [105] GULBAKAN B, PARK D, KANG M C, et al. Laser DesorptionIonization Mass Spectrometry on Silicon Nanowell Arrays [J]. AnalyticalChemistry,2010,82(18):7566-75.
    [106] PIRET G, DROBECQ H, COFFINIER Y, et al. Matrix-Free LaserDesorption/Ionization Mass Spectrometry on Silicon Nanowire ArraysPrepared by Chemical Etching of Crystalline Silicon [J]. Langmuir,2010,26(2):1354-61.
    [107] LIU Q, GUO Z, HE L. Mass spectrometry imaging of small moleculesusing desorption/ionization on silicon [J]. Analytical Chemistry,2007,79(10):3535-41.
    [108] NORTHEN T R, WOO H K, NORTHEN M T, et al. High surface area ofporous silicon drives desorption of intact molecules [J]. Journal of theAmerican Society for Mass Spectrometry,2007,18(11):1945-9.
    [109] SHEN Z X, THOMAS J J, AVERBUJ C, et al. Porous silicon as aversatile platform for laser desorption/ionization mass spectrometry [J].Analytical Chemistry,2001,73(3):612-9.
    [110] FINKEL N H, PREVO B G, VELEV O D, et al. Ordered siliconnanocavity arrays in surface-assisted desorption/ionization massspectrometry [J]. Analytical Chemistry,2005,77(4):1088-95.
    [111] WANG Y, ZENG Z, LI J, et al. Biomimetic Antireflective SiliconNanocones Array for Small Molecules Analysis [J]. Journal of the AmericanSociety for Mass Spectrometry,2013,24(1):66-73.
    [112] STRIEMER C C, FAUCHET P M. Dynamic etching of silicon forbroadband antireflection applications [J]. Applied Physics Letters,2002,81(16):2980-2.
    [113] LEE Y J, RUBY D S, PETERS D W, et al. ZnO nanostructures asefficient antireflection layers in solar cells [J]. Nano Letters,2008,8(5):1501-5.
    [114] GOMBERT A, GLAUBITT W, ROSE K, et al. Antireflective transparentcovers for solar devices [J]. Solar Energy,2000,68(4):357-60.
    [115] LEE C, BAE S Y, MOBASSER S, et al. A novel silicon nanotipsantireflection surface for the micro sun sensor [J]. Nano Letters,2005,5(12):2438-42.
    [116] BODEN S A, BAGNALL D M. Tunable reflection minima ofnanostructured antireflective surfaces [J]. Applied Physics Letters,2008,93(13):
    [117] HUANG Y F, CHATTOPADHYAY S, JEN Y J, et al. Improvedbroadband and quasi-omnidirectional anti-reflection properties withbiomimetic silicon nanostructures [J]. Nature Nanotechnology,2007,2(12):770-4.
    [118] KANAMORI Y, ROY E, CHEN Y. Antireflection sub-wavelengthgratings fabricated by spin-coating replication [J]. MicroelectronicEngineering,2005,78-79(287-93.
    [119] AYDIN C, ZASLAVSKY A, SONEK G J, et al. Reduction of reflectionlosses in ZnGeP2using motheye antireflection surface relief structures [J].Applied Physics Letters,2002,80(13):2242-4.
    [120] ZHANG G M, ZHANG J, XIE G Y, et al. Cicada wings: A stamp fromnature for nanoimprint lithography [J]. Small,2006,2(12):1440-3.
    [121] CHEN H L, CHUANG S Y, LIN C H, et al. Using colloidal lithographyto fabricate and optimize sub-wavelength pyramidal and honeycombstructures in solar cells [J]. Optics Express,2007,15(22):14793-803.
    [122] LOHMULLER T, HELGERT M, SUNDERMANN M, et al. Biomimeticinterfaces for high-performance optics in the deep-UV light range [J]. NanoLetters,2008,8(5):1429-33.
    [123] WANG S, YU X Z, FAN H T. Simple lithographic approach forsubwavelength structure antireflection [J]. Applied Physics Letters,2007,91(6):
    [124] LEE Y, KOH K, NA H, et al. Lithography-Free Fabrication of LargeArea Subwavelength Antireflection Structures Using Thermally DewettedPt/Pd Alloy Etch Mask [J]. Nanoscale Research Letters,2009,4(4):364-70.
    [125] KANAMORI Y, HANE K, SAI H, et al.100nm period siliconantireflection structures fabricated using a porous alumina membrane mask[J]. Applied Physics Letters,2001,78(2):142-3.
    [126] TING C J, HUANG M C, TSAI H Y, et al. Low cost fabrication of thelarge-area anti-reflection films from polymer by nanoimprint/hot-embossingtechnology [J]. Nanotechnology,2008,19(20):
    [127] KANAMORI Y, SASAKI M, HANE K. Broadband antireflectiongratings fabricated upon silicon substrates [J]. Optical Letters,1999,24(20):1422-4.
    [128] CHIU C H, YU P C, KUO H C, et al. Broadband and omnidirectionalantireflection employing disordered GaN nanopillars [J]. Optics Express,2008,16(12):8748-54.
    [129] ZENG Z F, WANG Y D, SHI S L, et al. On-Plate Selective Enrichmentand Self-Desalting of Peptides/Proteins for Direct MALDI MS Analysis [J].Analytical Chemistry,2012,84(5):2118-23.
    [130] KAILASA S K, KIRAN K, WU H F. Comparison of ZnS SemiconductorNanaoparticles Capped with Various Functional Groups as the Matrix andAffinity Probes for Rapid Analysis of Cyclodextrins and Proteins inSurface-Assisted Laser Desorption/Ionization Time-of-Flight MassSpectrometry [J]. Analytical Chemistry,2008,80(24):9681-8.
    [131] HSU N F, TSENG S Y, WU C Y, et al. Desorption ionization ofbiomolecules on metals [J]. Analytical Chemistry,2008,80(13):5203-10.
    [132] SEINO T, SATO H, YAMAMOTO A, et al. Matrix-free laserdesorption/ionization-mass spectrometry using self-assembled germaniumnanodots [J]. Analytical Chemistry,2007,79(13):4827-32.
    [133] GO E P, APON J V, LUO G H, et al. Desorption/ionization on siliconnanowires [J]. Analytical Chemistry,2005,77(6):1641-6.
    [134] KRUSE R A, LI X L, BOHN P W, et al. Experimental factors controllinganalyte ion generation in laser desorption/ionization mass spectrometry onporous silicon [J]. Analytical Chemistry,2001,73(15):3639-45.
    [135] OKUNO S, ARAKAWA R, OKAMOTO K, et al. Requirements forlaser-induced desorption/ionization on submicrometer structures [J].Analytical Chemistry,2005,77(16):5364-9.
    [136] WADA Y, YANAGISHITA T, MASUDATA H. Ordered porousalumina geometries and surface metals for surface-assisted laserdesorption/ionization of biomolecules: Possible mechanistic implications ofmetal surface melting [J]. Analytical Chemistry,2007,79(23):9122-7.
    [137] NAYAK R, KNAPP D R. Matrix-Free LDI Mass Spectrometry PlatformUsing Patterned Nanostructured Gold Thin Film [J]. Analytical Chemistry,2010,82(18):7772-8.
    [138] SU C L, TSENG W L. Gold nanoparticles as assisted matrix fordetermining neutral small carbohydrates through laser desorption/ionizationtime-of-flight mass spectrometry [J]. Analytical Chemistry,2007,79(4):1626-33.
    [139] WU H P, YU C J, LIN C Y, et al. Gold Nanoparticles as AssistedMatrices for the Detection of Biomolecules in a High-Salt Solution throughLaser Desorption/Ionization Mass Spectrometry [J]. Journal of the AmericanSociety for Mass Spectrometry,2009,20(5):875-82.
    [140] CASTELLANA E T, RUSSELL D H. Tailoring nanoparticle surfacechemistry to enhance laser desorption ionization of peptides and proteins [J].Nano Letters,2007,7(10):3023-5.
    [141] TENG C H, HO K C, LIN Y S, et al. Gold nanoparticles as selective andconcentrating probes for samples in MALDI MS analysis [J]. AnalyticalChemistry,2004,76(15):4337-42.
    [142] CHIU T C, CHANG L C, CHIANG C K, et al. Determining estrogensusing surface-assisted laser desorption/ionization mass spectrometry withsilver nanoparticles as the matrix [J]. Journal of the American Society forMass Spectrometry,2008,19(9):1343-6.
    [143] WEN X J, DAGAN S, WYSOCKI V H. Small-molecule analysis withsilicon-nanoparticle-assisted laser desorption/ionization mass spectrometry[J]. Analytical Chemistry,2007,79(2):434-44.
    [144] YANG X J, HU X K, LOBODA A V, et al. Microstructured TungstenOxide: A Generic Desorption/Ionization Substrate for Mass Spectrometry [J].Advanced Materials,2010,22(40):4520-3.
    [145] LUO G H, CHEN Y, SIUZDAK G, et al. Surface modification and laserpulse length effects on internal energy transfer in DIOS [J]. Journal ofPhysical Chemistry B,2005,109(51):24450-6.
    [146] ARAKAWA R, SHIMOMAE Y, MORIKAWA H, et al. Massspectrometric analysis of low molecular mass polyesters by laserdesorption/ionization on porous silicon [J]. Journal of Mass Spectrometry,2004,39(8):961-5.
    [147] WALKER B N, RAZUNGUZWA T, POWELL M, et al. NanophotonicIon Production from Silicon Microcolumn Arrays [J]. AngewandteChemie-International Edition,2009,48(9):1669-72.
    [148] LUO G H, CHEN Y, DANIELS H, et al. Internal energy transfer in laserdesorption/ionization from silicon nanowires [J]. Journal of PhysicalChemistry B,2006,110(27):13381-6.
    [149] CHEN Y F, CHEN H Y, ALEKSANDROV A, et al. Roles of water,acidity, and surface morphology in surface-assisted laserdesorption/ionization of amino acids [J]. Journal of Physical Chemistry C,2008,112(17):6953-60.
    [150] FANG J X, DU S Y, LEBEDKIN S, et al. Gold Mesostructures withTailored Surface Topography and Their Self-Assembly Arrays forSurface-Enhanced Raman Spectroscopy [J]. Nano Letters,2010,10(12):5006-13.
    [151] HAYNES C L, MCFARLAND A D, VAN DUYNE R P.Surface-enhanced Raman spectroscopy [J]. Analytical Chemistry,2005,77(17):338A-46A.
    [152] LEE S J, GUAN Z Q, XU H X, et al. Surface-enhanced Ramanspectroscopy and nanogeometry: The plasmonic origin of SERS [J]. Journalof Physical Chemistry C,2007,111(49):17985-8.
    [153] OH Y J, JEONG K H. Glass Nanopillar Arrays with Nanogap-RichSilver Nanoislands for Highly Intense Surface Enhanced Raman Scattering[J]. Advanced Materials,2012,24(17):2234-7.
    [154] LU G, LI H, WU S X, et al. High-density metallic nanogaps fabricatedon solid substrates used for surface enhanced Raman scattering [J].Nanoscale,2012,4(3):860-3.
    [155] MU C, ZHANG J P, XU D S. Au nanoparticle arrays with tunableparticle gaps by template-assisted electroless deposition for highperformance surface-enhanced Raman scattering [J]. Nanotechnology,2010,21(1):
    [156] WANG Y, BECKER M, WANG L, et al. Nanostructured Gold Films forSERS by Block Copolymer-Templated Galvanic Displacement Reactions [J].Nano Letters,2009,9(6):2384-9.
    [157] KOSTOVSKI G, WHITE D J, MITCHELL A, et al. Nanoimprintedoptical fibres: Biotemplated nanostructures for SERS sensing [J]. Biosensors&Bioelectronics,2009,24(5):1531-5.
    [158] LI J F, HUANG Y F, DING Y, et al. Shell-isolatednanoparticle-enhanced Raman spectroscopy [J]. Nature,2010,464(7287):392-5.
    [159] SAJANLAL P R, PRADEEP T. Mesoflowers: A New Class of HighlyEfficient Surface-Enhanced Raman Active and Infrared-Absorbing Materials[J]. Nano Research,2009,2(4):306-20.
    [160] PANIGRAHI S, PRAHARAJ S, BASU S, et al. Self-assembly of silvernanoparticles: Synthesis, stabilization, optical properties, and application insurface-enhanced Raman scattering [J]. Journal of Physical Chemistry B,2006,110(27):13436-44.
    [161] BRAUN G, LEE S J, DANTE M, et al. Surface-enhanced Ramanspectroscopy for DNA detection by nanoparticle assembly onto smoothmetal films [J]. Journal of the American Chemical Society,2007,129(20):6378-+.
    [162] TAO A, KIM F, HESS C, et al. Langmuir-Blodgett silver nanowiremonolayers for molecular sensing using surface-enhanced Ramanspectroscopy [J]. Nano Letters,2003,3(9):1229-33.
    [163] STILES P L, DIERINGER J A, SHAH N C, et al. Surface-EnhancedRaman Spectroscopy [M]. Annual Review of Analytical Chemistry.2008:601-26.
    [164] WU W, HU M, OU F S, et al. Cones fabricated by3D nanoimprintlithography for highly sensitive surface enhanced Raman spectroscopy [J].Nanotechnology,2010,21(25):
    [165] YANG Y, LI Z Y, YAMAGUCHI K, et al. Controlled fabrication ofsilver nanoneedles array for SERS and their application in rapid detection ofnarcotics [J]. Nanoscale,2012,4(8):2663-9.
    [166] LIN X M, CUI Y, XU Y H, et al. Surface-enhanced Raman spectroscopy:substrate-related issues [J]. Analytical and Bioanalytical Chemistry,2009,394(7):1729-45.
    [167] SCHIERHORN M, LEE S J, BOETTCHER S W, et al. Metal-silicahybrid nanostructures for surface-enhanced Raman spectroscopy [J].Advanced Materials,2006,18(21):2829-+.
    [168] LI X L, HU H L, LI D H, et al. Ordered Array of Gold Semishells onTiO2Spheres: An Ultrasensitive and Recyclable SERS Substrate [J]. AcsApplied Materials&Interfaces,2012,4(4):2180-5.
    [169] KRISHNAMOORTHY S, KRISHNAN S, THONIYOT P, et al.Inherently Reproducible Fabrication of Plasmonic Nanoparticle Arrays forSERS by Combining Nanoimprint and Copolymer Lithography [J]. AcsApplied Materials&Interfaces,2011,3(4):1033-40.
    [170] QIAN L H, MOOKHERJEE R. Convective assembly of linear goldnanoparticle arrays at the micron scale for surface enhanced Ramanscattering [J]. Nano Research,2011,4(11):1117-28.
    [171] WANG W T, LU N, HAO J Y, et al. Self-Assembled Monolayer IslandsMasked Chemical Etching for Broad-Band Antireflective Silicon Surfaces [J].Journal of Physical Chemistry C,2010,114(5):1989-95.
    [172] SEIDEL H, CSEPREG L, HEUBERGER A, et al. Anisotropic Etchingof Crystalline Silicon in Alkaline Solutions [J]. Journal of TheElectrochemical Society,1990,137(11):3612-26
    [173] JUNG H Y, PARK Y K, PARK S, et al. Surface enhanced Ramanscattering from layered assemblies of close-packed gold nanopardicles [J].Analytica Chimica Acta,2007,602(2):236-43.
    [174] MAHMOUD M A, EL-SAYED M A. Aggregation of Gold NanoframesReduces, Rather Than Enhances, SERS Efficiency Due to the Trade-Off ofthe Inter-and Intraparticle Plasmonic Fields [J]. Nano Letters,2009,9(8):3025-31.
    [175] BIGGS K B, CAMDEN J P, ANKER J N, et al. Surface-EnhancedRaman Spectroscopy of Benzenethiol Adsorbed from the Gas Phase ontoSilver Film over Nanosphere Surfaces: Determination of the StickingProbability and Detection Limit Time [J]. Journal of Physical Chemistry A,2009,113(16):4581-6.
    [176] MCFARLAND A D, YOUNG M A, DIERINGER J A, et al.Wavelength-scanned surface-enhanced Raman excitation spectroscopy [J].Journal of Physical Chemistry B,2005,109(22):11279-85.
    [177] LINN N C, SUN C H, ARYA A, et al. Surface-enhanced Ramanscattering on periodic metal nanotips with tunable sharpness [J].Nanotechnology,2009,20(22):
    [178] FANG Y, SEONG N H, DLOTT D D. Measurement of the distributionof site enhancements in surface-enhanced Raman scattering [J]. Science,2008,321(5887):388-92.
    [179] JI N, RUAN W D, WANG C X, et al. Fabrication of Silver DecoratedAnodic Aluminum Oxide Substrate and Its Optical Properties onSurface-Enhanced Raman Scattering and Thin Film Interference [J].Langmuir,2009,25(19):11869-73.
    [180] GUI J Y, STERN D A, FRANK D G, et al. Adsorption and surfacestructural chemistry of thiophenol, benzyl mercaptan, and alkyl mercaptans.Comparative studies at Ag(111) and Pt(111) electrodes by means of Augerspectroscopy, electron energy loss spectroscopy, low-energy electrondiffraction, and electrochemistry [J]. Langmuir,1991,7(5):955-63.